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ABSTRACT

A generalized signed-digit (GSD) number system uses the digit set
{-a,—a+1, ..., B-1, B} in radix-r positional notation, with a,8 > 0 and
p=0+B+1-r > 0. Most GSD number systems support carry-free addition and
borrow-free subtraction and even those that do not, can be dealt with using
limited-propagation algorithms which yield the ith sum or difference digit as
a function of three consecutive digits in each of the operands. Thus, GSD
number systems are suitable for realizing high-speed special-purpose
arithmetic "engines” in VLSI. To do this, the arithmetic operations of
addition and subtraction must be supported by zero, sign, and overflow
detection procedures. Algorithms for the implementation of these support
functions are presented in this paper.

Index Terms: Asymmetric signed-digit numbers, Computer arithmetic,
Number representation, Overflow, Redundant number representation systems,
Sign detection, Signed-digit arithmetic, Zero detection.

1. Introduction

For any radix r 2 3, there are one or more signed-digit (SD) number
representation systems [1]. These ordinary SD (OSD) number systems
correspond to different values of « in the range r/2 < a < r, from the
minimally redundant system (& = Lr/2] + 1) to the maximally redundant one
(= r— 1), where o determines the set {-a,...,—1,0,1...,a} of the 2t + 1

digit values used. The most important property of OSD number
representation systems is the possibility of performing carry-free addition and
(by changing all the digit signs in the subtrahend) borrow-free subtraction.
The most serious drawbacks of OSD number systems are difficult sign
detection (sign of a number is the sign of its most significant nonzero digit)
and the overhead for conversion to/from conventional non-redundant
representation. The storage overhead, which was once considered to be an
important disadvantage of all redundant representations, is now less of an
issue because of decreasing hardware costs.

The propagation-free arithmetic property of OSD numbers has caused renewed
interest in redundant number representations in view of their suitability for
systolic and VLSI implementation (see, e.g., [3]). However, OSD number
systems are not the only representations with this property. Previously, the
author has defined the class of generalized signed-digit (GSD) number
systems [5,6] having the digit set {~a,~a+1,...,5-1,8} in radix r with a20,
B0, and p = o+ f+1-r, where p 2 1 is the redundancy index of the number
system. Figure 1 shows that GSD number systems cover all previously
known useful redundant number representation systems and also lead to new
number systems not examined before. An example of such new
representations is the class of stored-carry-or-borrow (SCB) number systems
which finds applications in the design of systolic counters [2,4].

It has been shown that any GSD number system with r>2 and p>3 (or with
p=2, provided that o1 and #1) supports carry-free addition and that even it
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the exceptional cases (i.e., for r=2, p=1, or p=2 with a=1 or f=1) a
limited-carry addition algorithm is applicable which yields the ith sum digit
s; as a function of the digits x;, y;, x;_1, ¥i—1, Xj—2, and y;_o of the
operands x and y [6]. Examples of GSD systems in the latter category are
the SC, SB, and SCB representation methods (see Figure 1), including of
course their radix-2 special cases. These results can be extended to borrow-free
and limited-borrow subtraction, yielding the following two algorithms.

GSD=
Generalized SD

p=1 p=2
Minimat Non-Minimal
GSD GSD
a=f (!#ﬂ a=B o#p
(r even)
Symmetric Asymmetric Symmetric Asymmetric
Minimal Minimal Non-Minimal Non-Minimal
GSD GSD GSD
r=2 a=0 a=1 o<r a=1
(r2) B=r
BSD= SC= SB= OSDh= SCB=
Binary SD Stored- Stored- Ordinary SD Stored-Carry-
or Carry Borrow or-Borrow
BSB= (non-binary)
Binary SB
r=2 a=lr/2)+1 a=r-1 r=2
BSC= Minimally Maximally BSCB=
Binary SC Redund Redund Binary SCB
0OSsD osD

Figure 1. The Hierarchical Relationships of Redundant
Number Representation Systems.

