Data Replication
and Encoding

Behrooz Parhami

Department of Electrical and Computer
Engineering, University of California, Santa
Barbara, CA, USA

Synonyms

Big-data availability; Incorruptible big data

Definition of Entry

Conventional or well-established redundancy
methods for preventing data loss, unavailability,
or corruption can be used to protect big data, but
they need to be updated in order to make them
efficiently applicable to large data sets.

Overview

Data stored in memory devices, in storage net-
works, on the Web, or in the Cloud must be
protected against loss, accidental contamination,
or deliberate adulteration. Data are valuable as-
sets that can be lost to negligence or theft (for
illicit use or to exchange for ransom). Over the
years, many methods of data protection have been
devised by researchers in the field of depend-

able and fault-tolerant computing (Jalote 1994;
Parhami 2018), all of which entail introducing
redundancy to make data robust and recoverable
in the event of loss or corruption. As data as-
sumes ever-more important roles in the proper
functioning of systems that affect our daily lives,
greater protection, often involving higher degrees
of redundancy, becomes necessary. Yet, the age of
big data (Hilbert and Gomez 2011) makes naive
redundancy methods costlier and less convenient,
given the exponentially growing data volume,
which has seen aggregate data storage capacity in
the world rise from exabytes in 1986 to zettabytes
at the turn of the century (Hilbert and Gomez
2011).

Data Unavailability, Corruption,
and Loss

As valuable resources, data assets are subject to
theft (can be worse than loss, if the entity stealing
it abuses the resource), unavailability (not as bad
as loss or corruption but inconvenient nonethe-
less), corruption, or permanent loss. Theft for
illicit use can be prevented by encryption, a topic
that is outside the scope of this article (Hankerson
et al. 2000).

Data is lost or becomes unavailable for use
if the storage device or host site holding the
data crashes or is otherwise unresponsive. Data
unavailability can be avoided by keeping multiple
copies of the data on different devices/sites or by
means of distributed encoding.

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,

https://doi.org/10.1007/978-3-319-63962-8_174-1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Big-data availability
http://link.springer.com/Incorruptible big data
https://doi.org/10.1007/978-3-319-63962-8_174-1

The term “error” refers to any change of bit
or symbol values from the original or intended
values. Errors can be classified by their type
(inversion, erasure, substitution, and so on) and
extent (the number and positions of the bits/sym-
bols affected). Accordingly, error codes can be
single- or multiple-error detecting/correcting. In
the case of multiple errors, they can be arbitrary
or correlated, important examples of the latter
type being unidirectional and burst errors.

The most immediate threats to data corruption
are inadvertent changes to bit or symbol values
due to hardware failures (during the storage or
processing of data) or transmission errors (as
the data is moved from one place to another).
The corruption extent ranges from one bit-flip
(0 — 1 or 1 — 0) to complete erasure via all
bits being changed to Os, say. Data corruption
can be dealt with in ways similar to data loss or
unavailability. Corruption that is limited in scope
can be handled by error codes applied to locally
stored data. We thus devote two sections to error-
detecting and error-correcting codes, before de-
scribing schemes capable of dealing with more
widespread data corruption.

Error codes are means of representing data so
as to detect corrupting changes or to fix the cor-
rupted values automatically (Rao and Fujiwara
1989). Of course, detection by itself is inadequate
for avoiding data loss. It must be combined with
a data reconstruction or recovery scheme in order
to regain the original data. The recovery strategy
is often based on data replication, where backup
copies of data are kept in a reasonably up-to-date
manner for use during recovery.

Error codes are assessed by their extent of
redundancy, the total number n of bits/symbols
required to represent k data bits/symbols, with
r = n — k being the absolute redundancy and
r/k constituting the redundancy ratio, and by their
detection/correction capabilities (how many and
what types of errors are detected or corrected).

Error-Detecting Codes

The simplest error-detecting codes (Wakerly
1978) are based on parity, that is, the evenness or

Data Replication and Encoding

oddness of the number of 1 s in a code consisting
of Os and 1s. A simple parity code has code
distance of 2, meaning that any two code words
are different in at least two positions, ensuring the
detection of any single-bit error. Multiple parity
bits can be used in a variety of ways, leading to
a wide class of codes (Garrett 2004), including
Hamming error-detecting and error-correcting
codes (Hamming 1950).

