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V. CONCLUSIONS transition from qiE Q to qjE Q when the input x is applied.

First- and second-order resolution are related to simple F is the output function F: Q-+ Y.
cover algebra concepts that are in turn used to develop We can extend the function M to X*, the set of all input
procedures for finding the resolutions from the generalized sequences of finite length, by defining M(A)=I4 and
fault table. The procedures given here are improvements M(XiX2 . . . Xk) = M(XI)M(X2) .M(. ) (1)
over those in [1] for resolutions over domain DA. However,
there are applications in which domains other than DA are where A is the input sequence of length zero and In is the
useful. In these cases, the second-order resolution procedure identity matrix of size n. Then the ij entry of M(u) is the
in [1] is still of value in a modified form. probability of a transition from qi to qj when the input se-
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Abstract-A stochastic sequential machine model is employed to

investigate some of the problems concerning the reliability of sequential entries which correspond to I's in Mi(xlx2 . . . Xk).
machines. Two methods, using the notions of entropy for stochastic We now define a measure for the reliability of synchronous
automata and principal entries in their transition matrices, are used and sequential machines.
compared for reliability estimates. The problem of synthesizing automata . 2: A
of given known reliability through replication and voting is also examined. Definityon sychnsisequetialmachinefnctinwith reliability R for k cycles if its probability of being in the

Index Terms-Majority voting, redundancy, reliability estimation, correct state after the application of an input sequence of
reliable automata, sequential machines, stochastic automata. length k or less is at least R.

INTRODUCTION Obviously, for a machine which is intended to be deter-

Stochastic sequential machine models have been used in ministic, R must be very close to 1. In what follows, we will

the study of finite-state communication channels, sequential always assume that R> 0.5.

switching networks made of unreliable components, and The output y of an ideal component, gate, or flip-flop,
learning systems. In this note, we will employ a stochastic can be written in the form y =f(x, q), where x and q are its
machine model to investigate some of the problems con- input and internal state, respectively. As a result of com-

the reliability of sequential machines. The model ponent faults2 caused by temporary or permanent break-

that we will use is a modified version ofthat introduced by down of elements, the preceding equation holds with
Carlyle [I]i probability p, which in general depends on x and q. In what

lef o
[1.* . . . follows, we will assume that p does not depend on x or q.

Definitio ,: A stochastic sequential... .mahn (SSM) is a The case where p is a function of x and q can be handled
quintuple S= (X, Y, Q, M, F), in which X and Y are finite
sets of inputs and outputs, respectively, and Q is a finite s h i wecooep..in,p(,q. I

* . 'qi. .
on

convenient to assume that the probability of failure for eachset consisting of n states. M iS the transition function y
M:~~~~~~X.fL, hr Y6 stesto l (nsohsi a component iS the same for all cycles and iS independent of

trices.' The zj entry of M(x), xCX, iS the probability of a ohrcmoet.Ti supinrsrcsteefcie
' ~~~~~~~nessof our method to transient faults of short duration.

Permanent faults can be treated similarly if they are detected
Manuscript received December 23, 1970; revised October 13, 1971. and removed promptly through diagnosis and repair.

This note is adapted from a dissertation investigation while the author On*prahfraayzn h eiblt of a sq enta
was at Oregon State University, Corvallis, Oreg. 97331. Oeapoc o nlzn h elb1t fasqeta

The author is a student in the Department of Computer Science, machine would be to find its transition matrices through
University of California, Los Angeles, Calif. 90024.

'A matrix is stochastic if all of its entries are nonnegative and the
entries of each row sum to one. 2 Wesay that a fault has occurred if y#f(x, q).
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fault simulation, i.e., by studying the machine's behavior in
the presence of all possible combinations of faults (or the logn-
most probable ones). These transition matrices will then log(n-1)
completely specify the machine's behavior and hence its n

reliability. This method is obviously impractical for machines
with a large number of states. Our approach, therefore, is to
use the smallest principal entry in the set of transition log 2-
matrices, or a lower bound for it, in reliability estimates. ag (t) \ \

Consider an arbitrary synchronous sequential machine
realized by a set Cl, C2, , Ch of components. Let pi de-

note the realiability of Ci for one cycle. Then the probability o- 0 1
of all components functioning properly at any cycle is t

Po - PlP2 . ph (2) Fig. 1. Curves representing the functions g(t) and hn(t).

Hence, given that the present state is correct, the next state
will be correct with a probability of at least po. In other one, and only one, column in M2 whose mth element is a
words, if ps is the smallest principal entry in the set of ma- principal entry. Let this be the jth column. Then pu, the U
trices { M(x):xE X}, we have entry of M= M1M2, satisfies the inequality pij.P1P2. Since

pij is the only principal entry in the ith row ofM, the theorem
ps . Po. (3) is proved.