Algorithm 1 (propagation-free addition and subtraction): Let the two
operands have x; and y; as the ith digits. For each position i, a position

result p; = x; * y; is computed which is then broken into a transfer digit ;1
and an interim result w;=p; 1 rtj,1. The final result digitis z; = w; T ¢;

whose computation should produce no new transfer. ¢



Algorithm 2 (limited-propagation addition and subtraction): Let the two
operands have x; and y; as the ith digits. In stage 1, for each position i, a

position result p; = x; + y; is computed and used to generate a range estimate
e;,1 for the final transfer digit £; 1. In stage 2, the position result p; and the
range estimate ¢; are used to compute a transfer digit ¢;, and an interim
result w;=p; xrt;.q.

The final result digit is 2; = w; £1;  whose

computation should produce no new transfer. #

The transfer digit ¢;, y of Algorithms 1 and 2 is in the range

“A=-late-V1< 4 <[Brer-1D1=yp o)
and is selected based on comparing p; to known comparison constants. The
range estimate ¢;, 1€ {low,high} is a binary indicator (selected by comparing
p; to a constant) which restricts the transfer digit ¢;, 1 into one of two closed
subintervals; the low subinterval [—~A,u] or the high subinterval (-1,
where A’ and ' are constants satisfying:

“A<-Agu<pu 2
Obviously, addition and subtraction must be supported by the auxiliary
functions of zero, sign, and overflow detection if high-speed special-purpose
VLSI arithmetic "engines” are to be implemented based on the GSD

representation. This paper deals with algorithms for the above-mentioned
support functions.

2. Zero Detection for GSD Numbers

‘Whenever zero has the unique all-zeros representation, zero detection for GSD
numbers is similar to that of conventional non-redundant positional systems.
Thus, we first prove the following uniquness theorem.

Theorem 1: Zero has the unique k-digit all-zeros representation in a GSD
number system if and only if at least one of the following four conditions

hold: (Nk=1, D a=0, 3)B=0, @ max(ef)<r.

Proof: For & = 1, uniqueness is obvious. If a =0 (8 = 0), then all the digit
values are non-negative (non-positive) and thus zero must be represented by
the all-zeros vector. Suppose thatk > 1, >0, 8> 0, and max(e,f) < r.
Then, the value of the number z4_1z;_5 ... z1z() can be written as:
value(zg_12¢3 ... 2120) = z + r X value(zg_12_2 ... 21)
A necessary condition for the above value to be zero is zg = 0 mod ». Thus,
since max(o.f) < r, we must have z3=0. We can deduce by induction that
2y = ... =2g_9 = 2}_1 = 0. This concludes the sufficiency proof. To show
the necessity of at least one of the four conditions, we prove that zero has
multiple representations if > 1, >0, §> 0, and max(a.f)y2r. fa>r,
then 0 0..0 1 —r is an alternate representation of zero. Similarly, if
B2r,then 0 0...0 -1 r has the same value as the all-zeros vector.

Fortunately, even if the conditions of Theorm 1 do not hold, zero detection is
not much more difficult. A logic signat {; is propagated from right to left,

indicating at each position i, whether the digits to the right represent a
multiple of r (i.e., zero with an appropriate transfer digit). The procedure is
formalized in the following algorithm.

Algorithm 3 (zero detection for GSD numbers): Let the number under
test have the k-digit GSD representation zp_12zg_» ... z12g. Set zz =0,

£y = true, g = 0 and compute sequentially for i =0, 1, ..., k:
uji=zj+t;;
t;,1 :=if u; = 0 mod r then u;/r else anything ;
;1 = if 4; = 0 mod r then {; else false .

The zero test resultis §j ;. ¢
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Note that in the special cases covered by Theorem 1, we have 4; = 0, u; = z;,
and §i+15= if z;=0 then é’i else false. Thus, the test result is the logical
AND of position test signals which indicate whether z; = 0. For large values

of k, this must be implemented as a tree of AND gates due to fan-in
limitations. In the general case, transfer-skip and transfer-lookahead
techniques can be used in much the same way as conventional carry-skip and
carry-lookahead to speed up the hardware realization of Algorithm 3.