Information flow in coded protection of data is
typically as follows:

Input = Encode => Send => Store => Send =>
Decode = Output

Such a coding framework protects the middle
three stages of sending to memory, residence in
memory, and sending to the final destination. If
data processing is also included, it corresponds to
a feedback path from the decode stage back to the
encode stage through a processing unit. In other
words, the redundant information is stripped, and
data in its original nonredundant form is sub-
jected to processing, with the result re-encoded
before being stored. Communication application
of coding corresponds to the linear path from
input to output depicted above, while computing
applications also include the feedback path just
discussed.

Protection against storage errors has a lot
in common with schemes of circumventing
transmission errors, so the same codes are often
applicable. However, there are specific codes
that can exploit the data storage pattern, say, on
two-dimensional recording surfaces, to provide
greater protection at the same or lower cost (e.g.,
Parhami and Avizienis 1973).

With codes that are closed under processing,
the feedback path can be shortened to span only
the middle three, rather than five, stages, thus
obviating the need for stripping and reinstating
the code. Processing coded information directly
provides stronger protection against accidental or
hardware-induced data corruption. For example,
arithmetic error-detecting codes (Avizienis 1971;
Avizienis 1973; Garner 1966) allow direct ad-
dition and subtraction of coded numbers, yield-
ing coded results. Multiplication with arithmetic-
coded operands is a bit more involved but still



Data Replication and Encoding

feasible, whereas division is quite difficult, thus
limiting the scope of applicability.

Popular examples of error-detecting codes in-
clude checksum codes (McAuley 1994); weight-
based and Berger codes (Berger 1961; Knuth
1986); cyclic codes (Peterson and Brown 1961);
linear codes (Sklar and Harris 2004), which in-
clude Hamming codes (Hamming 1950) as spe-
cial cases, balanced codes (Knuth 1986); arith-
metic codes (Avizienis 1971); and many other
types developed for specific applications.

Error-Correcting Codes

Error-correcting codes (Arazi 1987, Peterson and
Weldon 1972) are used extensively in storing data
on disk memory, whose raw reliability would be
dismal without the detecting and correcting ca-
pabilities of such codes (Petascale Data Storage
Institute 2012; Schroeder and Gibson 2007), as
well as in many other application contexts. The
use of such codes within individual data blocks
is often augmented by inter-block redundancy
schemes that provide an extra layer of protection
in what is known as RAID architecture, acronym
for redundant array of independent disks (Chen
et al. 1994; Feng et al. 2005), or redundant disk
array, for short.

Popular examples of error-correcting codes
in practical use include cyclic codes (Lin and
Costello 2004), which include the widely used
cyclic redundancy check or CRC codes as spe-
cial cases; linear codes (Sklar and Harris 2004),
which include Hamming codes (Hamming 1950)
as special cases; Reed-Solomon codes (Feng et
al. 2005; Reed and Solomon 1960); BCH codes
(Pless 1998); and many other types developed
for specific applications. Turbo codes (Benedetto
and Montorsi 1996) and low-density parity-check
or LDPC codes (Gallager 1962) are examples
of widely studied and used modern codes that
achieve very low redundancy ratios.

The theory of error-detecting and error-
correcting codes is quite advanced, and progress
is still being made (Guruswami and Rudra 2009).
What remains missing is a methodology for

choosing an optimal or near-optimal code for
a given set of application requirements.

Replication Codes

Replication codes are the conceptually simplest
codes but imply high redundancy (100% in the
case of duplication, 200% for triplication). Their
advantages include the fact that any unrestricted
error in one copy is detectable (duplication) or
correctable (triplication). Such detection and cor-
rection capabilities require that data copies be
stored on distributed nodes whose failures are
independent of each other (Jalote 1994).

In addition to allowing error detection or cor-
rection, replication facilitates access to data by
improving availability and access latency. For
example, with two copies of a particular piece
of data stored on two different computers, ex-
treme slowness or even crashing of one com-
puter will not hinder access to the data. The
prevailing nomenclature here is that we have
a primary site for each piece of data and one
or more backup sites (Budhiraja et al. 1993;
Guerraoui and Schiper 1997; Jalote 1994). In
addition to high redundancy in such primary-
backup schemes, a key challenge is to keep the
multiple copies up-to-date and consistent with
each other (Dullmann et al. 2001).

Data Dispersion

An alternative to replication is a scheme known as
data dispersion (Iyengar et al. 1998; Rabin 1989),
originally devised by Michael O. Rabin, which
entails much less redundancy but requires some
computation to reconstruct the data.

