1470

connected and the total number of paths in the network remains
constant.

The maximum path length is, of course, & — 1 and therefore, if &
is a fixed fraction of n, grows linearly. Thus, the parameter k can be
used to trade off maximum message delay (in terms of hops) against
connection cost. The relatively expensive linear connection cost is the
price to be paid for the exceptional fault-tolerant properties of this
topology.

In a bus implementation, passing a message from any processor to
any other requires traversing only a single bus. In this situation, k
measures the number of processors connected to each bus and thus
measures bus contention. The number of buses to which a processor
is connected is r and therefore r ports are required for each processor.
The number of buses in the system is given by b. Thus, in a bus
implementation, the parameter k can be used to trade off increased
bus contention (larger k) against increased number of ports per
processor and total number of buses.

V. CONCLUSIONS

We have presented a new family of static interconnection networks
that are suitable for distributed multiprocessors, particularly those in
which reliability and fault tolerance are important. These networks
have superior flexibility because of the existence of a parameter that
can be used for cost/performance tradeoffs. They have extremely
high fault tolerance and degrade gracefully from the fully operational
state as far down as any remaining connected topology.

REFERENCES

{1] B. W. Arden and H. Lee, ‘‘Analysis of chordal ring network,’’ IEEE
Trans. Comput., vol. C-30, pp. 291-294, Apr. 1981.

[2] L. Bhuyan and D. P. Agrawal, ‘‘Generalized hypercube and hyperbus
structures for a computer network,”” IEEE Trans. Comput., vol. C-
33, pp. 323-343, Apr. 1984.

[3] A. M. Despain and D. A. Patterson, ‘‘X-Tree—A tree structured
multiprocessor computer architecture,” in Proc. 5th Annu. Symp.
Comput. Architecture, 1978, pp. 144-151.

[4] A.-H. Esfahanian and S. L. Hakimi, ‘‘Fault-tolerant routing in De
Bruijn communication networks,”’ IEEE Trans. Comput., vol. C-34,
pp. 777-788, Sept. 1985.

[5] R. A. Finkel and M. H. Solomon, ‘‘Processor interconnection
strategies,”” IEEE Trans. Comput., vol. C-29, pp. 360-371, May
1980.

[6] J. R. Goodman and C. H. Sequin, ‘‘Hypertree: A multiprocessor
interconnection strategy,”” IEEE Trans. Comput., vol. C-30, pp.
923-933, Dec. 1981.

[7} H. Hanani, ‘‘Balanced incomplete block designs and related designs,”’
Discrete Math., vol. 11, pp. 255-369, 1975.

[8] E. Horowitz and A. Zorat, ‘‘The binary tree as an interconnection
network: Applications to multiprocessor systems and VLSI,”” IEEE
Trans. Comput., vol. C-30, pp. 247-253, Apr. 1981.

[9]1 D. K. Pradhan, ‘‘Fault-tolerant multiprocessor link and bus network

architectures,’” IEEE Trans. Comput., vol. C-34, pp. 33-45, Jan.

1985.

F. P. Preparata and J. Vuillemin, ‘“The cube-connected cycles: A

versatile network for parallel computation,”” Commun. ACM, pp.

300-309, May 1981.

C. S. Raghavendra, M. Gerla, and A. Avizienis, ‘‘Reliable loop

topologies for large local computer networks,”” IEEE Trans. Com-

put., vol. C-34, pp. 46-55, Jan. 1985.

D. A. Reed and H. D. Schwetman, *‘‘Cost-performance bounds for

multimicrocomputer networks,’” IEEE Trans. Comput., vol. C-32,

pp. 83-95, Jan. 1983.

D. B. Skillicorn and R. Dawes, ‘‘Chordal rings as computer net-

works,”” in Proc. 14th Manitoba Conf. Numer. Math. Comput.,

Cong. Numerantium, vol. 46, 1985, pp. 79-90.

A. P. Street and W. D. Wallis, Combinatorial Theory: An Introduc-

tion, Charles Babbage Research Centre, 1977.

