
978-1-7281-8416-6/20/$31.00 ©2020 IEEE

Reliability and Modelability Advantages of
Distributed Switching for Reconfigurable 2D

Processor Arrays

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California
Santa Barbara, CA 93106-9560, USA

Abstract— Processor arrays have been used, either as the main
computation engine or as special-purpose adjuncts, for a variety
of applications requiring very high performance. As the size of
such an array increases, the possibility of processor malfunctions,
leading to loss of computational capabilities, can no longer be
ignored. While many switching architectures and reconfiguration
algorithms have been proposed for building processor arrays,
modeling of their reliability has been inadequately addressed. In
this paper, I study differences between 2D processor arrays with
centralized and distributed switching, pointing to advantages of
the latter in terms of reliability, regularity, modularity, and VLSI
realizability. As important side results, I formulate the notions of
reliability inversion (a less reliable system prevailing over a more
reliable one due to modeling uncertainties) and modelability (the
property of a system that makes it possible to derive tight
reliability bounds, thus making reliability inversion less likely).

Keywords—dependability, reconfigurable 2D arrays, reliability
bound, reliability modeling, spare row/column, switch tracks

I. INTRODUCTION

Reconfiguration is a powerful method that can be used at
multiple architectural levels to overcome the effects of
defective, unavailable, or malfunctioning parts through the
establishment of alternate or bypass signal-paths and
computations. Examples include reconfiguration for defect
tolerance to improve VLSI yield [1], using alternate components
and interconnects during mapping of computations onto a
partially-used or damaged FPGA [2], and allowing graceful
degradation on parallel array architectures [3]. Many other
methods used at the architectural level to help adapt a system to
changing conditions are also instances of reconfiguration,
although some may not be recognized as such. For example,
when we replace an operational unit within a redundant system
by a spare unit upon failure detection, we are really
reconfiguring an (s + 1)-unit “parallel” subsystem to switch from
the working module to one of the s spares [4].

In the references cited, and the examples we will draw upon,
reconfiguration is performed to return a processor array with
malfunctioning nodes to its original healthy configuration, so as

to be able to execute the original algorithms unaltered.
Specifically, we are not considering the use of an injured or
partially-damaged array, which still provides inter-node
connectivity, though at a degraded level due to reduced
bandwidth and dilated paths [5], or a smaller healthy subarray,
which would require computation remapping with a higher per-
processor load and increased congestion. We are also not
considering the kind of reconfiguration that extends the
computational power (in a complexity-theory sense) of the
array, allowing it to achieve significant speed-up in performing
certain global computations [6].

Given the importance of processor arrays in building high-
performance parallel systems for a number of applications,
many alternative reconfiguration schemes have been proposed
over the years [7]. These alternative architectures differ in the
types, multiplicity, and placement of switches used, the control
scheme for effecting array reconfiguration (centralized or
distributed), and the relative complexity/speed of the
reconfiguration algorithm, once the set of unavailable
processors becomes known.

II. RECONFIGURABLE PROCESSOR ARRAYS

I will illustrate the advantages of distributed switching over
a centralized scheme on a small 5  5 example array, with one
row and one column of redundant or spare processors, leading
to a 6  6 host array. I then follow the specific result with
arguments/proofs that the advantage grows with both array size
and an increase in redundant resources (number of spare rows
and columns), thus establishing a fairly general result. The
extent of the reliability advantage growth remains unquantified
in this paper. Working towards quantifying the advantage
growth constitutes a fruitful area for further research.

An example 2D array, with embedded reconfiguration
switches, placed along tracks between rows and columns, is
depicted in Fig. 1. The small circles represent 4-port switches,
whose 3 states and usage within the processor array of Fig. 1 are
shown in Fig. 2. The actual reconfiguration method used for the
array and its malfunction-tolerance capabilities will be discussed
in Sections III and IV of the paper.

Fig. 1. Square 5  5 processor array with a spare row (bottom) and a spare
column (right), along with embedded reconfiguration switches.

The scheme shown in Fig. 1 represents but one example of
how switches can be embedded within the processor array to
allow signals normally going from one processor to a row- or
column-neighbor to be diverted to a different processor, thus
offering processor bypassing capability. When such a
replacement takes place, the node that takes over must either be
initialized to the current state of the replaced node or else the
entire computation must be restarted or rolled back with a
different assignment of node identities. This isn’t a trivial
problem, but its complexities are independent of the actual
replacement and reconfiguration scheme used. So, we will not
discuss the problem further.

