
T

Tabular Computation

Behrooz Parhami
Department of Electrical and Computer
Engineering, University of California, Santa
Barbara, CA, USA

Synonyms

Approximate computation; Iterative refinement;
Table lookup

Definition

Big data necessitates the use of very large mem-
ories that can bring about other uses of such
units, say, for storing precomputed values of
functions of interest, to improve speed and energy
efficiency.

Overview

Until the 1970s, when compact and affordable
digital scientific calculators became available,
we relied on pre-calculated tables of important
functions that were published in book form (e.g.,
Zwillinger 2011). For example, base-10 loga-
rithm of values in [1, 10], at increments of 0.01,
might have been given in a 900-entry table, al-
lowing direct readout of values if low preci-

sion was acceptable or use of linear interpola-
tion to obtain greater precision. To compute log
35.419, say, one would note that it is 1 C log
3.5419 D 1 C log 3.54 C ", where log 3.54 is
read out from the said table and " is derived based
on the small residual 0.0019 using some sort of
approximation or interpolation. Once everyone
became equipped with a sophisticated calculator
and, later, with a personal computer, the use of
tables fell out of favor. Table-based computation
returned in at least two different forms in the
1990s. One was to speed up normal, circuit-based
computations by providing an initial estimate that
would then be refined. The other was to reduce
complexity and power consumption.

Implications of High Volume for Big
Data

Studies at IBM and Cisco Systems show that
as of 2012, we generated 2.5 exabytes of data
per day (Cisco Systems 2017; Jacobson 2013)
[1 exabyte D 1 quintillion or 1018 bytes D 1
gigagigabyte], and this is set to explode to 40
yottabytes per day [1 yottabyte D 1 septillion or
1024 bytes D 1 teraterabyte] by 2020. Multiply
the latter number by 365 and then by the number
of years, and the extent of data becomes even
more mind-boggling. Organizing, managing, and
updating such large volumes of data will be quite
challenging.

A direct consequence of high data volume is
high computational load, as confirmed by a sim-

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_169-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Approximate computation
http://link.springer.com/Iterative refinement
http://link.springer.com/Table lookup
https://doi.org/10.1007/978-3-319-63962-8_169-1


2 Tabular Computation

ple back-of-the-envelope calculation. Processing
1 petabyte of data, at around 100 clock cycles or
instructions per byte, means a processing time of
1017 clock cycles. With an optimistic clock rate of
10 GHz (1010), we will need a processing time of
107 s (�4 months). This is already impractically
long, and it becomes even more so for data
volumes much larger than a petabyte. It follows
that replacing many cycles of computation with
a single table lookup will offer immense perfor-
mance benefits.

Simultaneously with the exponential growth
of data production rate (Chen and Zhang 2014;
Hilbert and Gomez 2011), we have been expe-
riencing an exponential reduction in the cost of
computer memory and storage, as depicted in
Fig. 1 (McCallum 2017). The reduced cost of
memory and storage, combined with more ad-
vanced data compression schemes (Storer 1988),
renders big-data applications feasible while also
enabling new categories of applications, which
would not even be contemplated in the absence of
inexpensive storage. One such area is increased
reliance on large-scale tables for performing or
facilitating computation.

Why Table-Based Computation?

Function evaluation methods are studied in the
field of computer arithmetic (Parhami 2010),
dealing with algorithms and hardware designs for
performing computations within arithmetic/logic
units found as components of CPUs in general-
purpose computer architectures (Parhami 2005),
as well as within more specialized computational
structures, such as graphic processing units or
GPUs (Owens et al. 2008).

Computing any function requires time and
other resources, such as energy. If a particular
function value, say, f(a), is needed many times
in the course of different computations or the
same computation performed on different inputs,
it makes sense to store the computed value and
use it any time f(a) is needed, without having
to recompute. Storage can be accomplished via
conventional tables that are accessed by operand
values used as index into the table or may entail
some form of cache structure (Smith 1982) that

is consulted before triggering the requisite calcu-
lations in the event of a cache miss (Gabbay and
Mendelson 1998).

One way to reduce the required table size is to
subject the operands to some preprocessing or to
allow some post-processing of the value(s) read
out from the table(s). This kind of indirect table
lookup provides a range of trade-offs between
pure table lookup and pure computational or
circuit-based approach. For example, the two-
operand multiplication operation p(a, b)D ab can
be performed via two accesses to a smaller squar-
ing table, using the formula ab D [(a C b)2 –
(a – b)2]/4, whose use entails two additions in the
preprocessing phase and one addition along with
a 2-bit right shift in the post-processing stage.
Additional optimizations can be applied to this
method (Vinnakota 1995).

