A GEOMETRIC VIEW OF MUTUAL EXCLUSION
AND DEADLOCK IN COMPUTER SYSTEMS

Behrooz Parhami
Computer Science Department
University of Waterloo

Waterloo, Ontario,

Canada N26 3Gl

on leave from
Sharif University of Technology

Tehran,

Abstract

A set of eight simple diagrams with
accompanying explanations has proved quite
effective as a tool for teaching the
concepts of mutual exclusion and deadlock
in an operating systems course. This note
presents the diagrams in a manner suitable
for direct reproduction as viewgraphs or
class handouts and touches upon the major
points in explaining the diagrams to
students.

Single

1. Processes Sharing a

Resource

Consider two processes P. and P, which
need the shared resource R, Let Us use
the horizontal and vertical axes for
representing the advancement states (e.g.,
percentage of completion) for P, and P,

respectively. In addition, let us assume
that process P, needs the resource R from
the advancemen state r, up to the

advancement state ri (Figute 1).

Let the point p, with coordinates x

and x,, represent the advancement states
of P and P at a particular instant.
Assuming that a process must have

exclusive control of a resource in order
to use it, the point p <can never lie
inside the shaded rectangle., This area 1is

appropriately called "the unfeasible
region.”

On a uniprocessor, the processes P
and P, are executed one at a time. Thus,

the Joint advancement state for P, and P
moves on a stalrcase-~1like path (Figure 2).
Note that the two axes do not represent
time and that under different scheduling
policies, =either P or P, may reach its
corresponding T, point firs%.

The interval between r, and r! is the

critical region of P,. "If P, 1s 1in its
critical region, P i8 not allowed to
enter 1its critica region (advance past
r.), and vice versa. Given a suitable
résource allocation and deallocation

mechanism, the joint advancement path will
find its way around the unfeasible region
in a natural way and no problem arises.

]
E'S&?‘E%N Vol. 18 No. 4 Dec. 1986

Iran

The path will 1ie below or above the
unfeasible region, depending on whether P

or P enters 1its critical region first.
This wode of operation in the allocation
of a shared resource is called "mutual
exclusion,* T

On a multiprocessor, the processes P

and P can advance simultaneously. Our
geomet¥ic representation can handle this
case as well, the only difference being

that the joint advancement path no longer
consists of 9only horizontal and vertical

line segments. Again, with proper
resource management, the path finds its
way around the unfeasible region

automatically (Figure 3).

We can easily generalize Figures 2 and
3 to the case of three processes sharing a

single resource. Here, the wunfeasible
region becomes a rectangular volume, with
the joint advancement path (a

three-dimensional curve) finding its way
around it,

2. Multiple
Deadlock

Shared Resources and

Now, let us assume that two ©processes
P and P each need the two shared
resources R7and S, with P requiring the
use of R from r, to r! and S from s, to
si. Figure 4 shows that when the two
ufifeasible regions are mnon-overlapping,
the joint advancement path can pass above,
below, or between the regions, without
presenting any problem,

We can define the critical region of
Pi with respect to each resource, as shown
in Flgure 4, However, an attempt to
allocate resources 1individually based on
the mutual exclusion principle would be
unwise. Figure 5 shows why. Here, the
unfeasible regions overlap in such a way
as to create a dead-end corner D. If the
joint advancement path ever enters the
rectangle ABCD, deadlock at point D will
be unavoidable. This rectangle is
appropriately called "the unsafe region."

If the joint advancement path happens
to go through point N in Figure 5,

deadlock will not occur, Thus, deadlock
is a potential danger which can be avoided
by proper Tresource management. Let us
look at three deadlock avoidance
strategies:

a, Allocating all resources needed by
a process before it is allowed to start
execution. This 1is clearly wasteful of
resources, since some of the resources may
be mneeded for relatively short periods of
time during the process' life.

b. Assigning a unique number to each
resource and requiring that a process
request mneeded resources in ascending
numerical order. Figure 6 shows that if R
is always allocated to a process before S,
no deadlock can occur. Judicious
numbering of resources <can reduce the
amount of waste,.

c. Preventing the joint advancement
path from entering an unsafe region. A
rather involved and time consuming
algorithm must be applied every time a
resource is allocated to ensure that
unsafe boundaries are not crossed.

Another philosophy is to let the deadlock
occur and then use a deadlock recovery
procedure entailing rollback or restart of
one or more of the processes. This
approach is attractive when rollbacks or
restarts are possible (they re impossible
for processes with irreversible effects)
and the deadlock probability is
sufficiently low to justify the wasted
time and resources.

In the case of n processes, the joint
advancement path will be a curve in the
n-dimensional space, with n-dimensional
unfeasible and unsafe regions. For
example, with three dimensions, the
deadlock point is at a corner formed by
three pairwise perpendicular surfaces,
The geometric visualization of this case
is deferred until the end of the next
section,

3. Multiple
Resources

Identical Shared

Occurrence of deadlock is not limited
to systems in which several independent
processes compete for the control of

SIGCSE

BULLETIN Vol. 18 No. 4 Dec. 1986

unique resources. Let wus substantiate
this point by an example.