Some reconfiguration schemes for processor arrays entail
the use of multiple tracks of switches or more complex switches
than the one shown in Fig. 2. An example reconfiguration
scheme with two switch tracks (red and blue) between rows and
columns of processors is depicted in Fig. 3. Using a larger
number of switches or more complex ones presents a reliability
tradeoff, which is hard to quantify in general. The advantages of
greater reconfigurability may be nullified by higher failure rates
for more complex or more numerous switches.

For this study, we limit ourselves to a single track of switches
between processor rows and columns. We will assume the use
of identical switches, for ease of reliability modeling and VLSI
realization. However, we place no restriction on switch
complexity, given that the switch failure rate is taken to be an
independent parameter in the reliability model we use.

For an n  n processor array with a spare row and a spare
column, the redundancy factor is (2n + 1)/n2 = O(1/n). With k
spare rows and k spare columns, the redundancy ratio becomes
(2kn + k2)/n2 = O(k/n), so we are dealing with relatively low
redundancy factors.

Fig. 2. Four-port, three-state switches and how they are used in the
reconfigurable array of Fig. 1.

Fig. 3. A small portion of a 2D processor array with two tracks of embedded
switches between rows and columns of processors.

III. CENTRALIZED RECONFIGURATION

Consider the 6  6 host array of Fig. 1 embedding a 5  5
guest array. Originally, the nodes in the topmost 5 rows and the
leftmost 5 columns are active, with the configuration changing
as nodes malfunction. A particular reconfigured array is
depicted in Fig. 4, where it is assumed that in addition to
embedded signal re-routing switches, there is a mechanism that
allows the bypassing of a processor within its row or column.

Intuitively, signal re-routing is done by shifting rows
downward (toward the spare row) in order to circumvent the
effect of unavailable row processors. Similarly, columns are
shifted rightward (toward the spare column) to avoid bad nodes
within a column. We won’t discuss the algorithms that effect
reconfiguration (see, e.g., [8]), mentioning only that any double-
node malfunction can be tolerated via reconfiguration, but there
are worst-case patterns of 3 unusable nodes that exceed the
scheme’s reconfigurability [4].

As for controlling the reconfiguration switches, two schemes
are possible. In the first category of methods, switches are under
the control of a central unit. Such a scheme has the drawbacks
of creating a single point of failure in the control mechanism and
requiring long wires, as well as excessive delay for shifting-in
the configuration information in the event of a processor
malfunction. In the second category of methods, each switch is
controlled by a nearby processing node. The drawback here is
that a bad processor can make other nodes or certain
configurations of the array inaccessible, reducing the overall
reliability and increasing the modeling effort to take all
scenarios into account.

Fig. 4. Proccessor array of Fig. 1 configured to salvage a healthy 5  5 array
from a 6  6 injured one.

A simple combinational model for assessing the reliability
of the processor array of Figs. 1 and 4 is to lump the switching
hardware into a hard core and to model the processing part as a
34-out-of-36 system, given that up to 2 processor malfunctions
are guaranteed to be tolerable. Let the processor failure rate be
 and the switch failure rate . Then, given that there are 60
embedded switches within the 6  6 array:

Module/Processor reliability = r = e– t (1)
Overall switching reliability = e– (60)t (2)
System reliability = e– (60)tR34-out-of-36(r) (3)

where Rk-out-of-n(r) is the k-out-of-n reliability for modules of
uniform reliability r. Computationally:

R34-out-of-36(r) = r36
 + 36r35(1 – r) + (3635/2)r34(1 – r)2

 = r34[r2 +36r(1 – r) + 630(1 – r)2]
= r34[595r2 – 1224r + 630]

 = r34[1 + (1 – r)(629 – 595r)] (4)

 Substituting Eq. (4) into Eq. (3) results in the reliability plots
of Fig. 5 for different  = / ratios, ranging from 0.001 to 0.1,
reflecting the relative switch complexity. For typical processor
nodes,  will be in the lower range of the considered values,
whereas for simple processing elements used in some arrays, the
value of  will approach the higher end, though it is unlikely to
get very close to 0.1.

The shapes of the unreliability curves in Fig. 5 are according
to expectation. For small values of t, the processing part of the
system, as a 34-out-of-36 system, is highly reliable, so switches
are the main contributors to unreliability. This is why we have
significant differences between the three cases with different
levels of switch complexity relative to a processor. As the value
of t increases, multiple processor malfunctions exceeding the
system’s tolerance capability become dominant, reducing the
impact of switching differences.

Fig. 5. Reliability of our example processor array with centralized
reconfiguration as a function of t, for different values of  = /.

