A data structure for family relations

F. Mavaddat and B. Parhami

Department of Mathematics and Computer Science, Arya-Mehr University of Technology,

Tehran, Iran

A data structure is proposed which enables efficient determination of family relations of common
interest with the minimum amount of information on each individual. The problem of updating infor-
mation due to births, deaths, marriages and divorces is considered. Algorithms for determining the
immediate relatives of each individual are given and a framework is established for writing pro-

cedures to determine other relatives.
(Received June 1977)

Due to the rich structure of pointers and universal familiarity
of subject, representation of family relations has always pro-
vided the students of data structures with an unfailing source
of examples and drills. It has also supplied educators with
materials for demonstration of points and clarification of
concepts in the theory of linked structures (Knuth, 1968;
Elson, 1975; Hoare, 1968; Stone, 1972). Its influence on the
subject of data structures has been so strong that some kin-
ship terms, such as ‘offspring’ and ‘sibling’, are universally
used for naming relationships in trees, a very important class
of data structures (Knuth, 1968 page 307).

Unfortunately, most treatments of such data structures are
simplistic, in the sense that they onmly partially ‘contain’
common family relations. We say that a data structure contains
a relation if a non-exhaustive procedure can be devised for
finding all items having that relation to a given item. Relations
such as ‘current wives’ and ‘ex-sisters-in-law’ are difficult to
compute without a heavily linked structure. Our aim is to
propose a sufficiently rich structure which contains all family
relations of common interest. Examples of such relations are
those of ‘mother,” ‘brother’, ‘spouse’, ‘daughter’, ‘grand-
parent’, ‘uncle’, ‘nephew’, ‘cousin’, and ‘sister-in-law’, with
qualifications of age, sex, existence, order and halfness, where
applicable.

In addition to its academic value, such a study can be used by
private and government organisations for tracing family
relations. Such relations, and the associated terminology, are
also of interest to social anthropologists and linguists (Wallace
and Atkins, 1960; Baateni, 1973). Therefore, a better under-
standing of the structure needed to represent such relations
can be of value in their work. In fact, our original interest in
this work was triggered by a linguistic study of kinship terms
in Farsi (Baateni, 1973).

Functional specifications
Actual family relations are dynamic in nature. The processes
of birth, death, marriage and divorce continually create new
relations and alter existing ones. Therefore a structure for
representing these relations must be designed in view not only
of the ability to respond to queries but also of the execution of
updating procedures. For this reason, the total system may be
viewed as a kinship data base.

Updating information is required as a result of the following
events: Birth, death, marriage and divorce.* These four types
of events are represented by directives of the type

‘An s named r is born to p and g on 4.’ 1)
‘x dies on d.’)
‘p and g get married on d.’ 3)
‘p and g get divorced on d.’)

respectively, where p and ¢ uniquely identify a male and a
female, s ¢ {male, female}, n is the child’s name, x uniquely
identifies an individual, and d is the date of event. In the
following pages, we will demonstrate that the above men-
tioned directives can be handled by efficient algorithms for the
proposed structure.

Queries put to the system are of greater variety because of the
large number of possible relations. All such queries can,
nevertheless, be expressed in one of the following three forms

‘Who are the r’s of p?’ (%)
‘Isganrof p? (6)
‘Whatisq to p? @)

where p and ¢ uniquely identify two individuals and r is a
member of the set of all possible relations. Queries of type (6)
can be handled by answering (5) and searching for ¢ in the
resulting set. Queries of type (7) can be handled by searching
for positive answers to (6) for different r’s of interest. We will,
therefore, only consider queries of type (5) in our subsequent
discussion.

Since the set of possible values for r in (5) is infinite, it is not
possible to prove by exhaustive enumeration that any given
structure will enable us to answer all queries. Therefore, the
following inductive scheme based on intrinsic properties of
family relations will be used.

We define an ‘immediate relative’ to be a parent, spouse,
sibling, or offspring. Any other relative of an individual is
obtainable as a ‘closer’ relative of an immediate relative.
Therefore, in the section on retrieval algorithms, we need only
give procedures for determining the immediate relatives of an
individual. Other relatives can be traced by composite pro-
cedures, as will be demonstrated through a number of examples.
Special routines can be built into the system for answering

A RECORD

LINKS TO
OTHER RECORDS
INFORMATION
FIELDS

DAD J MOM—I PDF I PDM IMRD

TVPE[NAME IEIRTHlDEATH

DAD—Link to father’s record
MOM—Link to mother’s record
PDF—Link to previous descendant of father

PDM—Link to previous descendant of mother

MRD—Link to most recent descendant

TYPE—Record type (male, female, or marriage)
NAME—Name of record’s owner (string)
BIRTH—Date of birth (numeric)

DEATH—Date of death (numeric)

Fig. 1 Format of record for each individual

*It is also possible to consider adoption and abandonment of children as events. However, this would make the algorithms considerably

more complex.

