
A highly parallel computing system
for information retrieval*

by BEHROOZ PARHAM I

University of California
Los Angeles, California

INTRODUCTION

The tremendous expansion in the volume of recorded
kno'wledge and the desirability of more sophisticated
retrieval techniques have resulted in a need for auto-
mated information retrieval systems. However, the high
cost, in programming and running time, implied by such
systems has prevented their widespread use. This high
cost stems from a mismatch between the problem to be
solved and the conventional architecture of digital
computers, optimized for performing serial operations on
fixed-size arrays of data.

It is evident that programming and processing costs
can be reduced substantially through the use of
special-purpose computers, with parallel-processing
capabilities, optimized for non-arithmetic computations.
This is true because the most common and time-con-
suming operations encountered in information retrieval
applications (e.g., searching and sorting) can make
efficient use of parallelism.
In this paper, a special-purpose highly parallel

system is proposed for information retrieval applica-
tions. The proposed system is called RAPID, Rotating
Associative Processor for Information Dissemination,
since it is similar in function to a conventional byte-
serial associative processor and uses a rotating memory
device. RAPID consists of an array processor used in
conjunction with a head-per-track disk or drum memory
(or any other circulating memory). The array processor
consists of a large number of identical cells controlled by
a central unit and essentially acts as a filter between the
large circulating memory and a central computer. In
other words, the capabilities of the array processor are
used to search and mark the file. The relevant parts of
the file are then selectively processed by the central
computer.

* This research was supported by the U.S. Office of Naval
Research, Mathematical and Information Sciences Division,
Contract No. NOOOI4-69-A-0200-4027, NR 048-129.

PARALLELISM AND INFORMATION
RETRIEVAL

Information retrieval may be defined as selective
recall of stored knowledge. Here, we do not consider
information retrieval systems in their full generality but
restrict ourselves to reference and document retrieval
systems. Reference (document) retrieval is defined as
the selection of a set of references (documents) from a
larger collection according to known criteria.

The processing functions required for information
retrieval are performed in three phases:

1. Translating the user query into a set of search
specifications described in machine language.

2. Searching a large data base and selecting records
that satisfy the search criteria.

3. Preparing the output; e.g., formatting the records,
extracting the required information, and so on.

Of these three phases, the second one is by far the most
difficult a:nd time-consuming; the first one is straight-
forward and the third one is done only for a small set of
records.
The search phase is time-consuming mainly because

of the large volumes of information involved since the
processing functions performed are very simple. This
suggests that the search time may be reduced by using
array processors. Array processing is particularly
attractive since the search operations can be performed
as sequences of very simple primitive operations. Hence,
the structure of each processing cell can be made very
simple which in turn makes large arrays of cells
economically feasible.
Associative memories and processors constitute a

special class of array processors, with a large number of
small processing elements, which can perform simple
pattern matching operations. Because of these desirable
characteristics, several proposals have been made for

681

pz



682 Fall Joint Computer Conference, 1972

using associative devices in information retrieval
applications.
Before proceeding to review several attempts in this

direction, it is appropriate to summarize some properties
of an ideal information retrieval 'system to provide a
basis for evaluating different proposals.

PI. Storage medium: Large-capacity storage is used
which has modular growth and low cost per bit.

P2. Record format: Variable-length records are
allowed for flexibility and storage efficiency.

P3. Search speed: Fast access to a record is possible.
The whole data base can be searched in a short
time.

P4. Search types: Equal-to, greater-than, less-than,
and other common search modes are permitted.

P5. Logical search: Combination of search results is
possible; e.g., Boolean and threshold functions of
simple search results.

Some proposalsl-3 consider using conventional associ-
ative memories with fixed word-lengths and, hence, do
not satisfy P2. While these proposals may be adequate
for small special-purpose systems, they provide no
acceptable solution for large information retrieval
systems. With the present technology, it is obviously not
practical to have a large enough associative memory
which can store all of the desired information1, 2 without
violating PI. Using small associative memories in
conjunction with secondary storage3 results in consider-
able amounts of time spent for loading and unloading
the associative memory, violating P3.