IV. DISTRIBUTED RECONFIGURATION

We now introduce a reconfiguration switching scheme for
processor arrays in which good processors dictate the system
configuration by controlling their own internal switches. Bad
processors are rendered immaterial by their outputs not being
selected/used by any good processor. The scheme works as long
as good nodes possess information about malfunctioning nodes,
but such information is needed for any reconfiguration scheme,
whether centralized or distributed.

Distributed switching can be achieved in a variety of ways.
For fairness of direct comparisons, we choose a scheme that
offers the same reconfiguration capability as the centralized
scheme depicted in Figs. 1 and 2. The switching mechanism in
each module is composed of two 3-input multiplexers (muxes)
that allow each processor to choose its east and north neighbors
from among three possible modules. As an example, the north
neighbor of a processor can be any one of the three processors
in the immediately preceding row, the one directly above and
the ones preceding and following it in the row. This is what the
scheme in Figs. 1 and 2 allow, given the availability of only one
spare row and one spare column.

Now, each node becomes a tad more complex, increasing its
failure rate to  + , where  is the failure rate of the original
track switches of Fig. 2 and  is the distribution overhead,
representing the increase in the hardware complexity of the
switching mechanisms as a result of the distribution process. We
now have the following reliability equations:

Module reliability = r = e– (+)t (5)
System reliability = R34-out-of-36(r) (6)

In our numerical example, we take  = 2 as a reasonable
pessimistic value, given the presence of 60/36  1.67 switches
per node in the centralized scheme (see Fig. 1), with each 2  2
switch built from two 2-to-1 muxes. The distributed scheme
needs two 3-input muxes per node, as depicted in Fig. 6.

Unreliabilities of the resulting reconfigurable array for three
different values of  = / are plotted in Fig. 7. Again, the
unreliability curves match our expectation. In a distributed
reconfiguration scheme, switches are integrated into the
processing nodes, thus as long as 34 of the 36 processor-switch
modules are functional, we can successfully reconfigure the
system. We do not care about the health of the switching
mechanism any more than we care about processor health. In
other words, the system has no single point of failure.

Fig. 6. Processors incorporated into modules with built-in switches.

Fig. 7. System unreliability for our example processor array with distributed
reconfiguration as a function of t, for different values of  = /.

TABLE I. LOW SENSITIVITY OF RELIABILITY TO VARIATIONS IN 

t  0.0001 0.0010 0.0100 0.1000

R(= 1) 1.000,000 0.999,993 0.994,343 0.314,752

R(= 2) 1.000,000 0.999,993 0.994,189 0.308,424

R(= 3) 1.000,000 0.993,992 0.994,031 0.302,192

Just to make sure that the results aren’t overly sensitive to
our decision to use  = 2, we perform a sensitivity analysis by
considering two other values for the parameter , representing
no distribution overhead at all ( = 1) and much greater
overhead ( = 3). These values are extreme, but they serve to
confirm, as seen in Table I, that reliability values do not change
much by a small adjustment in the value of .

V. RELIABILITY COMPARISONS

The reliability advantages of distributed reconfiguration
switching are apparent from comparing Figs. 5 and 7. The
greatest advantages are seen for smaller values of t, which is
consistent with the normal operating region for highly reliable
systems. Figure 8 shows the two unreliability curves
corresponding to  = 0.01 from Figs. 5 and 7 superimposed to
better visualize the reliability differences for a reasonable
instance of switch complexity. The dotted gray curve will be
explained in Section VIII.

We see from inspecting Fig. 8 that as t approaches 1,
differences in reliabilities diminish, rendering the centralized
and distributed reconfiguration schemes indistinguishable and
also practically useless. Thus, in the region of t values where
systems tend to operate, distributed reconfiguration switching
offers significant advantages.

The reader may wonder whether the results above, obtained
for a specific array size and with a particular switching scheme,
have more general significance. The following informally-
justified claims suggest that they do.

Fig. 8. Comparing system unreliability for a reconfigurable array of PEs as a
function of t, under the assumptions of  = 0.01 and  = 2.

Claim 1: The reliability advantage of distributed
reconfiguration over a centralized scheme grows with an
increase in array size, while keeping the switching scheme and,
thus, tolerance level the same.

Proof outline: Write out the expression for the reliability
lower bounds of an h  h array and then increase the array size
to (h + 1)  (h + 1). Show that the reliability bound decreases
less as a result of the array enlargement for the distributed
scheme compared with the centralized one. The intuition behind
this result is that the centralized switch complexity growth has a
direct effect on reliability, whereas the increase in module
complexity due to the distribution process passes through the
filter of, and is moderated by, the k-out-of-n function.