Reading a stored value requires less energy
than recomputing it, and reading may also be
faster, particularly for a computationally com-
plex function. Because table size grows expo-
nentially with the number of bits in the input
operand(s), the scheme is particularly efficient for
low-precision data, although continual increase in
size and reduction in cost of memory is expand-
ing the method’s applicability.

Low-precision computation, as embodied in
the rapidly expanding field of approximate com-
puting (Mittal 2016), is an increasingly important
part of the workload in modern computing. One
advantage of table-based approximate computing
is that the exact error for each table entry is
knowable, whereas in a circuit-based approach,
often a bound on the error is the best we can
provide.

Lookup Table Implementation
Options

The conceptually simplest method for imple-
menting a lookup table is to allocate 2u words,
each v bits wide, if there are u input operand(s)
bits and the result is to be v bits wide. The table
can then be filled with precomputed function val-
ues, essentially resulting in an electronic version



Tabular Computation 3

T

Tabular Computation, Fig. 1 Exponentially declining cost of computer memory and storage (McCallum 2017)

of the mathematical tables of yore found in pages
of handbooks.

This is rarely practical or efficient. One opti-
mization is to allocate space for all table entries
but only fill them when the values become needed
for the first time. In this way, the table will act
as a sort of cache memory which will generate
a “miss” upon first access to a particular entry.
When a miss is encountered, the requisite compu-
tation is performed to derive the value, which is
then forwarded to both the computation that led
to the miss and to the corresponding table entry
for possible future use.

A second optimization is to look for simple
transformations in the input operands that can be
performed efficiently in terms of time and en-
ergy while leading to substantial savings in table
size. If a two-operand function is symmetric, for
example, the table size can be cut in half by
determining which operand is larger and ordering
the operands. Such optimizations are function-

dependent and provide a wide range of trade-offs
between computation time and lookup table size.

A third optimization is to divide the domain
of interest into a number of subranges and im-
plement a separate lookup scheme for each sub-
range. For subranges where the function vari-
ations are less pronounced, smaller tables will
do, whereas subranges with significant variations
necessitate larger lookup tables. Related to this
last optimization is segmenting the domain of
interest in a nonuniform manner, using a special
mechanism to map input values into correspond-
ing subranges and thus associated lookup tables
(Lee et al. 2003).

An attractive alternative to parallel-access ta-
bles, with original or transformed operand bits
presented in parallel to form an index into the
table, is a combination of bit-serial computation
with table lookup. The scheme, known as dis-
tributed arithmetic (White 1989), allows certain
computations to be implemented through table



4 Tabular Computation

lookup, despite the large number of input values
involved. The speed of distributed arithmetic can
be respectable and the implementation cost mod-
est if the computation is pipelined at a high clock
rate. It is also possible to do intermediate schemes
where the computation is not fully serial, but
nibble- or byte-serial.

Table-based methods can be implemented in
a variety of ways and new schemes continue to
emerge in light of ongoing research. To keep our
discussion manageable, we focus on the basics of
two general methods, the interpolating memory
scheme and multipartite table method, in the
following two sections. More details on these
methods, including additional references, as well
as other pure and hybrid methods can be found in
books, periodicals, and conferences on computer
arithmetic (e.g., Parhami 2010).

Interpolating Memory

One can combine the lookup process for read-
ing out approximate function values with the
interpolation scheme needed for greater precision
into a single-hardware unit, dubbed interpolating
memory (Noetzel 1989).

Consider the computation of f(a), where
the parameter a falls between xi and xiC 1,
two consecutive lookup table indices, that is,
xi < a < xiC 1. Then, using linear interpolation,
the value of f(a) can be approximated as

f .a/ D f .xi /C .a–xi / � f
0 .xi /

where f 0(xi) is the derivative or slope of the
function at xi. More generally, the values
Ai D f(xi) and Bi D f 0(xi), or a value that better
approximates intermediate values between f(xi)
and f(xiC 1), are stored, with a post-processing
circuit computing f(a)D Ai C (a – xi) � Bi.

Practically, xi corresponds to several leading
bits of a and a – xi is represented by the remaining
bits of a. This scheme simplifies the implementa-
tion and reduces its complexity. Let au be defined
by a few upper bits of a, and let ar be the value
represented by the remaining bits of a, so that au

and ar collectively span all the bits of a. Then,
f(a)D f(au)C s(au) � ar.