Somewhat more flexible systems can be obtained by
using better data organizations. In the distributed-logic
memory,4,5data is organized as a single string of symbols
divided into substrings of arbitrary lengths by de-
limiters. Each symbol and its associated control bits are
stored in, and processed by, a cell which can communi-
cate with its two neighbors and with a central control
unit, In the association-storing processor,6 the basic
unit of data is a triple consisting of an ordered pair of
items (each of which may be an elementary item or a
triple) and a link which specifies the association between
the items. Very complex data structures can be repre-
sented conveniently with this method. Even though
these two systems provide flexible record formats, they
do not satisfy PI.

It is evident that with the present technology, an
information retrieval system which satisfies both PI and
P3 is impractical. Hence, trading speed for cost through
the use of circulating memory devices seems to provide
the only acceptable solution. Delay-line associative
devices that have been proposed7,8 are not suitable for
large information retrieval systems because of their fixed

word-lengths and small capacities. The use of head-per-
track disk or drum memories as the storage medium
appears to be very promising because such devices
provide a balanced compromise between PI and P3. An
early proposal of this type is the associative file pro-
cessor9 which is a highly specialized system. Slotnick10
points out, in more general terms, the usefulness of
logic-per-track devices. Parkerll specializes Slotnick's
ideas and proposes a logic-per-track system for informa-
tion retrieval applications.

DESIGN PHILOSOPHY OF RAPID

The design of RAPID was motivated by the distrib-
uted-logic memory of Lee4,5 and the logic-per-track
device of Slotnick. 10 RAPID provides certain basic
pattern matching capabilities which can be combined to
obtain more complicated ones. Strings, which are stored
on a rotating memory, are read into the cell storage one
symbol at a time, processed, and stored back (Figure 1).
Processing strings one symbol at a time allows efficient
handling of variable-length records and reduces the
required hardware for the cells.

Figure 2 shows the organization of data on the
rotating memory. Each record is a string of symbols
from an alphabet X, which will not be specified here. It
is assumed that members of X are represented by binary
vectors of length N. Obviously, each symbol must have
some control storage associated with it to store the
search results temporarily. One control bit has proven to
be sufficient for most applications even though some

HEAD-PER-TRACK

DISK

o CELLS

CONTROL UNIT

TO AND FROM
OTHER SYSTEMS

Figure I-Overall organization of RAPID



Parallel Computing System for Information Retrieval 683

1.

ONE
RECORD
(VARIABLE
LENGTH)

2.

3.

4.

CLOCK
TRACK

HEAD-PER-TRACK
DISK

EMPTY ZONE
TO ALLOW SUFFICIENT
TmE FOR PREPARING THE
NEXT INSTRUCTION
(OF THE ORDER OF l~s)

STATE SYMBOL (N BITS)

I I I I· .. ·· I I
ONE CHARACTER

Figure 2-Storage of characters and records

operations may be performed faster with a larger control
field. Control information for a symbol will be called its
state, q E {O, I}. A symbol x and its state q constitute a
character, (q, x).

One of the members of X is a don't-care symbol, 0,
which satisfies any search criterion. As an example for
the utility of 0, consider an author whose middle name
is not known or who does not have one. Then, one can
use 0 as his middle initial in order to make the author
field uniform for all records. We will use the encoding
11 ... 1 for 0 in our implementation. In practice, it will
become necessary to have other special symbols to
delimit records, fields, and so on. The choice of such
symbols does not affect the design and is left to the
user. It should be emphasized, at this point, that
RAPID by itself is only capable of simple pattern
matching operations. Appropriate record formats are
needed in order to make it useful for a particular
information retrieval application. One such format will
be given in this paper for general-purpose information
retrieval applications.

The idea of associating a state with each symbol is
taken from Lee's distributed-logic memory.4,5 In fact,

RAPID is very similar to the distributed-logic memory
in principle but differs from it in the following:

Only one-way communication exists between
neighboring characters in RAPID. This is
necessitated because of the use of a cyclic
memory but results in little loss in power or
flexibility.
The use of a cheaper and slower memory makes
RAPID more economical but increases the
search cycle from microseconds to miliseconds.
Besides match for equality, other types of
comparisons such as less-than and greater-than
are mechanized in RAPID.
Basic arithmetic capability is provided in
RAPID. It allows for threshold combinations of
search functions as well as conventional Boolean
combinations.

With the above data organization, the problem of
searching for particular sets of records will reduce to
that of locating substrings which satisfy certain criteria.
Search for successive symbols of a string is performed
one symbol per disk or drum revolution. There are at
least two reasons for this design choice:

1. At any time, all the cells will be performing
identical functions (looking for the same symbol).
This reduces the hardware complexity of each
cell since the amount of local control is minimized
and fewer input and output leads are required.