Claim 2: The reliability advantage of distributed
reconfiguration over a centralized scheme grows with an
increase in the number of spare rows and/or spare columns, all
else being kept the same.

Proof outline: Two spare rows and two spare columns
convert the (n2 + 2n – 1)-out-of-(n2 + 2n +1) reliability function
to the (n2 + 2n – 3)-out-of-(n2 + 2n +1) function, representing
the tolerance of 4 processor malfunctions. Again, the
improvement in the k-out-on-n function value dominates the
corresponding improvement in the centralized scheme, which
now has somewhat greater switch complexity.

Claim 3: The reliability advantage of distributed array
reconfiguration over a centralized scheme grows with an
increase in the switching complexity (more switch tracks or
greater switch hardware sophistication) that allows more
malfunctioning processors to be tolerated.

Proof outline: The proof strategy for this claim is similar to
that used for Claim 2. Other than the k-out-of-n function
“softening” the impact of switch imperfections, the distribution
of the more complex switching capabilities among multiple
modules leads to greater reliability improvement.

VI. MODELABILITY AS A SYSTEM ATTRIBUTE

The exact reliability of a system is often unknowable. If we
had 100s of identical copies of a system and could run them for
decades, observing system failures, we could ascertain the actual
reliability with high confidence. The large number of copies and
long running times are needed because, at typically high system
reliabilities that are of practical interest, failures are extremely
rare, so to obtain statistically valid results, extensive data
collection is required.

An alternative to the impractical experimental validation
process outlined in the preceding paragraph is to make simple,
pessimistic assumptions about subsystems and their
interactions, in an analytic or simulation model, to derive a lower
bound on reliability. The latter is the only option when
evaluation is being done at the design stage, when no physical
system exists. Of course, models don’t completely eliminate the
need for experimentation, as model parameters may be derived,
and models themselves fine-tuned, based on the results of
experimental observations.

We call a system “modelable” when it lends itself to the
derivation of better (tighter) reliability lower bounds.
Modelability is of the same nature as (design for) analyzability,
also known as “design for analysis” [9], itself predated by
notions such as design for manufacturing (manufacturability).
Analyzability requires honoring certain design constraints that
would allow the use of simpler tools for analysis. In the domain
of electronic circuits, design for packageability [10] is quite
similar. Both notions constrain the design process, but,
somewhat counterintuitively, the end result is often economy
and shorter time-to-market.

VII. RELIABILITY INVERSION

A modelable system lends itself to the derivation of tighter
reliability bounds. Considering Fig. 9, which shows the
(unknowable) reliabilities of Systems A and B and lower bounds
for them derived through reliability models, system B seems to
enjoy greater modelability, because its reliability lower-bounds
are closer to actual values. At this point, modelability is a
qualitative notion, but there is no reason whatsoever why we
cannot quantify it. Other “ilities,” such as testability and
serviceability, started out as qualitative notions, but were later
quantified with much success. Pursuing the quantification of
modelability constitutes a fruitful area for further research.

Fig. 9. True reliability vs. modeled lower bound.

In short, reliability analysis is often based on worst-case
assumptions, so as to produce guaranteed lower-bounds on
system survival probability. Reliability engineers try to derive
tight lower-bounds, but sometimes system structure is
unfriendly to the derivation of tight bounds.

For a mission time t0 (see Fig. 9), we may obtain the lower
bound 0.995 for the reliability of System B, whose actual
reliability is 0.997, and the lower bound 0.993 for System A,
with an actual reliability of 0.999. Because actual reliabilities are
unknowable, as previously noted, we have to compare systems
based on lower bounds, leading to the declaration of System B
as more reliable than System A at t0. I have referred to this
condition as reliability inversion [11], in analogy to the similarly
disruptive phenomenon of “priority inversion” in real-time task
scheduling [12] that wreaked havoc during the Mars Pathfinder
mission of the late 1990s [13].

In reality, Fig. 9 shows that each of the systems A and B is
more reliable for some range of mission times. But given the
model-based reliability bounds, System B appears to be
uniformly more reliable than System A.

VIII. CONCLUSION

In this paper, I have shown that reconfigurable processor
arrays with distributed switching tend to be more reliable than
those with centralized switching due to the combination of two
factors: Inherently higher reliability and better modelability, the
latter allowing the derivation of tighter lower bounds for system
reliability using relatively simple combinatorial models. In a
companion paper [11], I have shown that centralized switching
can exhibit better reliability under certain unusual conditions
(the gray dotted curve in Fig. 8).