110

The Computer Journal Volume 22 Number 2

queries on common relations. Other queries can be handled
with the aid of a conventional language for dealing with lists
and pointers.

The proposed structure

It is clearly desirable to have a structure where the information
on each individual is kept in a fixed format record with the
minimum amount of information. Stated in a different way,
we are interested in the minimum uniform information that
each person in a society has to have to be able to find all
relatives of given relationship to him by repeated interviewing
of others. We propose that the information on each individual
be kept in a record as in Fig. 1.

The same format is used to keep a record of marriages
(TYPE field containing marriage). A marriage record hasDAD
and MOM pointing to the records of the married couple and is
linked into the list of descendants of both individuals through
PDF and PDM pointers, exactly as an offspring’s record would.
A marriage record can, therefore, be viewed as representing a
virtual offspring. The marriage and divorce dates are stored
in BIRTH and DEATH fields, respectively.*

In the above structure, the list of offsprings and marriages
(list of events) for each individual is maintained and manipu-
lated as a stack, with MRD pointing to its top and PDF or
PDM for each stack element pointing down the stack to
previous elements depending on whether the stack has a male
or female owner. The last element of stack is designated by
the null pointer A.

Fig. 2 has been constructed to demonstrate the concepts dis-
cussed so far. It shows the records for eight individuals and
four marriages, with links corresponding to the events on dates
D, through D,, also given in Fig. 2.

The structure defined so far is not changed except by updating
procedures defined in the next section. For the purpose of
retrieval operations, different structures are created and
manipulated. These are linear lists of nodes with the format
shown in Fig. 3. Each such list is uniquely identified by a link
variable (such as L) pointing to its first node.}

In the algorithms which follow, an individual is always identi-
fied by a pointer to his (her) record. The translation from identi-
fying characteristics to location is straightforward if one keeps
a list of all individuals, with appropriate structure to facilitate
searching. In general, a number of permanent lists may exist
for different purposes; e.g. list of marriage records, list of
living individuals, etc. If such lists are used, the updating
algorithms must be augmented to maintain such lists in a
proper manner.

- It is worth noting that the proposed data structure may be

viewed as a variant of the CODASYL set construct (Date,
1975; CODASYL, 1971) with the difference that sets can self-
reference a single file. Fig. 4, in which each record is partitioned
into two segments called PERSON and LINK, illustrates
the set construct much more clearly than Fig. 2. We have
deliberately left out MOM and DAD pointers, as well as several
information fields, for clarity, since they do not affect the
owner/member relationship in a set. The dotted links in Fig. 4
are not present in the actual data structure but their functions
are performed by MOM or DAD pointers, depending on the
owner’s sex. The correspondence between a PERSON and a
LINK segment in Fig. 4 is shown informally by associating
the person’s name with the LINK segment.

*The MRD and NAME fields are unused in a marriage record.
They may be used to hold other information regarding the marriage
in an actual application.

+We will use upper case letters to designate pointers to lists and
lower case letters for pointers to records.

The Computer Journal Volume 22 Number 2

DAD,MOM, PDF ,PDM,MRD

olefoe[H ofefefe[n ofefo]e]n]
ﬂ John leln6 F[Joan [xlm M| George Jxln
KD oloefe|n] L)

V] [Dlloﬁ Fl Margaret IXl" Vl Iu7]-=
w[d|n|a[s] L [w]a]a]s]
Mlpam'ck I“z‘” v D, Dg| Fl'n,-am |Da|“‘
[d]d]n [w{ulh "

P Heten oyl FE1izabeth [0s] = V] [of =

Configuration of Links Immediately after Date D,.

Milestones (in chronological order) Legend

D, : John marries Joan; his second, 1 Null link
her first.

D, : Patrick is born to John and Joan.

D, : John marries Margaret; his third, @ Unspecified
her first (polygamy). link

D, : Helen is born to John and Joan.

Ds: Elizabeth is born to John and
Margaret.

Dg: John passes away.

D;: George marries Margaret; his first,
her second.

Dyg: Diana is born to George and
Margaret.