Example 1: That the radix-10 SCB number 0 0-1 9 9 9 9 10 (see
Figure 1) represents zero is established by Algorithm 3 as follows:

it 9 8 716 5 4 2 10
2 o [0 o 1 9 9 9 9 o
up: 0o 0 0 0 10 10 10 10 10
4: 0 0 0 o0 1 1 1 1 1 0

Ci: true true true true true true true true true true

We have (g = true. Thus, the zero test result is positive. ¢

Let the range of ¢, 1 in Algorithm 3 be =4, <#;,1 < ;. To find minimal
values for 2, and 11,, we first note that:
~(@ +A) S up < By,
If u; # 0 mod r, then the value of ¢;, 1 is immaterial. So, we assume that
u;=rt;, 1. Thus:
(@ +A)r <ty S Bep)ir
This yields:
Aminl(a «aminy el = AR =lare-1)l 3)
pin (B +pminyie]l = pminalBre-1l @
Note that the values of },zmin and ,Lzz'”i" given by (3) and (4) are less than or

equal to the corresponding Amin ang ymin

and subtraction.

values given by (1) for addition

3. Sign Detection for GSD Numbers

Unlike OSD numbers, the sign of the most significant nonzero digit of a
GSD number does not necessarily indicate the sign of the number, For
example, the BSCB number (see Figure 1) 0 0 -1 2 1 is positive.
Obviously, the sign detection problem arises only if @ > 0 and 8> 0.

Theorem 2: The sign of a GSD number is given by the sign of its most
significant nonzero digit if and only if max(a.f) <r.

Proof: Suppose that the most significant nonzero digit of the GSD number
Yk~17k=2 - Y170 is ¥j (0 £ j <k-1) and that it is positive. Then, the
minimum value that the number can have is: ]
value(l —¢t ... —a =@} = -0~ L .. 4r+1) = [@+r(r—1-0)}/(r-1)
Jj digits

Clearly, the above value is positive for @ < r — 1. Similarly, if the most
significant nonzero digit is negative and 8 < r — 1, the number is bound to be
negative. This concludes the sufficiency proof. To prove the necessity, we
show that with max(a,f8) 2, we have positive (negative) numbers with
leading negative (positive) digits. If a>r, we have value(l —r -1)=—1.
Similarly, for 2 r, value(~1 r 1)=1.¢

Thus, in special cases which satisfy the condition of Theorem 2, sign
detection for GSD numbers is no more difficult than that for OSD numbers.
As was the case for zero detection, a simple extension of the right-to-left scan
will allow us to detect the sign of a GSD number in all cases.



Algorithm 4 (sign detec'ion for GSD numbers): Let the number under
test have the k-digit GSD representation zj_jzg_2 .. z120. Set zg=0,

0q = pos, tg = 0 and compute sequentially for i=0, 1, .., k
upl=zp+
tjy1 := if u; 2 0 then Luyr] else [uyir];

Vit=up— Ty

0;,1 = if v; = O then o; else if v; > 0 then pos else neg.

The sign test result is o} _;. ¢

Note that in the special cases covered by Theorem 2, we have #; = 0,
vi=uj=zj, and 0; ; is determined by o; and the sign of z;. Again, transfer-skip
and transfer-lookahead techniques can be used in much the same way as

conventional carry-skip and carry-lookahead to speed up the hardware
realization of Algorithm 4.

Example 2: That the radix-10 SCB number (see Figure 1) 0 0 -1 9

9 10 9 10 represents a positive number is established by Algorithm 4
as follows:

i: 9 8 7 6 5 4 3 2 1 0
2 o [o 0 -1 9 9 10 9 10}
u;: 0 0 0 0 10 10 11 10 10
iz 0 0 0 0 1 1 1 1 1 0
v;: 0 0 0 0 0 0 1 0 0
O;: POS PpOS PoOS PoOS Pos Ppos Ppos pos Ppos pos

We have og = pos. Thus, the number is positive. ¢

It is interesting to note that Algorithms 3 and 4 can be combined into a
single algorithm whose hardware realization is only slightly more complex
than either algorithm alone. Thus, the overall hardware requirement is
reduced by using the following version of Algorithm 4 with three-valued o;

signals (0; € {~1,0,1}) for zero and sign detection.