As pointed out in the previous sections of the paper, several
problems remain to be addressed in future research. First, the
claims presented in Section V show improved reliability with
certain changes in array configuration. These improvements
should be quantified, either by generalizing the proofs or by
direct derivation of reliability formulas for various array sizes
and configurations. Second, an attempt should be made to
quantify the notion of modelability, so that it can be applied to
evaluating competing system designs in a systematic way or to
produce design guidelines and methodologies. Third, extension
of our results to arbitrary system sizes and form factors,
alternative hardware switching architectures, and a variety of
reconfiguration processes and algorithms [14] [15] [16] [17] can
lead to more-widely applicable results, as well as new
application and research challenges.

REFERENCES
[1] M. Wang, M. Cutler, and S. Y. H. Su, “Reconfiguration of VLSI/WSI

mesh array processors with two-level redundancy,” IEEE Trans.
Computers, vol. 38, no. 4, April 1989, pp. 547–554.

[2] S. Hauck and A. DeHon (eds.), Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation, Elsevier, 2008.

[3] M. Sami and R. Stefanelli, “Reconfigurable architectures for VLSI
processing arrays,” Proceedings of the IEEE, vol. 74, no. 5, May 1986,
pp. 712–722.

[4] B. Parhami, Dependable Computing: A Multilevel Approach, 2020. Draft
of graduate-level textbook available via the author’s Web site at UCSB,
under the “Textbooks” tab.

[5] Y. C. Tseng, M. H. Yang, and T. Y. Juang, “Achieving fault-tolerant
multicast in injured wormhole-routed tori and meshes based on Euler path
construction,” IEEE Trans. Computers, vol. 48, no. 11, November 1999,
pp. 1282–1296.

[6] Y. Ben-Asher, D. Peleg, R. Ramaswami, and A. Schuster, “The power of
reconfiguration,” Proc. Int’l Colloquium Automata, Languages, and
Programming, Springer, 1991, pp. 139–150.

[7] M. Chean and J. A. B. Fortes, J. A. B., “A taxonomy of reconfiguration
techniques for fault-tolerant processor arrays,” IEEE Computer, vol. 23,
no. 1, January 1990, pp. 55–69.

[8] M. Fukushi and S. Horiguchi, “Reconfiguration algorithm for degradable
processor arrays based on row and column rerouting,” Proc. 19th IEEE
Int’l Conf. Defect and Fault Tolerance in VLSI Systems, October 2004,
pp. 496–504.

[9] R. Suri and M. Shimizu, “Design for analysis: A new strategy to improve
the design process,” Research in Engineering Design, vol. 1, no. 2, June
1989, pp. 105–120.

[10] P. H. Dehkordi and D. W. Bouldin, D. W., “Design for packageability—
Early consideration of packaging from a VLSI designer’s viewpoint,”
IEEE Computer, vol. 26, no. 4, April 1993, pp. 76–81.

[11] B. Parhami, “Reliability inversion: A cautionary tale,” IEEE Computer,
vol. 53, no. 6, June 2020, pp. 28–33.

[12] D. Locke, L. Sha, R. Rajikumar, J. Lehoczky, and G. Burns, “Priority
inversion and its control: An experimental investigation,” ACM SIGADA
Ada Letters, vol. 8, no. 7, June 1988, pp. 39–42.

[13] G. Reeves, “What really happened on Mars,” The Risks Digest, vol. 19,
no. 54, 1998 (item 6 within the issue).

[14] G. Jiang, J. Wu, and J. Sun, “Efficient reconfiguration algorithms for
communication-aware three-dimensional processor arrays,” Parallel
Computing, vol. 39, no. 9, September 2013, pp. 490–503.

[15] J. Qian, W. Cao, J. Hu, J. Zhang, Z. Xu, and Z. Zhou, “Satisfiability-based
method for reconfiguring power efficient VLSI array,” IEICE Electronics
Express, vol. 13, no. 23, August 2016.

[16] J. Wu, N. Liu, S.-K. Lam, and G. Jiang, “Shortest partial path first
algorithm for reconfigurable processor array with faults,” Proc. IEEE
Trustcom/BigDataSE/ISPA, August 2016, pp. 1198–1203.

[17] J. Wu, T. Srikanthan, G. Jiang, and K. Wang, “Constructing sub-arrays
with short interconnects from degradable VLSI arrays,” IEEE Trans.
Parallel and Distributed Systems, vol. 25, no. 4, April 2013, pp. 929–938.