D, Patrick marries Diana. V Virtual child

Fig. 2 An example for the proposed data structure

X Unspecified
information field

A NODE

PTR PNN

PTR - - Pointer to record
PNN - - Pointer to next node

Fig. 3 A node in a list designating a set of records

PDF

o T b

owner owner

EEC

Marriage Helen Marriage

1ana

Fig. 4 The proposed data structure as a collection of sets

"1

Updating information

Assuming that the operation r « NEWRECORD makes r
point to a new (unused) record and updates the pool of free
space, we can write the following algorithms for the updating
operations. The interpretation of the parameters for these
procedures is as in (1), (2), (3), and (4).

birth (s,n,p,q,d) ®)
r « NEWRECORD
TYPE [r] « s; NAME [r] « n; BIRTH [r] « d;
DEATH [r] « o
DAD [r] « p; MOM [r] « q; MRD [r] « 4
PDF [r] « MRD [p]; PDM [r] « MRD [q];
MRD [p] « MRD [q] « r

death (x,d) 9
DEATH [x] « d; ¢ « MRD [x]; s « TYPE [x]
while g # A do begin
if TYPE [¢] = marriage and DEATH [¢] = o
then DEATH [¢q] « d
if s = male then ¢ — PDF [q] else ¢ « PDM [q]
end

marriage (p,q,d) (10)
r « NEWRECORD
TYPE [r] < marriage; BIRTH [r] « d;
DEATH [r] « o
DAD [r] « p; MOM [r] « ¢
PDF [r] « MRD [p]; PDM [r] « MRD [q];
MRD[p] « MRD [¢g] « r

divorce (p,q,d) (11)

r « MRD [p]

while TYPE [r] # marriage or MOM [r] # ¢

set r « PDF [r]

DEATH [r] « d
In the above algorithms, it is assumed that all needed records
exist within the system. If it is possible, for example, to receive
a divorce report without having received the corresponding
marriage report previously, our procedures must be modified
to take care of such singularities.

Retrieval of information
For the sake of generality, we use upper case identifiers to
define retrieval functions on sets* (represented by linear
lists of nodes) so that function compositions of the form
BROTHERS (parents(p)) can easily be performed. Correspond-
ing to each upper case function (e.g. FUNC) which operates
on sets, is a lower case function (e.g. func) which has a record
pointer as argument and returns a set as its result. Each set
is identified by the name of its corresponding list pointer,
and set operations such as UNION(P,Q), INTERSECTION-
(P,0), and DIFFERENCE(P, Q) have their usual meanings.
Any upper case function can be defined recursively in terms
of the corresponding lower case function as follows

Q « FUNC(P) (12)
ifP = Athen Q « A
else Q « UNION (func(PTR[P]), FUNC(PNN[P]))
where Q specifies the result of the function FUNC applied
to the set P.t In our subsequent discussion, we will only
define lower case functions since the corresponding upper case
functions can easily be defined as in (12).

*Field names, which are also upper case identifiers, are distinguished
from function names by enclosing their parameters in square
brackets.

1A letter ‘S’ is added to the name of some upper case functions for
the sake of readability; e.g. ‘FATHERS’ corresponds to ‘father’.

112

For convenience, we will be using the operation Q «
makelist(p) for making a one-element list with p as its sole
member. The procedures for finding immediate relatives
follow. Several auxiliary functions have also been defined to
simplify the algorithms. Sex-symmetric definitions have been
omitted for brevity.

Q « father(p) 13
Q « makelist(DAD[p])
Q « parents(p) (14)

Q « UNION(father(p), mother(p))

Q « male(p) (15)
if TYPE [p] = male then Q « makelist(p) else Q « 4

Q <« marriage(p) (16)
if TYPE [p] = marriage then 0 « makelist(p) else Q « A

QO « flist(p) (i.e. father’s previous events) an
QO « makelist(p); r « PDF [p]
if r # A then Q « UNION(Q, flist(r))

Q « eventlist(p) (i.e. list of offspring and marriages) (18)
r « MRD [p]
ifr=Athen Q « 4
else if TYPE [p] = male then Q « flist(r)
else QO « mlist(r)

Q « sons(p) (19)
0 « MALES(eventlist(p))
Q « offsprings(p) (20)

Q « UNION(sons(p), daughters(p))

Q <« currentmarriage(p) 21
if TYPE [P] = marriage and DEATH [p] = o©
then Q « makelist(p)
else Q « A

Q « wives(p) 22)
if TYPE [p] = male then
Q « MOTHERS- (MARRIAGES(eventlist(p)))
else Q « A :