Let us present this method through an exam-
ple. Consider the three numbers a, b, and ¢ as
the data of interest to be protected. Instead of
storing the three numbers, we might store the
four values f(1), f(2), f(3), and f(4), where fis the
polynomial function f(x) = ax’> + bx + c. We
can lose any one of the four f values and still be
able to derive the original data values a, b, and
¢ from the three remaining f values by solving a



system of three linear equations. This example,
which entails 33% redundancy to protect against
loss of any single piece of data (compared with
100% for duplication), is readily understood, but
it is not a particularly efficient way of dispersing
data.

Data dispersion is actually a kind of encod-
ing (Feng et al. 2005), where k pieces of data
(say, k numbers) are encoded into n pieces (with
n > k), in such a way that any k pieces suffice
to derive the original data. Besides being useful
for data protection, the method has security and
load-balancing applications. In security, imagine
devising a scheme so that at least three officers
of a bank must cooperate to gain access to a safe,
whereas no two officers can gain access. Such an
arrangement is sometimes referred to as “secret
sharing” (Beimel 2011). In load balancing, con-
sider that the k pieces retrieved for reconstructing
the original data can come from any of the stake-
holders, thus making it possible to avoid con-
gested sites. In such a case, data dispersion can
be viewed as a performance-enhancing strategy,
as well as a reliability improvement method.

Future Directions

The field of dependable computing has advanced
for several decades to provide more reliable pro-
cessing, storage, and communication resources. It
is well known that reliability is a weakest-link
phenomenon, in the sense that any unprotected
or weakly protected part of the system can doom
the entire system. The exponential reliability law
(Parhami 2018) suggests that reliability declines
exponentially with an increase in the number of
system parts. In the context of big data, all aspects
of the system (processing, storage, and commu-
nication) will expand in complexity, challenging
the system designer to seek more advanced meth-
ods of reliability assurance.

Design of computer systems and their
attendant attributes in light of new application
domains and technological developments in the
twenty-first century is under review by many
researchers (Chen and Zhang 2014; Hu et al.
2014; Stanford University 2012). Since resources

Data Replication and Encoding

and services for big data will be provided
through the Cloud, directions of cloud computing
(Armburst et al. 2010) and associated hardware
acceleration mechanisms become relevant to our
discussion here (Caulfield et al. 2016).

A promising direction is provided by network
coding (Dimakis et al. 2011). This new field
essentially expands on the idea of data dispersion
by considering more general data distribution
schemes while also taking the impact of “repair
traffic” on system performance into account.

Cross-References

Data Longevity and Compatibility
Hardware Reliability Requirements
Parallel Processing with Big Data

References

Arazi B (1987) A commonsense approach to the theory of
error-correcting codes. MIT Press, Cambridge, MA
Armburst M et al (2010) A view of cloud computing.
Commun ACM 53(4):50-58

Avizienis A (1971) Arithmetic error codes: cost and effec-
tiveness studies for application in digital system design.
IEEE Trans Comput 20(11):1322-1331

Avizienis A (1973) Arithmetic algorithms for error-coded
operands. IEEE Trans Comput 22(6):567-572

Beimel A (2011) Secret-sharing schemes: a survey. In:
Proceedings of international conference coding and
cryptology, Springer LNCS no. 6639, Berlin, pp 11-46

Benedetto S, Montorsi G (1996) Unveiling turbo codes:
some results on parallel concatenated coding schemes.
IEEE Trans Inf Theory 42(2):409-428

Berger JM (1961) A note on error detection codes for
asymmetric channels. Inf Control 4:68-73

Budhiraja N, Marzullo K, Schneider FB, Toueg S (1993)
The primary-backup approach. Distrib Syst 2:199-216

Caulfield AM, et al (2016) A cloud-scale acceleration
architecture. In: Proceedings of 49th IEEE/ACM in-
ternational symposium on microarchitecture, Taipei,
Taiwan, pp 1-13

Chen CLP, Zhang C-Y (2014) Data-intensive applications,
challenges, techniques and technologies: a survey on
big data. Inf Sci 275:314-347

Chen PM, Lee EK, Gibson GA, Katz RH, Patterson DA
(1994) RAID: high-performance reliable secondary
storage. ACM Comput Surv 26(2):145-185

Dimakis AG, Ramachandran K, Wu Y, Suh C (2011) A
survey on network codes for distributed storage. Proc
IEEE 99(3):476-489


http://link.springer.com/Data Longevity and Compatibility
http://link.springer.com/Hardware Reliability Requirements
http://link.springer.com/Parallel Processing with Big Data

Data Replication and Encoding

Dullmann D et al (2001) Models for replica synchroniza-
tion and consistency in a data grid. In: Proceedings
of 10th IEEE international symposium on high perfor-
mance distributed computing, San Francisco, CA, pp
67-75