2. The alternative approach of processing a few
symbols at a time fails in the case of overlapping
strings. Suppose one tries to process lc symbols at
a time (lc > 1) by providing local control for each
cell in the form of a counter. Then, if the i-th
symbol in the input string is matched, the cell
proceeds to match the (i + I)-st symbol. Hence,
if one is looking for the pattern ABCA in the
string ... DCABCABCADA ... , only one of the
two patterns will be found. Also, the pattern
BCAD will not be found in the above example.

THE CONTROL UNIT

Figure 3 shows a block diagram of RAPID which is a
synchronous system operating on the disk clock tracks.
The phase signal generator sequences the operations by
generating eight phase signals. PHA, PHB, PHC, and
PHZ are generated once every disk revolution while
PHI, PH2, PH3, and PH4 are generated once every bit
time (Figure 4). During PHA, the cell control register
(CCR), input symbol register (ISR), and address

P2



684 Fall Joint Computer Conference, 1972

N+2
LINES
PERcell

ONE LINE
PER CELL MULTIPLE

RESPONSE
RESOLVER
(MRRI

HEAO-PER -TRACK
DISK

• OR
DRUM

LAS PHCCELLS

ONE LINE
PER CELL

12 LINES N LINES N+l
LINES

ffi ~~a:-' •.. _ww •..•..
t; •..0 ~ a:"~

~ ~~ •.. O~a
~~ ::> Oww

0 ,,~a:

~
a: ~ a: a:
" " ~" 0

~ ~
!!O !!O SAZ

" " M "il: il: il: SELECTED il:
ADDRESS
IS ZERO

PHASE
SIGNAL
GENERATOR
(PSG)

CONTROL UNIT

Figure 3-Block diagram of RAPID

selection register (ASR) are cleared. During PHB and
PHC, these registers are loaded. Then the execution of
the instruction in CCR starts. During PH3, the output
character register is reset. It is loaded during PH 4 and is
unloaded, through G4, after a certain delay.
Most parts of the control unit, namely the instruction

sequencing section and the auxiliary registers which are
used to load CCR, ISR, and ASR or unload OCR, are
not shown in Figure 3. It should be noted, however, that
these parts process instructions at the same time that
the cells are performing their functions such that the
next instruction and its associated data are ready before
the next PHB signal. The system can also be controlled
by a general-purpose computer which is interrupted
during PHB to load the auxiliary registers with the next
instruction and associated data.
The arrangement of records on disk is shown in

Figure 2. The N+1 bits of a character are stored on
parallel tracks while the characters of a record are
stored serially. One or more clock tracks supply the
timing pulses for the system. The empty zone is
provided to allow sufficient time for loading the control
registers for the next search cycle.

Figure 5 shows the cell control register (CCR) which

holds the instruction to be executed for one disk
revolution. The function of various fields in this
register will now be described.

Readfield

This field consists of two bits, RST and RSY. RST
commands the cells to read the state bit into the
current state flip-flop, CSF. RSY commands the cells
to read the symbol bits into the current symbol
register, CSR.

Write field

This is similar to the read field and consists of WST
and WSY. WST commands that the condition bit, CON
(see description of condition field), replace the current
state. WSY is a command to replace the current symbol
by the contents of current symbol register, CSR,
if CON =1.

Address selection field

This field contains two bits, LAS and RAS. If the
LAS bit of this field is set, the address selection register

ONE DISK OR

t---------- DRUM
REVOLUTION

ONE BIT
TIME

PHB

PHC

_-----'WHl ~ Jl'-----_
_----.JWH2 L Jl_
_----JWH3 rL ~
_-----lWH4

rL ~---- ----=-rL
Figure 4- Timing signals



Parallel Computing System for Information Retrieval 685

(ASR) is loaded from the multiple response resolver
(MRR). MRR outputs the address of the first cell with
its ASF on. If the RAS bit is set, the accumulated state
flip-flop, ASF, in the cells will be reset. The function of
ASF will be described with the cell design. The address
selection field allows the sequential readout of the tracks
which contain information pertinent to a search request.

