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Abstract— Processor arrays have been used, either as the main 
computation engine or as special-purpose adjuncts, for a variety 
of applications requiring very high performance. As the size of 
such an array increases, the possibility of processor malfunctions, 
leading to loss of computational capabilities, can no longer be 
ignored. While many switching architectures and reconfiguration 
algorithms have been proposed for building processor arrays, 
modeling of their reliability has been inadequately addressed. In 
this paper, I study differences between 2D processor arrays with 
centralized and distributed switching, pointing to advantages of 
the latter in terms of reliability, regularity, modularity, and VLSI 
realizability. As important side results, I formulate the notions of 
reliability inversion (a less reliable system prevailing over a more 
reliable one due to modeling uncertainties) and modelability (the 
property of a system that makes it possible to derive tight 
reliability bounds, thus making reliability inversion less likely). 

Keywords—dependability, reconfigurable 2D arrays, reliability 
bound, reliability modeling, spare row/column, switch tracks 

I. INTRODUCTION 

Reconfiguration is a powerful method that can be used at 
multiple architectural levels to overcome the effects of 
defective, unavailable, or malfunctioning parts through the 
establishment of alternate or bypass signal-paths and 
computations. Examples include reconfiguration for defect 
tolerance to improve VLSI yield [1], using alternate components 
and interconnects during mapping of computations onto a 
partially-used or damaged FPGA [2], and allowing graceful 
degradation on parallel array architectures [3]. Many other 
methods used at the architectural level to help adapt a system to 
changing conditions are also instances of reconfiguration, 
although some may not be recognized as such. For example, 
when we replace an operational unit within a redundant system 
by a spare unit upon failure detection, we are really 
reconfiguring an (s + 1)-unit “parallel” subsystem to switch from 
the working module to one of the s spares [4]. 

In the references cited, and the examples we will draw upon, 
reconfiguration is performed to return a processor array with 
malfunctioning nodes to its original healthy configuration, so as 

to be able to execute the original algorithms unaltered. 
Specifically, we are not considering the use of an injured or 
partially-damaged array, which still provides inter-node 
connectivity, though at a degraded level due to reduced 
bandwidth and dilated paths [5], or a smaller healthy subarray, 
which would require computation remapping with a higher per-
processor load and increased congestion. We are also not 
considering the kind of reconfiguration that extends the 
computational power (in a complexity-theory sense) of the 
array, allowing it to achieve significant speed-up in performing 
certain global computations [6]. 

Given the importance of processor arrays in building high-
performance parallel systems for a number of applications, 
many alternative reconfiguration schemes have been proposed 
over the years [7]. These alternative architectures differ in the 
types, multiplicity, and placement of switches used, the control 
scheme for effecting array reconfiguration (centralized or 
distributed), and the relative complexity/speed of the 
reconfiguration algorithm, once the set of unavailable 
processors becomes known. 

II. RECONFIGURABLE PROCESSOR ARRAYS 

I will illustrate the advantages of distributed switching over 
a centralized scheme on a small 5  5 example array, with one 
row and one column of redundant or spare processors, leading 
to a 6  6 host array. I then follow the specific result with 
arguments/proofs that the advantage grows with both array size 
and an increase in redundant resources (number of spare rows 
and columns), thus establishing a fairly general result. The 
extent of the reliability advantage growth remains unquantified 
in this paper. Working towards quantifying the advantage 
growth constitutes a fruitful area for further research. 

An example 2D array, with embedded reconfiguration 
switches, placed along tracks between rows and columns, is 
depicted in Fig. 1. The small circles represent 4-port switches, 
whose 3 states and usage within the processor array of Fig. 1 are 
shown in Fig. 2. The actual reconfiguration method used for the 
array and its malfunction-tolerance capabilities will be discussed 
in Sections III and IV of the paper. 



 
Fig. 1. Square 5  5 processor array with a spare row (bottom) and a spare 
column (right), along with embedded reconfiguration switches. 