Algorithm 5 (combined zero and sign detection for GSD numbers): Let
the number under test have the k-digit GSD representation zz_1z;_3 ... 212g.
Set 2 =0, oy =0, tg = 0 and compute sequentially for i=0, 1, ..., k:

Up = zy + ti H

tip1 o= if u; 2 0 then Luyr] else [uyr];

V".

Ui~ rtig];
Ci1 = if v; = 0 then o; else signum(v;) .
The three-valued test result is 0, +1» Whose interpretation is the same as that

of the signum function used above (i.e., —1:negative, 0:zero, +1:positive). e

The range of ¢;, 1 in Algorithms 4 and 5 is the same as that obtained for
Algorithm 3 at the end of Section 2.

4. Detection of Overflow in GSD Arithmetic

In dealing with fixed-length k-digit numbers, an apparent overflow occurs
when the outgoing transfer digit ¢ is nonzero. We call this an "apparent

overflow" since even with #; # 0, the result of the arithmetic operation may

be representable as a k-digit GSD number. The apparent overflow simply
signifies that a particular representation of the result has more than k digits.
When the result has no k-digit GSD representation, we say that a real
overflow has occurred. Obviously, real overflow is much harder to detect
than apparent overflow.
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Fortunately, however, it is not necessary for the hardware to detect real
overflow. In a special-purpose system (e.g., a systolic arithmetic engine), an
intermediate result with apparent overflow can be tagged as invalid for the
rest of the computation. While it is true that with this approach, more
results are tagged than what is absolutely necessary, overflows are so
infrequent that no serious problem is encountered. A partial remedy is to
maintain a guard digit on the left which acts as the "invalid" tag when not
zero. Frequently, it is possible to use idle cycles to reset a nonzero guard
digit to 0 by changing the most significant digit of the number (e.g.,
changing 1 —6 to 0 4 in decimal), thus enabling the computation to
continue. At any rate, the net effect of using apparent overflows instead of
real overflows is that the range of numbers that we can deal with is
occasionally restricted.

On the other hand, if overflow is dealt with by using an exception-handling
software routine, there is no problem at all since the value of ¢ and the

apparent result  xp_1xg_5 ... x1xg (which, as in the case of conventional

overflow, differs from the correct result by a multiple of rk) provide sufficient
information for the overflow handling routine to deal with the situation. An
attempt to obtain a valid k-digit representation of the result may constitute
part of this software routine.

The detection of real overflow and the correction procedure in the case of a
non-real overflow are discussed next. In the rest of this section, we will
assume f to be an additive transfer digit, so that fpxg_jxz_2 ... x1xgis a
correct (k+1)-digit representation of the result. Obviously, for a borrow-type
transfer digit, the sign of #; must be changed if the sub it results are to
be applicable.

Algorithm 6 (detection of real overflow): Given that an outgoing transfer
digit £ # 0 has been produced with the apparent result xz_1xg_3 ... X1XQ,
set 1'g = 0 and compute sequentially for i =0, 1, ..., k-1:

up=xp+ 13

1,1 :=iffg >0 then — L(B— up) / rlelse L(u; + 0) 7 7] ;

Xp=up—rti .

Then compute uy := t + t4. There is real overflow iff f; x ug > 0. ¢

Note that the computation of x; in Algorithm 6 is redundant. The reason for
its inclusion is that it simplifies the description of Algorithm 7, as we will
see shortly. An intuitive explanation of Algorithm 6 is that it obtains, in a
right-to-left sequential scan, the largest (smallest) possible digits in the range
—0<x’;< B that can be used for representing the result producing 7z >0
(% < 0). If even with these digits, the outgoing transfer digit u is nonzero
and of the same sign as #, then real overflow has occurred.