One can increase the computational precision
by using second- or third-degree interpolation,
which, for the same precision, would need
smaller tables (Noetzel 1989) but requires
more external circuitry, providing a spectrum
of implementation options. For example,
with second-degree interpolation, we have
f(a) D f(au) C s(au) � ar C t(au) � ar

2. With
the latter formula, a squarer and two multipliers
are needed for highest-speed implementation.
Alternatively, one can use a single multiplier
to perform the operation ar � ar and the other
two multiplications sequentially. If the function
must be evaluated for several different x values,
the computation can be pipelined, so that the
maximum processing rate is achieved while using
only a single multiplier and one adder.

Bipartite and Multipartite Tables

Interpolating memory, discussed in the preceding
section, requires the use of a multiplier to achieve
the greater precision afforded by linear interpo-
lation. Multiplication is time-, cost-, and energy-
intensive compared with addition, so table lookup
schemes that avoid multiplication would be de-
sirable if they offer adequate precision using
only addition as pre- and post-processing op-
erations. Schemes in this category are known
as multiplier-less methods (e.g., Gustafsson and
Johanson 2006).

Bipartite tables (Das Sarma and Matula 1995)
offer one such scheme. Consider a k-bit operand
divided into a few of its most-significant bits,
xu, a few middle bits, xm, and the rest of the
bits xr, collectively spanning the entire width
of the operand x. We can approximate f(x) as
the sum g(xu, xm) C h(xu, xr). Essentially, the
decomposition into xu, xm, and xr creates in-
tervals corresponding to different values of xu

and subintervals corresponding to different val-
ues of xm. Function values are stored for each
subinterval in the table g(xu, xm). The ingenuity
of the method is that instead of storing slopes
for the various subintervals, as in interpolating



Tabular Computation 5

T

memory, a common slope for each interval is
stored, allowing the multiplication of the slope
s(xu) and the displacement xr to be performed by
the second lookup table which yields the value
h(xu, xr). Selection of the number of bits in xu and
xm offers various tradeoffs in precision and table
size, allowing the designer to choose an optimal
scheme, given application requirements.

The basic ideas discussed above have been
extended and refined in a variety of ways. Bipar-
tite tables can be optimized by taking advantage
of symmetry (Schulte and Stine 1999; Stine and
Schulte 1999). Extension to tripartite (Muller
1999) and multipartite tables (De Dinechin and
Tisserand 2005; Kornerup and Matula 2005) has
also been attempted.

Iterative Refinement Methods

Table lookup can be used in conjunction with
iterative refinement methods to obtain results
of higher precision that are impossible or cost-
ineffective to derive via pure table lookup. The
iterative refinement process essentially replaces
an interpolation scheme that would be much
more complex, if the same precision were to be
achieved. We present just one example, but there
are many more.

Consider finding the square root of z, starting
with an initial approximation x(0). The following
iterative scheme yields an approximation x(jC 1)
with maximum error 2–2k from a previous approx-
imation x(j) with maximum error 2–k:

x(jC 1)D ½(x(j)C z/x(j))
The scheme’s quadratic convergence ensures

that a small number of iterations will suffice. For
example, if an initial table entry provides the
square root of z with 16 bits of precision, one
iteration produces a 32-bit result and two itera-
tions will yield a 64-bit result. The method just
discussed has many variations and alternatives,
including versions that are division-free (Cray
Research 1989), given that division is a slower
and more complicated operation compared with
multiplication.

Future Directions

After decades of being restricted to low-precision
arithmetic, table lookup is emerging as a feasible
method of attack to higher-precision computa-
tion, aided by the lower cost and higher density of
memory devices as well as improved algorithms
for reducing the required table size via advanced
pre- and post-processing schemes.

In addition to general techniques discussed in
the preceding sections, a large number of special
algorithms and associated tweaks can be used to
make implementations more efficient or better-
suited to specific application domains. Methods
such as multilevel table lookup (Parhami 1997);
bit-level, application-specific optimization of
lookup tables (Parhami and Hung 1994); and
accurate error analysis (Tang 1991), accompanied
by further reduction in memory cost and increase
in memory density, will enable an expansion of
application domains that lend themselves to table
lookup processing. Advances in lookup table size
and performance may also lead to the adoption of
logarithmic number representation (Chugh and
Parhami 2013) in lieu of the currently prevalent
floating-point representation, which would lead
to additional side benefits.