The scheme shown in Fig. 1 represents but one example of 
how switches can be embedded within the processor array to 
allow signals normally going from one processor to a row- or 
column-neighbor to be diverted to a different processor, thus 
offering processor bypassing capability. When such a 
replacement takes place, the node that takes over must either be 
initialized to the current state of the replaced node or else the 
entire computation must be restarted or rolled back with a 
different assignment of node identities. This isn’t a trivial 
problem, but its complexities are independent of the actual 
replacement and reconfiguration scheme used. So, we will not 
discuss the problem further. 

Some reconfiguration schemes for processor arrays entail 
the use of multiple tracks of switches or more complex switches 
than the one shown in Fig. 2. An example reconfiguration 
scheme with two switch tracks (red and blue) between rows and 
columns of processors is depicted in Fig. 3. Using a larger 
number of switches or more complex ones presents a reliability 
tradeoff, which is hard to quantify in general. The advantages of 
greater reconfigurability may be nullified by higher failure rates 
for more complex or more numerous switches. 

For this study, we limit ourselves to a single track of switches 
between processor rows and columns. We will assume the use 
of identical switches, for ease of reliability modeling and VLSI 
realization. However, we place no restriction on switch 
complexity, given that the switch failure rate is taken to be an 
independent parameter in the reliability model we use. 

For an n  n processor array with a spare row and a spare 
column, the redundancy factor is (2n + 1)/n2 = O(1/n). With k 
spare rows and k spare columns, the redundancy ratio becomes 
(2kn + k2)/n2 = O(k/n), so we are dealing with relatively low 
redundancy factors. 

 

           
Fig. 2. Four-port, three-state switches and how they are used in the 
reconfigurable array of Fig. 1. 

 

Fig. 3. A small portion of a 2D processor array with two tracks of embedded 
switches between rows and columns of processors. 

III. CENTRALIZED RECONFIGURATION 

Consider the 6  6 host array of Fig. 1 embedding a 5  5 
guest array. Originally, the nodes in the topmost 5 rows and the 
leftmost 5 columns are active, with the configuration changing 
as nodes malfunction. A particular reconfigured array is 
depicted in Fig. 4, where it is assumed that in addition to 
embedded signal re-routing switches, there is a mechanism that 
allows the bypassing of a processor within its row or column. 

Intuitively, signal re-routing is done by shifting rows 
downward (toward the spare row) in order to circumvent the 
effect of unavailable row processors. Similarly, columns are 
shifted rightward (toward the spare column) to avoid bad nodes 
within a column. We won’t discuss the algorithms that effect 
reconfiguration (see, e.g., [8]), mentioning only that any double-
node malfunction can be tolerated via reconfiguration, but there 
are worst-case patterns of 3 unusable nodes that exceed the 
scheme’s reconfigurability [4]. 

As for controlling the reconfiguration switches, two schemes 
are possible. In the first category of methods, switches are under 
the control of a central unit. Such a scheme has the drawbacks 
of creating a single point of failure in the control mechanism and 
requiring long wires, as well as excessive delay for shifting-in 
the configuration information in the event of a processor 
malfunction. In the second category of methods, each switch is 
controlled by a nearby processing node. The drawback here is 
that a bad processor can make other nodes or certain 
configurations of the array inaccessible, reducing the overall 
reliability and increasing the modeling effort to take all 
scenarios into account. 

 

Fig. 4. Proccessor array of Fig. 1 configured to salvage a healthy 5  5 array 
from a 6  6 injured one. 