."CIl»
-mo
mro
bmll9~

OCll
2

:::~
»»
-1-1
~m

:::
»-I
0
:I:
!!
m
r

:::CIl0 »-<-I:::o til
:1:0

r

0
0 02 00 2
=i -I

(5 II
0

2 r." ."
m ."
r CIl
0 m

r
m
0
-I
(5
2

"'ll-mm»
bO

II
CIl
-I

II
CIl-<

:2
CIl
-I

..
:2
CIl-<

>
r»
CIl

II»
CIl

:::
~

:::
CIl
N

Cl
II
-I

r
m
-I

m
p
-I

r
0."

CIl
0
CIl

CIl»
CIl

CIl
0:::

CIl..,
:::

~EAD~ATE

~EAD SYMBOL

~RITE STATE

Y'{RITE SYMBOL

,hOAD ASR

!!.ESET ASF

MATCH ~T ATE TO1

MATCH ~T ATE TO ~E RO

GREATER IHAN

LESSIHAN

EQUALI.0

LOGICAL .EUNCTION ••

§.ELECT CSF

§.ELECT ASF

§.ELECT £!Y!F

§.ELECT PMF

Figure 5-The cell control register (CCR)

"':2
mll
r-0;;1

TABLE I-The Match Condition
for the State Part of a Character

MSI MSZ Match

o
o
1
1

0 never
1 if q = 0
0 if q = 1
1 always

Match field

This field consists of two subfields; the state match
subfield, and the symbol match subfield. These subfields
specify the conditions that the state and symbol of a
character must meet. If both conditions are satisfied for
a particular character, the current match flip-flop
(CMF) of the corresponding cell is set. The state match
subfield consists of MS1 and MSZ. The conditions for
all combinations of these two bits are given in Table 1.
The symbol match subfield consists of three bits; GRT,
LET, and EQT. All the symbols in the cells are simul-
taneously compared to the l's complement of the
contents of ISR. Table II gives the conditions for all
combinations of the three signals. S is the symbol in a
cell and Y is the l's complement of the contents of ISR.

Condition field

This field specifi{)show the condition bit, CON, is to
be computed from the contents of the following four
flip-flops in a cell: current state flip-flop, CSF; accumu-
lated state flip-flop, ASF; current match flip-flop, CMF;
and previous match flip-flop, PMF. LOF specifies the
logical function to be performed (AND if LOF = 1, OR
if LOF = 0). The other four bits in this field specify a
subset W of the set of four control flip-flops on which the
logical function is to be performed. For example, if
SCS= 1, then CSF E W.

TABLE II-The Match Condition for the
Symbol Part of a Character

GRT LET EQT Match

0 0 0 never
0 0 1 ifS=YorS=o
0 1 0 if S < Y or S = 0
0 1 1 if S ~ Y or S = 0
1 0 0 if S > Y or S = 0
1 0 1 if S ~ Y or S = 0
1 1 0 if S r" Y or S = 0
1 1 1 always

P2



686 Fall Joint Computer Conference, 1972

TO TO
MULTIPLE PROCESSING
RESPONSE SECTION

CURRENT RESOLVER

STATE
FLIP-FLOP

FROM S
DISK S

CSF ASF
ADS

PH4 R 0 PHZ R 0

RAS ACCUMULATED
PHZ STATE

FLIP-FLOP zMS1 0
0

STATE
MSZ z

STM 0
E

CURRENT PREVIOUS 0
Z

MATCH MATCH 0
FLIP-FLOP

0 ~
FLIP-FLOP ~

0
PH3 S 0I-

eMF

R 0

FROM
PROCESSING
SECTION SYM

SIGNAL
TO
SYMBOL
TRACKS

Figure 6-Control section of a cell

As will be seen later, the cell design is such that by
appropriate combinations of bits in CCR, other func-
tions besides simple comparison can be performed.

THE CELL DESIGN

Each cell consists of two sections; the control section,
and the processing section. Roughly speaking, the
control section processes the state part of a character
while the processing section operates on the symbol part.
The control section (Figure 6) contains four flip-flops:

current state flip-flop, CSF; accumulated state flip-flop,
ASF; current match flip-flop, CMF; and previous match
flip-flop, PMF. CSF contains the state of the character
read most recently from the disk. ASF contains the
logical OR of the states of characters read since it was
reset. This flip-flop serves two purposes: finding out
which tracks contain at least one character with a set
state (reset by ADS during PHZ) and propagating the
state information until a specified character is en-
countered (reset by RAS during PHZ and by CMF
during PH4). CMF contains (after PH3) the result of
current match. It is set if both the state and symbol of
the current character meet the match specifications.