Consider a computer system having 9
identical tape drives, with processes

requesting and releasing drives at
particular advancement states, Take as an
example, the following sequences of
requests and releases (negative requests)
by P1 and P2:

Pl: +3 +1 +2 -6

P2: +2 +1 +2 +1 -3 -3

This situation is depicted in Figure 7,
with the sum of needs shown for all
combinations of advancement steps.
Clearly, the unfeasible region corresponds
to those combinations of advancement steps
where the sum of needs exceeds 9 tape
drives. We see from Figure 7 that if P
and P are allocated 4 and 5 drives,
respectively, the system state 1s unsafe
and deadlock will occur with the next
request by either process,

Now, consider three processes with
identical sequences of requests and
releases in a system with 9 tape drives:

P,: +3 +3 -6
i
Here, an unsafe boundary is crossed
whenever two processes hold 3 drives each
and the third process' request for 3
drives is honored. Figure 8 depicts the
unsafe region as a vrectangular volume,
with the deadlock point D at one of its
corners.

Detection of unsafe boundary crossings

is straightforward in the case of
identical shared resources. A particular
allocation 1is safe if the largest

remaining mneeds of an individual process
is not more than the number of free
resources after the proposed allocation is
completed.

When n processes wuse m identical
shared resources, with a maximum need of k
resources per process, the condition
n(k-1) < m guarantees deadlock-free
operation. The geometric representation
of this situation for n = 3 is left as an
exercise.

BASIC CONCEPTS AND DEADLOCK-FREE OPERATION

APZ'S Advancement State AP,
o NN TP R IR
N N \
Unfeasible Po's Unfeasible
Region Critical Region M
<§\\\\ Region
I" mmmmmmmm
Tofm === ‘) 2 : !
:) I I
| 1
Cerreni Jroeres o P(X],Xz) l bi's Ad- i Pi's |
| AP I Critical |
{ | 1 1
| | State | Region ! PE
" " " "
Figure 1. Geometric Representation of Figure 2. The Joint Advancement Path
Two Processes Using a Single Shared of Two Processes Using a Single
Resource, with the Corresponding Un- Shared Resource on a Uniprocessor.
feasible Region (Shaded Area).
™ L
e Anothner f APZ
Poss*i‘ti]’e o)
Path 4 -
0 SR o S Critical Region N\
4 \\\ Ps/S Unfea-
\\\\ b , sible’
‘f Unfeasible 2 k. ‘\zq Region
“Region Criti-f Unfea- <§
’f A Pos- Ritscal L'sible Ny ~-f~ \\\
sible 2o NS { I
(O IR, Su 2 oath Regiom Region [I
/ | ! Po/R | ;
| i Y'Z-—--- ; |
- it i
il \ : fCriticall lgg]ggia]l
! f b |Region | o ?S !
i ! l PR ! -
- r T S s
" r 1 — 1 Q__jg_“‘q]
Figure 3. The Jouint Advancement Path of Figure 4. MNon-Uverlapping Unfeasible
Two Processes Using a Single Shared Regions for Two Processes Sharing Two
Resource on a Multiprocessor. Different Resources with No Deadlock.
SIGCSE Vol. 18 No. 4 Dec. 1986 4

BULLETIN

POSSIBELE DEADLOCK AND DEADLOCK AVOIDANCE

ot ==
R \\\W

Unfeasible Region

i CLOONNNY "
Y I s " \\\\
| Region \\\l
Bt A
LsfoB N

Sop T 1] !
]’ | : Nl
I— |

: - o leﬁnefﬂlo | p_l

- - - i 1 -
il 1N 5
S

Figure 5. Overlapping Unfeasible Regions
for Two Processes Sharing Two Different

Resources with Pessible Deadlock.

272
' | |
_3NQ~~J§_QF__m_J§__4Q__
} | i
SRR R g 13
'~“~1*"_\§\\\JA T
. \\Unfeasib]e\\
Region ..
TSI K A xJ\LI'f_\é__
t © Unsafe “<>\\
! Region
N g !
elooode s INNs_
| i [!
- : ! |
+] ﬂ‘j_.g__._:§_=_.ll7.= ===== 1'_9__..;55._.
i) t I
+2 .L3____}§“:§,___wiﬁ__:éu_
I | \ |
! |] | P'l
olo_ 3w e 1o)
0 +3 +1 +2 -6

Figure 7. Possible Deadlock for Two
Processes Sharing Identical Resour-
ces (9 Tape Drives).

SIGCGSE
BULLETIN Vol. 18 ©No. 4 Dec. 1986

: ' N
K i A \ \

Unfeasible
2 “Region

Figure 6. Overlapping Unfeasible Re-
gions for the Case of Resource Allo-
cation in Ascending Numerical Order.

P
-6 3

Unfeasible
+31 Regicn
|

The Unfeasible Region, ¥
Viewed from the Other Side

Figure 8. Possitle Deadlock for Three
Processes Sharing Identical Resources
(G Tape Drives).