A simple combinational model for assessing the reliability 
of the processor array of Figs. 1 and 4 is to lump the switching 
hardware into a hard core and to model the processing part as a 
34-out-of-36 system, given that up to 2 processor malfunctions 
are guaranteed to be tolerable. Let the processor failure rate be 
 and the switch failure rate . Then, given that there are 60 
embedded switches within the 6  6 array: 

Module/Processor reliability = r = e– t  (1) 
Overall switching reliability = e– (60)t   (2) 
System reliability = e– (60)tR34-out-of-36(r)  (3) 

where Rk-out-of-n(r) is the k-out-of-n reliability for modules of 
uniform reliability r. Computationally: 

R34-out-of-36(r) = r36
 + 36r35(1 – r) + (3635/2)r34(1 – r)2 

          = r34[r2 +36r(1 – r) + 630(1 – r)2] 
= r34[595r2 – 1224r + 630] 

           = r34[1 + (1 – r)(629 – 595r)]  (4) 

 Substituting Eq. (4) into Eq. (3) results in the reliability plots 
of Fig. 5 for different  = / ratios, ranging from 0.001 to 0.1, 
reflecting the relative switch complexity. For typical processor 
nodes,  will be in the lower range of the considered values, 
whereas for simple processing elements used in some arrays, the 
value of  will approach the higher end, though it is unlikely to 
get very close to 0.1. 

The shapes of the unreliability curves in Fig. 5 are according 
to expectation. For small values of t, the processing part of the 
system, as a 34-out-of-36 system, is highly reliable, so switches 
are the main contributors to unreliability. This is why we have 
significant differences between the three cases with different 
levels of switch complexity relative to a processor. As the value 
of t increases, multiple processor malfunctions exceeding the 
system’s tolerance capability become dominant, reducing the 
impact of switching differences. 

 

 
Fig. 5. Reliability of our example processor array with centralized 
reconfiguration as a function of t, for different values of  = /. 

IV. DISTRIBUTED RECONFIGURATION 

We now introduce a reconfiguration switching scheme for 
processor arrays in which good processors dictate the system 
configuration by controlling their own internal switches. Bad 
processors are rendered immaterial by their outputs not being 
selected/used by any good processor. The scheme works as long 
as good nodes possess information about malfunctioning nodes, 
but such information is needed for any reconfiguration scheme, 
whether centralized or distributed. 

Distributed switching can be achieved in a variety of ways. 
For fairness of direct comparisons, we choose a scheme that 
offers the same reconfiguration capability as the centralized 
scheme depicted in Figs. 1 and 2. The switching mechanism in 
each module is composed of two 3-input multiplexers (muxes) 
that allow each processor to choose its east and north neighbors 
from among three possible modules. As an example, the north 
neighbor of a processor can be any one of the three processors 
in the immediately preceding row, the one directly above and 
the ones preceding and following it in the row. This is what the 
scheme in Figs. 1 and 2 allow, given the availability of only one 
spare row and one spare column. 

Now, each node becomes a tad more complex, increasing its 
failure rate to  + , where  is the failure rate of the original 
track switches of Fig. 2 and  is the distribution overhead, 
representing the increase in the hardware complexity of the 
switching mechanisms as a result of the distribution process. We 
now have the following reliability equations: 

Module reliability = r = e– (+)t   (5) 
System reliability = R34-out-of-36(r)   (6) 

In our numerical example, we take  = 2 as a reasonable 
pessimistic value, given the presence of 60/36  1.67 switches 
per node in the centralized scheme (see Fig. 1), with each 2  2 
switch built from two 2-to-1 muxes. The distributed scheme 
needs two 3-input muxes per node, as depicted in Fig. 6. 

Unreliabilities of the resulting reconfigurable array for three 
different values of  = / are plotted in Fig. 7. Again, the 
unreliability curves match our expectation. In a distributed 
reconfiguration scheme, switches are integrated into the 
processing nodes, thus as long as 34 of the 36 processor-switch 
modules are functional, we can successfully reconfigure the 
system. We do not care about the health of the switching 
mechanism any more than we care about processor health. In 
other words, the system has no single point of failure.  

 

 
Fig. 6. Processors incorporated into modules with built-in switches. 



 
Fig. 7. System unreliability for our example processor array with distributed 
reconfiguration as a function of t, for different values of  = /. 