Example 3: Consider a GSD system with 7 = 10, @ = 5, and 8 = 10. The
minuend 6 5 S S and the subtrahend -5 5 3 4 yield the apparent
difference 1 0 2 1 with the outgoing additive transfer digit ¢4 = 1.

Algorithm 6 works as follows:

ii 4 3 2 1 0
x;: 1 0 2 1
uj: 0 0 2 1
t: -1 -1 0 0 0
X 10 10 2 1

Since ug = t4 + t'4 = 0, the overflow is not real. ¢
In executing Algorithm 6, the sign of all transfer digits is opposite that of
tx. The magnitude of the transfer digit v satisfies:

l:'jl sl@+prrl=1+Le-1)/rl o
Thus, for p <r, a binary transfer digit is sufficient. It is also interesting to



note that for non-redundant representations o + B +1=r. Thus, all transfer
digits are zero and an apparent overflow is always a real overflow.

Algorithm 7 (correction of result with non-real overflow):  After
executing Algorithm 6 and determining the values of uj and x’; for

i=0,1,...,k-1, set 1"} = u and compute sequentially for i = k-1, ..., 1, O:
viExiertig
t";i=if v;> B thenv; - § else if v; < — then v; + o else 0 ;
x"p=vp=ty
The corrected result is x";_1x"¢_3 ... x"1x"(. Note that if #*;=0, then =0
and x"j= x:i for all j < i. Thus, execution of Algorithm 7 can end as soon as
1"; becomes zero. ¢

To find the range of transfer digits in Algorithm 7, we proceed as follows.
Let f; > 0. Then, we must have u; < 0 for the overflow to be non-real.

Thus, all transfer digits l"j in Algorithm 7 are non-positive. Similarly if
14<0, all transfer digits tj will be non-negative. Since the sign of t"j is
determined by the sign of 7, we need only represent its magnitude. In the
following discussion, we take ¢, < 0 and uy, ;2 0. Let the range of t"jbe
[0,6]. We have:

X= vt = Xt~ (6)
Combining (6) with the restriction x”; < 3, we get:
i1 S(ﬁ-—x',-+t"i)/r [@))]

We have x; > —cand 1"; < . Therefore, the right hand side of (7) is no

greater than (& + B+ 6)/r. So, we must have 8< (& + B + 8)/r, and this is
equivalent to:

6=La+prri=1+Lp-1)/7] ®
So the range of t"j is the same as the range of t'j as specified by (5). As an
example, r = 10, @ =5, and § = 10 yield 8= 1.

S. Conclusion

‘We have considered zero, sign, and overflow detection schemes for generalized
signed-digit arithmetic. Using these results along with previously obtained
high-speed addition and subtraction algorithms, it is possible to design
special-purpose arithmetic "engines" for processing of large volumes of
numerical data, provided that the nature of computations is such that the
conversion and reconversion overhead is amortized over a long sequence of
arithmetic operations. Such conditions prevail in many signal processing
algorithms and high-precision scientific applications.

It is natural to ask at this point whether the generalization from OSD to
GSD number representation is worthwhile. In other words, is it ever
advantageous to use an asymmetric rather that a symmetric digit set for a
redundant number system? The answer to this question is positive, as
evidenced from applications of the SC and SCB number systems. One might
try to justify this generalization by asking the equivalent question: Are GSD
number systems with asymmetric digit sets any more difficult to deal with
than OSD number systems? Clearly the general addition and subtraction
algorithms are no more complex than their counterparts for OSD
representation. The complexity does increase if p exceeds r ~ 1, but this is
not related to the symmetry or asymmetry of the digit set used.

Sign detection and overflow handling are difficult for all redundant number
representations, independent of the digit set used. Theorem 1 indicates that
zero detection can be equally simple for asymmetric digit sets, provided that
certain conditions are satisfied. The most serious objection to the use of an
asymmetric digit set is the increased complexity of negation (sign change),
which is required if addition and subtraction hardware are to be shared. It has
been shown that the increased complexity is small if a GSD number system
satisfies the condition o= f§ mod (r ~ 1). Even if the above condition is not
satisfied, negation is done totally in parallel with negligible speed penalty.
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