Finally, PMF contains the match result for the previous
character.
The condition signal, CON, is a logical function of the

contents of control flip-flops. The four signals SCS, SAS,
SCM, and SPM select a subset of these flip-flops and
the logical function signal, LOF, indicates whether the
contents of selected flip-flops should be ANDed
(LOF=l) or ORed (LOF=O) together to form CON.
The value of CON will replace the state of current
character if the write state signal, WST, is activated.
The address selection signal, ADS, is activated by the

address selection decoder. This signal allows conven-
tional read and write operations to be performed on
selected tracks of the disk. It is also possible, through
the multiple response resolver, to read out sequentially
the contents of tracks whose corresponding ASF's are
set.

The processing section, shown in Figure 7, contains an
N-bit adder with inputs from ISR and the current
symbol register, CSR. During PHI, a symbol is read
into CSR. During PH2, contents of CSR are added to
contents of ISR with the result stored back in CSR.
Overflow indication is stored in the overflow flip-flop,
OFF. Before the addition takes place, the don't-care



Parallel Computing System for Information Retrieval 687

flip-flop, DCF, is set if CSR contains the special don't-
care symbol o. From the results of addition, it is decided
whether the symbol satisfies the search specification
(SYM = 1 if it does, SYM = 0 if it does not).
The adder in each cell allows us to add the contents of

ISR to the current symbol or to compare the symbol to
the l's complement of the contents of ISR. If we denots
the current symbol by S, the contents of ISR by Y, and
its l's complement by Y, then:

S = Y iff S+Y+1= 2N

S> Y iff S+Y+1> 2N

S<Y iff S+Y+1<2N

N is the length of the binary vector representation of
Sand Y. Hence if we denote, the result of addition in
CSR by Z and the overflow by OFF, we have:

S= Y iff Z=O

S> Y iff Z~O and OFF= 1

S< Y iff OFF=O

'"OM {INPUT
BUS
(lSR)

PH2

PH2

PH2

FROM

DISK • PH2
•
•
•

PH2

PH2

ADDER

R

...

Note that the carry signal into the adder is activated
if anyone of the signals GRT, LET, or EQT is active.
The above equations are used in the design of the
circuit which computes the symbol match result, SYM
(upper right corner of Figure 7). The result of symbol
match is ANDed with the result of state match (STM)
during PH3 to set the current match flip-flop.
Finally, during PH4, the contents of CSR can be

written onto the disk or put on the output bus. Since the
address selection line, ADS, is active for at most one
cell, no conflict on the output bus will arise.

EXAMPLES OF APPLICATIONS

We first give a set of 12 instructions for RAPID.
These instructions perform tasks that have been found
to be useful in information retrieval applications. Each
instruction, when executed by RAPID, will load CCR
with a sequence of patterns. These sequences of patterns
are also given. We restrict our attention to search

OVERFLOW
FLIP-FLOP

SYMBOL
MATCH

-'oa:
1-2
200-ul-
o~
I-en

S ~en
Ci
o
I-Or--------+--------------------~

•••

Or-------------------------------J
CURRENT I
SYMBOL CSR
REGISTER

Figure 7-Processing section of a cell

FROM BUS
CONTROL
SECTION



688 Fall Joint Computer Conference, 1972

instructions only. Input and output instructions must
also be provided to complete the set.

1. search and set s: Find all occurrences of the
symbol s and set their states.

2. search for SlS2 ••• Sn: Find all the occurrences of
the string SlS2 ••• Sn and set the state of the
symbols which immediately follow Sn.

3. search for lllarked SlS2 .•. Sn: Same as the
previous instruction except that for a string to
qualify, the state of its first symbol must be set.

4. search for lllarked if; s: Search for symbols
whose states are set and have the relation if; withs. Then, set the state of the following symbol.
Possible relations are <, S, >, ?:, and ~.

5. propagate to s: If the state of a symbol is set,
reset it and set the state of the first S followingit.

6. propagatei: If the state of a symbol is set,

reset it and set the state of the i-th symbol to its
right.

7. expand to s: If the state of a symbol is set, set
the state of all symbols following it up to and
including the first occurrence of s.

8. expand i: If the state of a symbol is set, set the
state of the first i symbols following it.

9. contract i: If the state of a symbol is reset,
reset the state of the first i symbols following it.