TABLE I.  LOW SENSITIVITY OF RELIABILITY TO VARIATIONS IN  

t    0.0001 0.0010 0.0100 0.1000 

R(= 1) 1.000,000 0.999,993 0.994,343 0.314,752 

R(= 2) 1.000,000 0.999,993 0.994,189 0.308,424 

R(= 3) 1.000,000 0.993,992 0.994,031 0.302,192 

 

Just to make sure that the results aren’t overly sensitive to 
our decision to use  = 2, we perform a sensitivity analysis by 
considering two other values for the parameter , representing 
no distribution overhead at all ( = 1) and much greater 
overhead ( = 3). These values are extreme, but they serve to 
confirm, as seen in Table I, that reliability values do not change 
much by a small adjustment in the value of . 

V. RELIABILITY COMPARISONS 

The reliability advantages of distributed reconfiguration 
switching are apparent from comparing Figs. 5 and 7. The 
greatest advantages are seen for smaller values of t, which is 
consistent with the normal operating region for highly reliable 
systems. Figure 8 shows the two unreliability curves 
corresponding to  = 0.01 from Figs. 5 and 7 superimposed to 
better visualize the reliability differences for a reasonable 
instance of switch complexity. The dotted gray curve will be 
explained in Section VIII. 

We see from inspecting Fig. 8 that as t approaches 1, 
differences in reliabilities diminish, rendering the centralized 
and distributed reconfiguration schemes indistinguishable and 
also practically useless. Thus, in the region of t values where 
systems tend to operate, distributed reconfiguration switching 
offers significant advantages. 

The reader may wonder whether the results above, obtained 
for a specific array size and with a particular switching scheme, 
have more general significance. The following informally-
justified claims suggest that they do. 

 
Fig. 8. Comparing system unreliability for a reconfigurable array of PEs as a 
function of t, under the assumptions of  = 0.01 and  = 2. 

Claim 1: The reliability advantage of distributed 
reconfiguration over a centralized scheme grows with an 
increase in array size, while keeping the switching scheme and, 
thus, tolerance level the same. 

Proof outline: Write out the expression for the reliability 
lower bounds of an h  h array and then increase the array size 
to (h + 1)  (h + 1). Show that the reliability bound decreases 
less as a result of the array enlargement for the distributed 
scheme compared with the centralized one. The intuition behind 
this result is that the centralized switch complexity growth has a 
direct effect on reliability, whereas the increase in module 
complexity due to the distribution process passes through the 
filter of, and is moderated by, the k-out-of-n function. 

Claim 2: The reliability advantage of distributed 
reconfiguration over a centralized scheme grows with an 
increase in the number of spare rows and/or spare columns, all 
else being kept the same.  

Proof outline: Two spare rows and two spare columns 
convert the (n2 + 2n – 1)-out-of-(n2 + 2n +1) reliability function 
to the (n2 + 2n – 3)-out-of-(n2 + 2n +1) function, representing 
the tolerance of 4 processor malfunctions. Again, the 
improvement in the k-out-on-n function value dominates the 
corresponding improvement in the centralized scheme, which 
now has somewhat greater switch complexity. 

Claim 3: The reliability advantage of distributed array 
reconfiguration over a centralized scheme grows with an 
increase in the switching complexity (more switch tracks or 
greater switch hardware sophistication) that allows more 
malfunctioning processors to be tolerated. 

Proof outline: The proof strategy for this claim is similar to 
that used for Claim 2. Other than the k-out-of-n function 
“softening” the impact of switch imperfections, the distribution 
of the more complex switching capabilities among multiple 
modules leads to greater reliability improvement. 



VI. MODELABILITY AS A SYSTEM ATTRIBUTE 

The exact reliability of a system is often unknowable. If we 
had 100s of identical copies of a system and could run them for 
decades, observing system failures, we could ascertain the actual 
reliability with high confidence. The large number of copies and 
long running times are needed because, at typically high system 
reliabilities that are of practical interest, failures are extremely 
rare, so to obtain statistically valid results, extensive data 
collection is required. 