L. D. Wittie, ‘‘Message routing in mega-microcomputer networks,”’ in

Proc. 3rd Symp. Comput. Architecture, Jan. 1976, pp. 136-140.

, ‘Communication structures for large networks of microcompu-

ters,”” IEEE Trans. Comput., vol. C-30, pp. 264-273, Apr. 1981.

(10]

[11]

(12]

[13]

[14]
[15]

{16]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

[17] S. B. Wu and M. T. Liu, ““A cluster structure as an interconnection
network for large multimicrocomputer systems,”” IEEE Trans. Com-
put., vol. C-30, pp. 254-263, Apr. 1981.

Carry-Free Addition of Recoded Binary Signed-Digit Numbers
BEHROOZ PARHAMI

Abstract—Signed-digit number representation systems have been de-
fined for any radix 7 > 3 with digit values ranging over the set { —c, - -,
-1,0,1, - -+, a}, where « is an arbitrary integer in the range r/2 < a <
r. Such number representation systems possess sufficient redundancy
to allow for the annihilation of carry or borrow chains and hence result in
fast, propagation-free addition and subtraction. The original definition
of signed-digit arithmetic precludes the case of r = 2 for which « cannot
be selected in the proper range. Binary signed-digit numbers are known to
allow limited-carry propagation with a somewhat more complex addition
process. In this paper, we show that a special ‘‘recoded’’ representation
of binary signed-digit numbers not only allows for carry-free addition and
borrow-free subtraction but also offers other important advantages for
the practical implementation of arithmetic functions. The recoding itself
is totally parallel and can be performed in constant time, independent of
operand lengths. It is also shown that binmary signed-digit numbers
compare favorably to other redundant schemes such as stored-carry and
higher radix signed-digit representations.

Index Terms—Binary signed-digit numbers, computer arithmetic,
number representation, recoding algorithm, redundant number systems,
signed-digit arithmetic, stored-carry representation, string recoding.

1. INTRODUCTION

For any radix r = 3, there are one or more signed-digit (SD)
number representation systems [2]-[4]. These ordinary SD (OSD)
number systems correspond to different values of « in the range r/2
< a < r, from the minimum redundancy system (o = |7/2 + 1)) to
the maximum redundancy one (¢ = r — 1), where « determines the
set {—a, -+, —1,0, 1, -+, o} of the 2a + 1 digit values used.
The most important property of OSD number representation systems
is the possibility of performing carry-free addition and (by changing
all the digit signs in the subtrahend) borrow-free subtraction.

The carry-free addition property of OSD number systems is best
understood by a conceptual ‘‘recoding”” process which replaces each
+ « value in the digit-by-digit interim sum of two operands by + («
— r) and an outgoing transfer digit of + 1. The new digit value, which
has a magnitude r — aintherange 0 < r — o < r/2 < q, always
absorbs an incoming transfer digit of +1, thus stopping its
propagation.

Whenever long sequences of computations are to be performed on
particular pieces of data, the one-time conversion and reconversion
effort to/from the OSD representation is more than compensated for
by the gain in computation speed. This is especially true for
maximally redundant OSD representations (for which & = r — 1),
since conventional radix-r numbers can be interpreted as maximally
redundant OSD numbers, with no need for the initial conversion [7].

Manuscript received December 16, 1985; revised February 5, 1987, and
September 4, 1987. This work was supported in part by the Natural Sciences
and Engineering Research Council of Canada under Grants G1140 and
AS5515.

The author is with the School of Computer Science, Carleton University,
Ottawa, Ont., Canada K1S 5B6.

IEEE Log Number 8718429.

0018-9340/88/1100-1470$01.00 © 1988 IEEE



[EEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

However, maximally redundant OSD number systems may consume
more storage space than the corresponding minimally redundant or
intermediate OSD number systems. Potential applications of SD
number representation include real-time signal processing [11], [13],
high-precision scientific computation {12], [23], and computation-
intensive modeling problems.