Hence, pO is a lower bound for ps. We will use this lower From (1) and Theorem 1, we can deduce that the smallest

bound in our reliability estimates. principal entry in M(uk) is not less than p8k, where Uk is an
input sequence of length k. Hence, by definition

RELIABILITY ESTIMATES f 2 p6k (8)

We now establish some relationships between po, given by
(2), and the reliability R (Definition 2) that will allow us to Therefore, the following condition is sufficient for the re-

find: 1) a lower bound for R when po is known, and 2) a liability to be at least r for k cycles:
lower bound for po when the required reliability is r. We will

>
-

assume in all cases thatpo>0.5. Ps > Vr. (9)

Using the notion of entropy for SSM's, Tsertsvadze [21 Using inequality (3), inequalities (8) and (9) can be written
shows that the reliability R of an n-state sequential machine in the following forms:
for k cycles satisfies the inequality

ft . pok (103)
g((R) < k[g(pJ) + (I -p5) log (n - 1)] (4) P

and that
Note that inequality (10) is always defined while (6) is not.

g(p8) + (1- p) log (n - 1) < g(r)/k (5) We now prove that the bounds given by (10) and (1 1) are

is a sufficient condition for the reliability to be at least r sharper (closer to actual values) than those of (6) and (7).

for k cycles, where g(t)== - t log t-(I- t) log (1- t). in other words, we want to establish the following in-

Let the function hn(t) be defined by hn(t)=g(t)+(l - t) log equalities:
(n- 1), and letf-'(s) denote the largest root off(t)=s. Using g-1[kh,r(po)] < pok (12)
inequality (3) and Fig. 1, we can write inequalities (4) and
(5) in the following forms: hn-1[g(r)1k] > </r. (13)

R . g-1 [khn(po)] (6) Theorem 2: For l>t>0.5, we have khn(t)>g(tk).
PO > hn-l[g(r)/k]. (7) Proof: We can write: 1-tk=(l-t)(l+t+t2+

+tk-l)< k(l-t). Hence, t< 1-(1-tk)/k. Since neither side

These representations of Tsertsvadze's results will be later of the above inequality is less than 0.5, we can write

used for comparison purposes. g(t) > g[l-( -tk)/lk] = g[(1 - tk)/k]. (14)
The principal entries in the transition matrices of a se-

quential machine can be used for reliability estimates. From the graph of g(t) in Fig. 1, it is obvious that
Theorem 1: Let ph denote the smallest principal entry in an g[(l -tk)/lkl > g(l1-tk)jk = g(t1) /k, (15)

nXn stochastic matrix Mh, h=l1, 2, , k. Then p, the
smallest principal entry in M=M1M2 Mk, satisfies the since (1- tk),/k<0.5 for all k. Combining inequalities (14)
inequality p.plp2 * * * k. and (15) and noting that h5(t).g(t) concludes the proof.

Proof: We prove this statement for k=2. A simple in- Inequalities (12) and (13) now follow directly from
duction on k will then establish the theorem. Let the prin- Theorem 2, since we have assumed thatp>O>.S and r>0.5.
cipal entry of the ith row of M1 be in the mth place. There is These inequalities imply the following.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on September 16, 2009 at 23:49 from IEEE Xplore.  Restrictions apply. 



390 IEEE TRANSACTIONS ON COMPUTERS, APRIL 1972

1) For a given value of po, inequality (10) gives a better E
=

estimate for the reliability R than (6).
2) For a given reliability r, inequality (11) gives a smaller X ,l

lower bound for po than (7), and hence allows the use of less
reliable components.

Furthermore, as noted earlier, inequality (10) is always
defined while (6) is not. Hence, we have proved that it is
preferable to use inequalities (10) and (11) for reliability xh
estimates. Ym

RELIABLE SYNTHESIS OF SEQUENTIAL MACHINES
Fig. 2. Majority scheme for single-output elements.

We have developed methods for estimating po, the prob-
ability of having no component failures at any cycle, for a
given overall reliability r. Using this value of po and (2), we 0.9999999
can find the reliability p required of a particular component.
Ifp does not exceed the reliability of available elements, then m=00

we synthesize the given machine with these elements and 9
achieve reliability r. However, if elements of reliability p or 0.999999 - 7

higher are not available, other methods for synthesis must m=5
be employed. One such method, which we will describe in
this section, is to utilize simple redundancy at the element 0.99999 -
level. In this method, we first synthesize the machine in the m=3
usual way, assuming perfect reliability for the elements.
Then by replicating the original element in a majority il 11 I/
scheme, we achieve the required component reliability. This 0.9999T
method was first suggested by von Neumann [3].

Hence, given the required component reliability p, the re- m=l
liability of available elements pe, the reliability of majority o0.99-9/
organs Pm, we must determine the required redundancy in
the majority scheme. We will assume that pm does not de-
pend on the number of inputs to the majority organ.