10. expand i or to s: If the state of a symbol is set,
perform 7 if an S appears within the next i
symbols; otherwise, perform 8.

11. add s: Add the numerical value of s to the
numerical value of any symbol whose state is set.

12. replace by s: If the state of a symbol is set,
replace the symbol by s.

TABLE III-Microprograms for RAPID Instructions

The microprograms for these instructions are given

Contents of CCR

c Match Field Condition Field0 VIa: Read Write Address~ .•••Vl.•.. c •..• Field Field Selection FF Selection~ ell State Symbol ogicL. .•.. .•...•..
ell Instruction ell co.a Q. 0 R R W W L If M M G L E L -S- S S S!! ell Ua: S S S S A A S S R E Q 0 C A C Pz

T y T Y S S 1 Z T T T F S S M M
1 search and set s 1 S 1 1 0 0 1 1 0 0 1 0 0 1 0

1 sl 1 1 0 0 1 1 0 0 1 0 0 0 1
2 search for sls2 •.• sn

1 1 1 0 0 1 0 0 0 1 0 0 0 1j=2 to n si

3 search for marked sls2 .•• sn j=l to n si 1 1 1 0 0 1 0 0 0 1 0 0 0 1

< 1 S 1 1 1 0 0 1 0 0 1 0 0 0 0 1

s 1 S 1 1 1 0 0 1 0 0 1 1 0 0 0 1

> 1 S 1 1 1 0 0 1 0 1 0 0 0 0 0 1
4 ~arch for marked ~s

~ 1 S 1 1 1 0 0 1 0 1 0 1 0 0 0 1

" 1 S 1 1 1 0 0 1 0 1 1 0 0 0 0 1

5 er~e.a~ate t.,2 s 1 S 1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0

6 eroEa2a~ i i 1 1 0 0 1 0 1 1 1 0 0 0 1

7 exeand to s 1 S 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0

8 eXBa.nd i f 1 1 0 0 1 0 1 1 1 0 1 0 0 1

9 contract i i 1 1 0 0 1 0 1 1 1 1 1 0 0 1

S 1 1 1 0 0 1 1 1 1 0 1 1 0 1 0
10 exeand f ~s i

0 11 1 0 0 1 0 1 1 1 0 1 0

11 add s 1 s 1 1 1 0 1 0 0 0-
12 reJ!li1~e bl 1 s 1 0 1 0 1 0 0 0s



Parallel Computing System for Information Retrieval 689

RECORD
LENGTH
FIELD

RECORD RECORD
TYPe: FLAG·
E EMPTY
V NON-EMPTY

END
SYMBOL

NAME

FIELD
INFORMATION

SEPARATOR
SYMBOL

FIELD
END
SYMBOL

Figure 8-Data storage format

in Table III. A blank entry in this table constitutes a
don't-care condition. The entries in the repetition
column specify the number of times the given patterns
should be repeated. As can be seen from Table III, this
set of instructions does not exploit all the capabilities of
RAPID since some of the bits in the CCR assume only
one value (0 or 1) for all the instructions.
To illustrate the applications of RAPID, we first

choose a format for the records (Figure 8). The record
length field must have a fixed length in order to allow
symbol by symbol comparison of the record length to a
given number. The information fields can be of arbitrary
lengths. The flag field contains three characters; two for
holding the results of searches, and one which contains
a record type flag. The Greek letters used on Figure 8
are reserved symbols and should not be used except for
the purposes given in Table IV.
As mentioned earlier, a special symbol, 0, is used as a

don't-care symbol. It is also helpful to have a reserved
symbol, T, which can be used as temporary substitute
for other symbols during a search operation. Let us now
consider two simple examples to show the utility of the
given instruction set.
Example 1. Assuming that the record length is

specified by one symbol, the following program marks
all the empty records whose lengths are not less than 8.

This is useful when entering a new record of length 8 to
find which tracks contain empty records that are large
enough.

search for A
search for marked :2: 8

propagate to p
propagate 3
search for marked E

If the record length is specified by two characters, we
note that t1t2:2: 8182 iff t1> 81 or t1= 81 and t2:2: 82. Hence,
we write the following program:

search for A
search for marked > 81

propagate 1
replace by T

search for A
search for marked 81

search for marked :2: 82

replace by T

search and set T

replace by cp
propagate to p
propagate 3
search for marked E

Example 2. The following program marks all non-
empty records which contain in their title field,
designated by TI, a word having "magnet" as its first
six characters and having 3 to 10 non-blank characters
after that. {3 designates the "blank" character.

search for cpTla-
expand to cp
search for marked magnet
expand 10or to {3
contract 3
propaga te to p
propagate 3
search for marked II

It is important to note that the record format given
here serves only as illustration. Because of its generality
and flexibility, this format is not very efficient in terms
of storage overhead and processing speed. For any given
application, one can probably design a format which is
more efficient for the types of queries involved.