The original definition of SD arithmetic uses a symmetric digit set
and precludes the case of r = 2, since such a binary signed-digit
(BSD) number system possesses insufficient redundancy for the
general carry-free algorithm to be applicable. This is also the reason
behind the requirement that o be greater than r/2, even though o =
r/2 is a viable selection for a redundant number system if r is even
(see below). BSD numbers have been in practical use for representing
intermediate values in 2’s complement and high-speed multiplication
schemes ever since multiplier recoding was introduced by Booth [6].
They have also been used in redundant quotient representation for the
S-R-T division algorithm which was proposed independently by
Sweeney [14], Robertson [20], and Tocher [21] and which derives its
name from their initials. Limited-carry addition of BSD numbers was
noted by Avizienis [2] and practically realized by Chow and
Robertson [8]. In this paper, we derive a carry-free addition
algorithm for specially recoded BSD numbers, thus making this
special case more applicable to the design of high-speed arithmetic
Processors.

For the sake of our subsequent discussion, we define a generalized
signed-digit (GSD) number system utilizing the digit set { —a, —«a
+ 1, .-+, 8 — 1, B} with the conditionsa =2 0,8 = 0,and o + 8
+ 1 > r, where r is the number representation radix [19]. The
condition @« + B + 1 = r results in nonredundant number
representation systems which include the conventional radix-7 system
witho = Oand 8 = r — 1 as a special case. The redundancy index
of a GSD number system is definedasp = « + § + 1 — r. GSD
number systems cover the following systems as special cases:

binary stored-carry (BSC) number system: r = 2, « = 0, 8 = 2,
p=1

BSD number system: 7 = 2, a = = 1,p = 1

binary stored-carry-or-borrow (BSCB) number system: r = 2, o
=1,8=2,p=2

OSD number systems: 7/2 < a = <r,2 <p<r.

The BSCB number system is equivalent to a redundant number
representation system proposed for the design of systolic binary
counters [9], [18].

II. BINARY SIGNED-DIGIT NUMBERS

A BSD number is a vector of digits from the set {1, 0, 1], where 1
denotes the digit value — 1. In two-valued logic, each binary signed
digit can be represented by two bits, using several possible
encodings. Two natural encodings are the following.

1) The (s, v) encoding, consisting of ‘‘sign’’ and ‘‘value’” bits for
each digit, whereby 1, 0, and 1 are represented by (1, 1), (0, 0), and
{0, 1), respectively.

2) The (n, p) encoding, consisting of ‘‘negative’” and ‘‘positive”’
flags for each digit, whereby 1, 0, and 1 are represented by
{1, 0), (0, 0), and (0, 1), respectively.

It is also possible to use a 1-out-of-3 (n, 0, p) encoding to provide
complete unidirectional error detection capability with a relatively
low overhead in terms of added hardware complexity. This encoding
is similar to the (n, p) encoding, except that the middle flag denotes
the value zero.

Here, we limit our discussion to (s, v) and {(n, p) encodings. If a
digit d is represented as {d*, d*) with the first and as (d", d”) with the
:second encoding, then the following equalities hold:

d=(1-2d%)d"=dP—-d".
In subsequent sections of the paper, designs for circuits of interest

will be given for each of these two encodings. Both (s, v) and (n, p)
encodings allow the implementation of normalized significant digit

1471

arithmetic [15] if the extra combination ({1, 0) in the (s, v} encoding
and (1, 1) in the {n, p) encoding) is used to denote nonsignificant
zeros. In the remainder of this paper, we will treat the unused
combinations (1, 0) of the (s, v) encoding and (1, 1) of the (n, p)
encoding as DON'T CARE conditions to obtain simpler designs.