0.99
Let us consider the familiar configuration of Fig. 2, in 0. 4 .- +--- ot- o.slss

which M is a majority organ with an odd number m of _
binary inputs and one binary output, and E1, E2, , Em Pe or Pe
are identical gates. The output y is, by definition, the ma- Fig. 3. The probability that a majority of m elements do not fail,

jority of yl, Y2, , ' m Y, as a function of pr, the reliability of each element.

Let P be the probability that a majority of yi, Y2, , Ym
be correct. Then

pE(7) pk(l - pe)m-k (16)
k==(m+1)/2 k Y2

Fig. 3 shows P as a function of pe for different values of m. y

The overall reliability p for the circuit of Fig. 2 can be easily
found from . _

p = Ppm+ (1-p)(1-pm). (17) xh

The following form of (17) can be used to find p when p and EM

pm are known (pm>p):
/) = (P+pm1) / (2pm 1) . (18)Fig. 4. Majority scheme for two-output elements.

Then Fig. 3 can be used to find the required redundancy.
The preceding equations are also valid for a memory ele- state of each memory element depends only on its input, as

ment with a single output line whose next state depends only is the case for R-S flip-flops, we have the following equa-
on its input (delay flip-flops for example). tions (forpm> Vp) which correspond to (17) and (18):
For memory elements with two output lines, the con-p= p +(-)lpn 19

figuration of Fig. 4 can be used. Then the circuit functions= imA-(-p(l-,n219
properly when both of its outputs are correct. If the next p =~[-(1 -pm)2] (2Pm -1). (20)
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For a memory element whose next state depends on its On the other hand, we can write
present state as well as the input (e.g., trigger, J-K, and ,
R-S-T flip-flops), (16) is not valid. As an illustration, con- pe = PcPc + (1-pc)(1-pc) . PcPc (24)
sider a set ofm trigger flip-flops in a circuit similar to that of Combining inequalities (21), (23), and (24), we find the
Fig. 4. Let yl=y2= * ymr-,= 1, while Yrn=0 because of desired result.
an error in the previous cycle. Suppose that the input x= 1 Now, let Pe be the probability that the ith flip-flop pro-
is applied to these flip-flops. Then the probability that a duces the correct output (the output that a majority of the
majority of them produce an output of 0 is not given by flip-flops should produce). We can write p/. pePe
(16), since the mth flip-flop produces a 0 with probability +(1-pe')(l-p,e).Pepe. Therefore, using Theorem 3 we

lpe instead of pe. obtain
In this case, an alternative method can be used. Since the .- 2). (25)

operation of such flip-flops in one cycle is not independent of pC > p,(3p(
their operation in preceding cycles, the length of the input By using this lower bound for Pe instead of p. in our calcula-
sequence will appear in our equations. Hence, we consider tions, the methods described earlier remain valid for this
the operation of such flip-flops for input sequences of length case.
k or less. We first prove the following theorem. SUMMARY AND CONCLUSIONS
Theorem 3: Let m memory elements of reliability pe be

connected in a majority scheme. Then pe', the probability In this note, we have developed techniques for estimating
that after k cycles the ith flip-flop is in the same state as a the reliability of sequential machines and for their reliable
majority oftheflip-flops, satisfiestheinequalityp>3I k-2, synthesis. The results obtained are general in form and can
providedthatpk0.75. Thisconditionisusuallysatisfied in be applied to any synchronous sequential machine. The

practice. following procedures are direct consequences of the results
Proof: The inequality is trivial for m = 1. Hence, since obtained in the preceding sections.

m is odd, we prove it for m> 3. Let p. be the probability that To find a lower bound for the reliability R of a sequential
the ith flip-flop is in the correct state and p, be the probability machine for k cycles, find po from (2) and substitute in
that at least half of the remaining flip-flops are in the correct inequality (10).
state. We can write To synthesize a sequential machine with a given reliability

r for k cycles do the following.
Pc . pek (21) 1) Synthesize the machine in the usual way, assuming

and - perfect reliability for the components.
2) Find a lower bound for po from inequality (1i). Then

- _c= rn /rn-i1(- )irm-l-i use (2) to obtain a lower bound forpi, i= 1,2, ... , h.

j-=(rn-i)P/2 \ j / pc 3) If pi does not exceed the reliability of available ele-
ments, the synthesis of step 1 provides the required reliabil-

\ n-1 ity. Otherwise, use the procedure of the previous section to
< l m- 1 1 E (1-Pc)' find the required redundancy factor.

\ 2 /S=(m-1)/2 ~~~~Theabove procedures deal only with the number of ele-
ments in a sequential machine and do not use any structural

lm- 1\ information about the machine. On the other hand, we know
< I- Pc) (n-i) /2 E (1-Pc) that sequential machines can be designed to have some error-

correcting capabilities. Obviously, in such cases, the bounds
obtained by the above procedures will not be sharp. Hence,

,,m 1~\ further research in this area may be directed to such special
=|m_-1)](1 - p.)(m-l) 2/Pc. classes of sequential machines in order to obtain better

\ 2/ bounds for reliability values.
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