CONCLUSION

In this paper, we have described a special-purpose
highly parallel system for information retrieval applica-

TABLE IV-List of Reserved Symbols

x Indicates start of length field.
p Indicates end of a record.
(J' Separates name and information subfields in a field.
</> Indicates end of a field.

Designates the end of an empty record.
p Designates the end of a non-empty record.
a Is the don't-care symbol.
'T Is used as temporary substitute for other symbols.

pz



690 Fall Joint Computer Conference, 1972

tions. This system must be evaluated with respect to the
properties of an ideal information retrieval system
summarized earlier. It is apparent that RAPID satisfies
P2, P4 and P5. The extent to which PI and P3 are
satisfied by RAPID is difficult to estimate at the
present.
With respect to P1, the storage medium used has a low

cost per bit. However, the cost for cells must also be
considered. Because of the large number of identical
cells required, economical implementation with LSI is
possible. Figures 6 and 7 show that each cell has one
N-bit adder, N +6 flip-flops, 6N +39 gates, and 4N +23
input and output pins. For a symbol length of N = 8
bits, each cell will require no more than 250 gates and 60
input and output pins. The number of input and output
pins can be reduced considerably at the expense of more
sophisticated gating circuits (i.e., sharing input and
output connections).
With respect to P3, the search speed depends on the

number of symbols matched. If we assume that on the
average 50 symbols are matched, the matching phase
will take about 70 disk revolutions (to allow for
overhead such as propagation of state information and
performance of logical operations on the search results).
Hence, the search time for marking the tracks which
contain relevant information is of the order of a few
seconds.
Some important considerations such as input and

output of data and fault-tolerance in RAPID have not
been explored in detail and constitute possible areas for
future research. The interested reader may consult
Reference 12 for some thoughts on these topics.

ACKNOWLEDGMENTS

The author gratefully acknowledges the guidance and
encouragement given by Dr. W. W. Chu in the course
of this study. Thanks are also due to Messrs. P. Chang,
D. Patterson, and R. Weeks for stimulating discus-
sions.

REFERENCES

1 J GOLDBERG M W GREEN
Large files for information retrieval based on simultaneous
interrogation of all items
Large-capacity Memory Techniques for Computing Systems
New York Macmillan pp 63-67 1962

2 S S YAU C C YANG
A cryogenic associative memory system for information
retrieval
Proceedings of the National Electronics Conference pp
764-769 October 1966

3 J A DUGAN R S GREEN J MINKER
WE SHINDLE
A study of the utility of associative memory processors
Proceedings of the ACM National Conference pp 347-360
August 1966

4CYLEE
Intercommunicating cells, basis for a distributed-logic computer
Proceedings of the FJCC pp 130-136 1962

5 C Y LEE M C PAULL
A content-addressable distributed-logic memory with
applications to information retrieval
Proceedings of the IEEE Vol 51 pp 924-932 June 1963

6 D A SAVITT H H LOVE R E TROOP
ASP; a new concept in language and machine organization
Proceedings of the SJCC pp 87-102 1967

7 W A CROFUT M R SOTTILE
Design techniques of a delay line content-addressed memory
IEEE Transactions on Electronic Computers Vol EC-15
pp 529-534 August 1966

8 P T RUX
A glass delay line content-addressable memory system
IEEE Transactions on Computers Vol C-18 pp 512-520
June 1969

9 R H FULLER R M BIRD R M WORTHY
Study of associative processing techniques
Defense Documentation Center AD-621516 August 1965

10 D L SLOTNICK
Logic per track devices
Advances in Computers Vol 10 pp 291-296 New York
Academic Press 1970

11 J L PARKER
A logic-per-track retrieval system
Proceedings of the IFIPS Conference pp TA-4-146 to
TA-4-150 1971

12 B PARHAM I
RAPID; a rotating associative processor for information
dissemination
Technical Report UCLA-ENG-7213 University of Cali-
fornia at Los Angeles February 1972