Q « exwives(p) (23)
if TYPE [p] = male then Q « MOTHERS-
(EXMARRIAGES(eventlist(p)))

else O « 4
Q « spouses(p) 24)
if TYPE [p] = male then Q « wives(p) else Q «
husbands(p)
QO « fsiblings(p) (i.e. siblings from same father) 25)
Q « DIFFERENCE(OFFSPRINGS(father(p)),
makelist(p))
Q « siblings(p) (26)
0 « UNION(fsiblings(p), msiblings(p))
O « fullsiblings(p) (v1))
0 « INTERSECTION(fsiblings(p), msiblings(p))
Q « halfsiblings(p) (28)

0 « DIFFERENCE(siblings(p), fullsiblings(p))

Q « brothers(p) 29)
Q0 « MALES(siblings(p))

The Computer Journal Volume 22 Number 2

Q « fullbrothers(p) (30)
Q « MALES(fullsiblings(p))

Using the conventions outlined so far and with the aid of the
defined functions, it is an easy matter to find other relatives
through function compositions. Several examples follow.

QO « grandfathers(p) (3D
Q « FATHERS(parents(p))

Q « grandchildren(p) (32)
Q « OFFSPRINGS(offsprings(p))

Q « uncles(p) 33)
O < BROTHERS(parents(p))
Q « sistersinlaw(p) (34)
0O « UNION(SISTERS(spouses(p)),

WIVES(brothers(p)))
Q « cousins(p) (3%

0O « OFFSPRINGS(SIBLINGS(parents(p)))

Q « nephews(p) (36)
R « UNION(sistersinlaw(p), brothersinlaw(p))
0 « SONS(UNION(siblings(p), R))

Q <« stepmothers(p) 37
Q « DIFFERENCE(CURRENTWIVES(father(p)),

mother(p))

Conclusion
In this paper, we have proposed a data structure, with a mini-
mum amount of uniform information on each individual,
which is sufficiently rich to enable the determination of all
family relations of common interest.

The proposed structure has adequate generality to be applic-
able to a wide variety of societies with different marriage

References
BaATENI, M. R. (1973).
CobasyL. (1971).

laws (monogamy, polygamy, and polyandry), religious beliefs,
and degrees of permissiveness (e.g. handling children of
unmarried parents). The key to this power is the sex-symmetry
of records and the introduction of marriage records as virtual
offsprings.

Since the answers to queries are presented as sets of indi-
viduals, it is possible to apply other qualifying adjectives
such as YOUNGEST and LIVING, as functions on the
resulting sets to identify those individuals having the desired
properties.

In some languages, a different set of terms for family relations
exists. For example, Farsi (Persian) has two terms for ‘uncle’
(father’s or mother’s brother), two terms for ‘aunt’, and eight
terms for ‘cousin’. It is possible to write procedures for deter-
mining all such relatives with the proposed structure.

In any real application, the volume of data will be extremely
large. Therefore, it is important to consider storage schemes for
handling such large volumes of data. One approach would be
to take advantage of the clustering property of family relations
which occurs for geographical, ethnic, religious, and racial
reasons. Thus one expects the structure of Fig. 2 to grow as a
collection of loosely linked clusters. Dividing the set of records
along the cluster boundaries, one obtains a collection of
segments which defines the locality of most searches, i.e. a
search which starts in one segment is likely to proceed and end
in the same segment. Hence, at any given time, one deals only
with a small fraction of the total data base.

A possible extension of the work presented here is in the area
of formal definition of kinship terms which may be of interest
to semanticists. Also, we have not dealt with the question of
efficiency in the retrieval algorithms. Further work may pro-
ceed on modifications to the proposed structure or algorithms
which would result in improved efficiency.

Acknowledgement

We acknowledge a very fruitful discussion with our colleague
Dr. M. Toosi and several helpful comments from anonymous
referees.

Kinship Terms in Persian, Anthropological Linguistics, Vol. 15, No. 7, pp. 324-327.
CODASYL Data Base Task Group Report, April 1971.

DaTtg, C. J. (1975). An Introduction to Database Systems, Addison-Wesley, Reading, Mass., pp. 231-243.

ELsoN, M. (1975).

Data Structures, Science Research Associates, Chicago.

HoARE, C. A. R. (1968). Record Handling, in Programming Languages, edited by F. Genuys, Academic Press, pp. 291-347.
KNuTH, D. E. (1968). The Art of Computer Programming—Vol. 1: Fundamental Algorithms, Addison-Wesley, New York.
STONE, H. S. (1972). Introduction to Computer Organization and Data Structures, McGraw-Hill, New York, pp. 211-213.

WALLACE, A. F. and ATKINS, J. (1960).

The Computer Journal Volume 22 Number 2

The Meaning of Kinship Terms, American Anthropologist, Vol. 62, No. 1.

13