An alternative to the impractical experimental validation 
process outlined in the preceding paragraph is to make simple, 
pessimistic assumptions about subsystems and their 
interactions, in an analytic or simulation model, to derive a lower 
bound on reliability. The latter is the only option when 
evaluation is being done at the design stage, when no physical 
system exists. Of course, models don’t completely eliminate the 
need for experimentation, as model parameters may be derived, 
and models themselves fine-tuned, based on the results of 
experimental observations. 

We call a system “modelable” when it lends itself to the 
derivation of better (tighter) reliability lower bounds. 
Modelability is of the same nature as (design for) analyzability, 
also known as “design for analysis” [9], itself predated by 
notions such as design for manufacturing (manufacturability). 
Analyzability requires honoring certain design constraints that 
would allow the use of simpler tools for analysis. In the domain 
of electronic circuits, design for packageability [10] is quite 
similar. Both notions constrain the design process, but, 
somewhat counterintuitively, the end result is often economy 
and shorter time-to-market. 

VII. RELIABILITY INVERSION 

A modelable system lends itself to the derivation of tighter 
reliability bounds. Considering Fig. 9, which shows the 
(unknowable) reliabilities of Systems A and B and lower bounds 
for them derived through reliability models, system B seems to 
enjoy greater modelability, because its reliability lower-bounds 
are closer to actual values. At this point, modelability is a 
qualitative notion, but there is no reason whatsoever why we 
cannot quantify it. Other “ilities,” such as testability and 
serviceability, started out as qualitative notions, but were later 
quantified with much success. Pursuing the quantification of 
modelability constitutes a fruitful area for further research. 

 

 
Fig. 9. True reliability vs. modeled lower bound. 

In short, reliability analysis is often based on worst-case 
assumptions, so as to produce guaranteed lower-bounds on 
system survival probability. Reliability engineers try to derive 
tight lower-bounds, but sometimes system structure is 
unfriendly to the derivation of tight bounds. 

For a mission time t0 (see Fig. 9), we may obtain the lower 
bound 0.995 for the reliability of System B, whose actual 
reliability is 0.997, and the lower bound 0.993 for System A, 
with an actual reliability of 0.999. Because actual reliabilities are 
unknowable, as previously noted, we have to compare systems 
based on lower bounds, leading to the declaration of System B 
as more reliable than System A at t0. I have referred to this 
condition as reliability inversion [11], in analogy to the similarly 
disruptive phenomenon of “priority inversion” in real-time task 
scheduling [12] that wreaked havoc during the Mars Pathfinder 
mission of the late 1990s [13]. 

In reality, Fig. 9 shows that each of the systems A and B is 
more reliable for some range of mission times. But given the 
model-based reliability bounds, System B appears to be 
uniformly more reliable than System A. 

VIII. CONCLUSION 

In this paper, I have shown that reconfigurable processor 
arrays with distributed switching tend to be more reliable than 
those with centralized switching due to the combination of two 
factors: Inherently higher reliability and better modelability, the 
latter allowing the derivation of tighter lower bounds for system 
reliability using relatively simple combinatorial models. In a 
companion paper [11], I have shown that centralized switching 
can exhibit better reliability under certain unusual conditions 
(the gray dotted curve in Fig. 8). 

As pointed out in the previous sections of the paper, several 
problems remain to be addressed in future research. First, the 
claims presented in Section V show improved reliability with 
certain changes in array configuration. These improvements 
should be quantified, either by generalizing the proofs or by 
direct derivation of reliability formulas for various array sizes 
and configurations. Second, an attempt should be made to 
quantify the notion of modelability, so that it can be applied to 
evaluating competing system designs in a systematic way or to 
produce design guidelines and methodologies. Third, extension 
of our results to arbitrary system sizes and form factors, 
alternative  hardware switching architectures, and a variety of 
reconfiguration processes and algorithms [14] [15] [16] [17] can 
lead to more-widely applicable results, as well as new 
application and research challenges. 
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