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Summary & Conclusions -A class of redundant cascaded chains
with i.i.d. modules is considered in which recovery from a failure takes
place by replacing the faulty module by a spare module. The com-
plexity of the reconfiguration process depends upon the location of
spare modules in the cascade. This paper deals with the question of OPERATION AFTER THE FAILURE OF MODULE NUMBER 2
optimally placing the spare modules in order to minimize the s-expected Fig. 1. Reconfiguration with a Shorting Network.
recovery time (down time) of the system. Exact analysis is carried
out for cascades with one and two spare modules and an approximate
analysis is given for three or more spares. Even though exact analysis In addition to changing the cell states, the recovery process,
does not seem to be practical in the general case, the symmetry of spare
module positions in the special cases discussed here and linearity of the as shown in Fig 1, consists of assigning new designations to
system suggest that one might expect the optimal positions to be three of the modules. This can involve loading new programs
symmetric in general. Because of this symmetry, one can reduce the into the modules and/or transferring data between neighboring
number of variables to be considered in the general case, however, some modules. In the case of Fig 1, a maximum of 4 and an average
inaccuracies might be introduced. of 2.5 such steps are needed upon failure. Had the spare been

placed in the middle position, then a maximum of 2 and an
average of 1.5 new designations would have been needed. This
suggests that the position of spare modules in the cascade

INTRODUCTION affects the complexity of, and hence the time needed for, the
recovery procedure. In the subsequent discussion, optimal

Consider a cascaded chain of i.i.d. modules, with the num- placement of spares refers to an arrangement which minimizes
bering of modules representing either a physical ordering, the s-expected number of new designations needed for re-
based on module locations, or a logical ordering, based on a 1- covery from failures.
way linear intercommunication between modules. Examples
of such systems include shift-register, rotating, and other ASSUMPTIONS AND NOTATION
equivalent types of memories, array and associative processors,
pipeline processors with identical programmable stages, and m number of active (operating)
byte-sliced processors and computers. Clearly, if provisions modules.
are not made for replacing faulty modules in a cascaded chain s number of spare modules.
(series system), a single failed module results in system failure. il1,i2-. s indices of active modules which
A technique for replacing a failed module, which has been initially have spare modules

studied in connection with the design of fault-tolerant immediately to their right
associative processors [1 , is the use of shorting networks [2] (h Si+ 1)
to bypass the failed module and unbypass one of the spares. ki index of highest numbered
In this scheme, the interconnection between modules is estab- module replaced by sparei
lished through a number of 2-state cells as in Fig 1.- Each cell (i = 1, 2, .-. , s - 1) upon the
is easily implemented using a single flip-flop and several gates first module failure Q1 S k1 .
[2] and its two states are designated as bent (pass) and crossed ia 1 ); for convenience, define
(interchange). Fig 1 also shows the reconfiguration process in ko= 0 and k5 = m.
a cascade with four modules after the failure of the second one D(m, /1, i2-/. j) s-expected number of new desig-
from the left. nations after s failures.
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X index of the first failed module; X
randomvariable withPr{X=i} D(m,/1,12) = z Pr{X=i} x [(fr -i+ 1) + D(m,12)]

1/m for i = 1, 2,.... m.
j°oPt((m, s);k7Pt(m, s) optimal values for jiandk1. (3)
Dp(m, 11P i2) s-expected number of new k I

designations, given that the + z Pr{X-=i} x [(i- il) +D(mr, 2)1
second failure occurs with prob- != +1
ability p.

iOPt(m, s, p); k°Pt(m, s, p) optimal values for ii and ki(i = 1 + P2
or 2), given that the second i=k1 +
failure occurs with probability p.

p probability of a second module
failure, given that a first failure + m = x [j )+D(r,i)]
has occurred. '=j2+

r reliability of each operating
module (exponential function of
time); assume spares cannot fail. k1 mk( -k1

c probability of recovery from 2 m m
each failure (coverage factor).

Pi probability that spare module i j2 + (k I jl)2 + (2 - k1 )2 + (m -i2)
is used. +

R(m, s, r) reliability of cascade with m 2m
operating and s spare modules.