Feng G-L, Deng RH, Bao F, Shen J-C (2005) New
efficient MDS array codes for RAID — part I: Reed-
Solomon-like codes for tolerating three disk failures.
IEEE Trans Comput 54(9):1071-1080; Part II: Rabin-
like codes for tolerating multiple (> 4) disk failures.
IEEE Trans Comput 54(12):1473-1483

Gallager R (1962) Low-density parity-check codes. IRE
Trans Inf Theory 8(1):21-28

Garner HL (1966) Error codes for arithmetic operations.
IEEE Trans Electron Comput 5:763-770

Garrett P (2004) The mathematics of coding theory. Pren-
tice Hall, Upper Saddle River

Guerraoui R, Schiper A (1997) Software-based replication
for fault tolerance. IEEE Comput 30(4):68-74

Guruswami V, Rudra A (2009) Error correction up
to the information-theoretic limit. Commun ACM
52(3):87-95

Hamming RW (1950) Error detecting and error correcting
codes. Bell Labs Tech J 29(2):147-160

Hankerson R et al (2000) Coding theory and cryptogra-
phy: the essentials. Marcel Dekker, New York

Hilbert M, Gomez P (2011) The World’s technological
capacity to store, communicate, and compute informa-
tion. Science 332:60-65

Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable
systems for big data analytics; a technology tutorial.
IEEE Access 2:652-687

Iyengar A, Cahn R, Garay JA, Jutla C (1998) Design and
implementation of a secure distributed data repository.
IBM Thomas J. Watson Research Division, Yorktown
Heights

Jalote P (1994) Fault tolerance in distributed systems.
Prentice Hall, Englewood Cliffs

Knuth DE (1986) Efficient balanced codes. IEEE Trans
Inf Theory 32(1):51-53

Lin S, Costello DJ (2004) Error control coding, vol 2.
Prentice Hall, Upper Saddle River

McAuley AJ (1994) Weighted sum codes for error de-
tection and their comparison with existing codes.
IEEE/ACM Trans Networking 2(1):16-22

Parhami B (2018) Dependable computing: a multi-
level approach. Draft of book manuscript,
available on-line at: http://www.ece.ucsb.edu/~par
hami/text_dep_comp.htm

Parhami B, Avizienis A (1973) Detection of storage errors
in mass memories using arithmetic error codes. IEEE
Trans Comput 27(4):302-308

Petascale Data Storage Institute (2012)
Analyzing failure data. Project Web site:
http://www.pdl.cmu.edu/PDSI/FailureData/index.html

Peterson WW, Brown DT (1961) Cyclic codes for error
detection. Proc IRE 49(1):228-235

Peterson WW, Weldon EJ Jr (1972) Error-correcting
codes, 2nd edn. MIT Press, Cambridge, MA

Pless V (1998) Bose-Chaudhuri-Hocquenghem (BCH)
codes. In: Introduction to the theory of error-correcting
codes, 3rd edn. Wiley, New York, pp 109-222

Rabin M (1989) Efficient dispersal of information for
security, load balancing, and fault tolerance. ] ACM
36(2):335-348

Rao TRN, Fujiwara E (1989) Error-control coding for
computer systems. Prentice Hall, Upper Saddle River,
NJ

Reed I, Solomon G (1960) Polynomial codes over certain
finite fields. SIAM J Appl Math 8:300-304

Schroeder B, Gibson GA (2007) Understanding disk fail-
ure rates: what does an MTTF of 1,000,000 hours mean
to you? ACM Trans Storage 3(3):Article 8, 31 pp

Sklar B, Harris FJ (2004) The ABCs of linear block codes.
IEEE Signal Process 21(4):14-35

Stanford University (2012) 2Ist century computer
architecture: a community white paper. On-line:
http://csl.stanford.edu/~christos/publications/2012.21st
centuryarchitecture.whitepaper.pdf

Wakerly JF (1978) Error detecting codes, self-checking
circuits and applications. North Holland, New York


http://www.ece.ucsb.edu/~parhami/text_dep_comp.htm
http://www.pdl.cmu.edu/PDSI/FailureData/index.html
http://csl.stanford.edu/~christos/publications/ 2012.21stcenturyarchitecture.whitepaper.pdf

	Data Replication and Encoding
	Synonyms
	Definition of Entry
	Overview
	Data Unavailability, Corruption, and Loss
	Error-Detecting Codes
	Error-Correcting Codes
	Replication Codes
	Data Dispersion
	Future Directions
	Cross-References
	References
	References