Cross-References

� Energy Implications of Big Data
� Storage Hierarchies for Big Data
� Storage Technologies for Big Data

References

Chen CLP, Zhang C-Y (2014) Data-intensive applications,
challenges, techniques and technologies: a survey on
big data. Inf Sci 275:314–347

Chugh M, Parhami B (2013) Logarithmic arithmetic as an
alternative to floating-point: a review. In: Proceedings
of 47th Asilomar conference on signals, systems, and
computers, Pacific Grove, pp 1139–1143

Cisco Systems (2017) The Zettabyte Era: trends and
analysis, White Paper, http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-
index-vni/vni-hyperconnectivity-wp.html

http://link.springer.com/Energy Implications of Big Data
http://link.springer.com/Storage Hierarchies for Big Data
http://link.springer.com/Storage Technologies for Big Data
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html


6 Tabular Computation

Cray Research (1989) Cray 2 computer system functional
description manual, Cray documentation

Das Sarma D, Matula DW (1995) Faithful Bipartite ROM
reciprocal tables. In: Proceedings of 12th symposium
on computer arithmetic, Bath, pp 17–28

De Dinechin F, Tisserand A (2005) Multipartite
table methods. IEEE Trans Comput 54(3):
319–330

Gabbay F, Mendelson A (1998) Using value prediction to
increase the power of speculative execution hardware.
ACM Trans Comput Syst 16(3):234–270

Gustafsson O, Johanson K (2006) Multiplierless piece-
wise linear approximation of elementary functions. In:
Proceedings of 40th Asilomar conference on signals,
systems, and computers, Pacific Grove, pp 1678–1681

Hilbert M, Gomez P (2011) The world’s technological
capacity to store, communicate, and compute informa-
tion. Science 332:60–65

Jacobson R (2013) 2.5 quintillion bytes of data created
every day: how does CPG & retail manage it? IBM
Industry Insights, http://www.ibm.com/blogs/insights-
on-business/consumer-products/2-5-quintillion-bytes-
of-data-created-every-day-how-does-cpg-retail-mana-
ge-it/

Kornerup P, Matula DW (2005) Single precision recipro-
cals by multipartite table lookup. In: Proceedings of
17th IEEE symposium on computer arithmetic. Cape
Cod, pp 240–248

Lee DU, Luk W, Villasenor J, Cheung PYK (2003) Non-
uniform segmentation for hardware function evalua-
tion. In: Proceedings of 13th international conference
on field-programmable logic and applications, Lisbon.
LNCS, vol 2778. Springer, pp 796–807

McCallum JC (2017) Graph of memory
prices decreasing with time (1957–2017).
http://www.jcmit.net/mem2015.htm

Mittal S (2016) A survey of techniques for approximate
computing. ACM Comput Surv 48(4):62

Muller J-M (1999) A few results on table-based method.
Reliab Comput 5:279–288

Noetzel AS (1989) An interpolating memory unit for
function evaluation: analysis and design. IEEE Trans
Comput 38(3):377–384

Owens JD et al (2008) GPU computing. Proc IEEE
96(5):879–899

Parhami B (1997) Modular reduction by multi-level table
lookup. Proc 40th Midwest Symp Circuits Syst 1:381–
384

Parhami B (2005) Computer architecture: from micropro-
cessors to supercomputers. Oxford University Press,
New York

Parhami B (2010) Computer arithmetic: algorithms and
hardware designs, 2nd edn. Oxford University Press,
New York

Parhami B, Hung CY (1994) Optimal table lookup
schemes for VLSI implementation of input/output con-
versions and other residue number operations. In: Pro-
ceedings of IEEE workshop on VLSI signal processing
VII, La Jolla, pp 470–481

Schulte MJ, Stine JE (1999) Approximating elementary
functions with symmetric Bipartite tables. IEEE Trans
Comput 48(8):842–847

Smith AJ (1982) Cache memories. ACM Comput Surv
14(8):473–530

Stine JE, Schulte MJ (1999) The symmetric table addition
method for accurate function approximation. J VLSI
Signal Process 21:167–177

Storer J (1988) Data compression. Computer Science
Press, Rockville

Tang PTP (1991) Table-lookup algorithms for elementary
functions and their error analysis. In: Proceedings of
symposium on computer arithmetic, Bath, pp 232–236

Vinnakota B (1995) Implementing multiplication
with split read-only memory. IEEE Trans Comput
44(11):1352–1356

White SA (1989) Application of distributed arithmetic to
digital signal processing: a tutorial review. IEEE Trans
Acoustics Speech Signal Process 6(3):4–19

Zwillinger D (2011) CRC standard mathematical tables
and formulae, 32nd edn. CRC Press, Boca Raton

http://www.ibm.com/blogs/insights-on-business/consumer-products/2-5-quintillion-bytes-of-data-created-every-day-how-does-cpg-retail-manage-it/
http://www.jcmit.net/mem2015.htm

	Tabular Computation
	Synonyms
	Definition
	Overview
	Implications of High Volume for Big Data
	Why Table-Based Computation?
	Lookup Table Implementation Options
	Interpolating Memory
	Bipartite and Multipartite Tables
	Iterative Refinement Methods
	Future Directions
	Cross-References
	References
	References