Equating 0D1/j, 0D/a/2, aD/ak, to zero, the resulting set of
CASCADES WITH ONE OR TWO SPARES equations yields, after tedious computation, only one set of

acceptable solutions as follows:
The result of the following analysis for s = 1 is intuitively

obvious and is given only to familiarize readers with the nota- j Pt(m, 2) = m/3;j/Pt(m, 2) = 2m/3; k Pt(m, 2) = m/2. (4)
tion and method of analysis for the subsequent discussion.
The quantity to be minimized is: Since the optimal values given by (4) might not be integers,

a question arises as to the actual values to be selected.
/i intuitively, one feels that the rounded values of m/3, 2m/3,

D(m, jl) = E Pr {X = i} x (1 - i + 1) and m/2 are the best choices forj1, i2, and kl, respectively.
1=1 Even though no mathematical proof has been found for this

conjecture, many examples have shown this to be true.
m

+ I Pr{X=i} x (i-ij) (1)
i=j1 + 1 THE GENERAL CASE: APPROXIMATE ANALYSIS

When more than two spares are used, exact equations such
1 il nm as (4) become extremely difficult to obtain because of the

=-m[ . (11 - i+ 1) + . G( )] larger number of variables involved. On the other hand, in the
analysis of the previous section, the s-expected number of
total new designations after the first and second failures was

rn + 1 /s (rn -1) nminimized. One might argue that in highly reliable systems,
2 nm the probability of actually reaching the i-th reconfiguration is

a sharply decreasing function of i. Thus, a more reasonable
The minimum value ofD(m, il) is obtained for approach for such systems would be to minimize the sum of

terms obtained by multiplying the s-expected number of new
1Opt(m, 1) = m/2; (2) designations after failure i by the probability of that failure

actually occurring during the system's useful life.

if mis od, (n-)/2 nd m + )/2 re euall optmalThe following approximate equation is obtained if the
choices for/j . The intuitive interpretation of (2) is that the prbblt of hain tw rmr alrsielgbecm
single spare module must be placed at the middle point of the paetohtofheirtalu:
cascade.
A cascade with two spares is converted to one with asingle D' j 1 P{=} y i1 5

spare. =after the first failure. Thus: D(n,1,2 1) 1P{iJ~1 5
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k ji2 These results reduce to (4) if p = 1, and to the special case of
+ i+ Pr{X=i}x (i-i) + ik Pr{X =i} (6) withs2ifp0.

The following reliability model of Bouricius et al. [3] can
be used to estimate the value of p:

X (12 -i+ 1)

+ .... + I Pr{X=i}x (i-js) R(m,s,r) = rm X z (-cmlnr)'/i! (9)
i=jS+ I hO

1 s [
k

-
l++ z (ii)] Spare module i is used only if the system with i -I spare

m 1=1 i=kl-l+l i=il+ I modules fails and a successful recovery is carried out. Thus:

s ( 2 )2 pi = c[I -R(m,i-1,r)]. (10)
= [(Ji - kl_ ) + (k, l + k, - k1_1]2m i=1i The value of p in (8) can now be obtained from p1 and P2 as:

Equating aD/aj/ and 3D/ak1 to zero, the resulting set of
2s-1 equations yields, after tedious computation:

Pt(m s) t m(2i - 1)/2s; k. Pt(m, s) t mi/s. (6) The value of p, given by ( 1), is a decreasing function of r,
gomg from 1 (for r = 0) to 1 - c (for r = 1).

As in the case with two spares, the optimal values given by
(6) might not be integers. To determine the position of spare
modules, one can either use the rounded values or consider REFERENCES
both the higher and lower integers for each ii and ki and select
the best set of positions by comparing the values obtained [11 B. Parhami, A. Avizienis, "A study of fault tolerance techniques
from (5). In any case, since the analysis is itself approximate, for associative processors", AFIPS Conference Proceedings, vol

such variations are not very important. 43 (1974 National Computer Conference), AFIPS Press,such variations are not very important.
Motae J 94 p6362Montvale, NJ, 1974, pp 643-652.

[21 K.N. Levitt, M.W. Green, J. Goldberg, "A study of the data com-
mutation problems in a self-repairable multi-processor", AFIPS

PROBABILISTIC ANALYSIS FOR TWO SPARES Conference Proceedings, vol 32 (1968 Spring Joint Computer
Conference), Thompson, Washington, DC, 1968, pp 515-527.

As mentioned in the previous section, in a highly reliable [3] W.G. Bouricius, W.C. Carter, D.C. Jessep, P.R. Schneider, A.B.
with two spares, the probability of actually using the Wadia, "Reliability modeling for fault-tolerant computers",system with two spares, the probability of actually usmg the IEEE Transactions on Computers, vol C-20, 1971 Nov, pp

second spare module is considerably less than that of the first 1306-1311.
spare. This is taken into account by multiplying the terms
D(m, jl) and D(m, /2) in (3) by the conditional probability p
of a second failure given that a first has occurred. Thus: Prof. Behrooz Parhami; Arya-Mehr University of Technology: POBox

3406; Tehran IRAN.
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j°t( 2p)= l2+P* m2'; 2P ,p
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