Any conventional binary number represented as a signed value is
also a BSD number with the (s, v) encoding if the common sign is
attached to each nonzero digit. In general, conversion from comple-
ment notation to BSD representation requires a complementation
step. For the special case of 2’s complement, attaching a 1 digit to the
left of a negative number will produce its correct BSD representation.
To reconvert from BSD to conventional representation, we proceed
to eliminate the 1 digits as follows. Each 1 digit is changed to 1,
generating a borrow (carry of 1) for the next higher position. The
borrow propagates over 0’s (changing them to 1's) and stops at either
1 or 1 (changing it to 0). A nonzero borrow coming out of the most
significant position indicates that the number is negative. Using the
outgoing borrow as the sign bit, we obtain the correct 2’s-
complement representation of the original BSD number. With an end-
around borrow, the 1’s-complement representation is obtained which
is easily convertible to a signed value.

Example: Consider a BSD representation of the number —26:

% %5 2 B U D
o1 o1 1 1 0O

According to the above procedure, z, and zs change to 1’s and
generate borrows. The first borrow converts 23 to O and stops, while
the second borrow transforms zg to 1 and exits to become the sign bit.
Thus, we obtain the 8-bit number

X7 X¢ X5 X4 X3 X2 X1 Xo
1 1.1 0 0 1 1 O

which is the correct 2’s-complement representation of—26. o
Hardware implementation of the above procedure can be based on
simple ripple-borrow principle or the more advanced borrow-skip or
borrow-lookahead schemes, depending on the speed desired. If ripple
borrow is used, we have for the (s, v) and the (n, p) encodings

b,‘+|=Z“?Z}’+Z—;’bi=Z?+ffb,'

where b; is the borrow into the ith position (by = 0).

Alternatively, one can reconvert by first separating the positive and
negative components of the BSD number through bit-by-bit logical
operations

nez5z7Y
P75z

and then subtracting the negative magnitude z” from the positive part
zP. These steps can be accomplished by conventional machine
instructions or through specialized hardware (consisting of a row of k
single-bit two-way demultiplexors connected to the inputs of a regular
adder/subtractor), again depending on the speed desired. Note that
with the (n, p) encoding, z" and z” are directly available and
subtraction of the two values yields the correct result even if we relax
the assumption that (1, 1) is never used to represent 0. A discussion
of the various reconversion procedures for OSD numbers (which also
apply to BSD numbers) can be found in [4].

II. A RECODING ALGORITHM FOR BSD NUMBERS

We now derive a recoding algorithm which transforms any BSD
number X = X;_;Xx_2 *** Xo into an equivalent recoded BSD
(RBSD) number z = 221 *°* Zp, suchthatz; X z;_; # 1 (1 = j
< k). This recoding is essential to the carry-free addition process, as
we shall see in Section IV. It also offers other advantages which will
be discussed in Section V.

Given the BSD number x, we start by converting it to the BSD
number y which has no two consecutive 1 digits. This can be



1472

TABLE ] )
RECODING TO ELIMINATE STRINGS OF 1's
X X Yi
I 1 0
1 0 1
1 1 1
0 1 1
0 0 0
0 1 0
1 1 0
1 0 1
1 1 1
TABLE I
RECODING TO ELIMINATE STRINGS OF 1’s
Yi Yia1 Yi2 Z
1 0 X 1
1 1 1 1
1 1 0 0
1 1 1 0
0 1 X 0
0 0 X 0
0 1 1 0
0 1 0 1
0 1 1 1
1 1 X 1
1 0 X 1
1 1 1 1
1 1 0 0
1 1 1 0

accomplished by the initial recoding of Table I. The resulting BSD
number y is then recoded according to Table II, yielding the BSD
number z. The recoding of Table II has been constructed in such a
way that the reduction of strings of 1’s does not recreate adjacent 1’s.
One of the two recodings (but never both) may increase the number of
digits by 1. Thus, we write Z as 2, Z¢ - * * * Zo. The two recodings can
easily be combined into the single-step recoding of Table ITl. The
following two theorems show that the recoding of Table III produces
the desired result (z; X z;_; # 1), while leaving the numerical value
of the original BSD number unchanged.

Theorem 1: If the BSD number x = X;_;Xx-2 *** Xp is recoded
according to Table III, the resulting BSD number 2 = ZxZx—; *** 20
has the property that z; X z;_; # 1forl < j < k.

Proof: Suppose that z;_; = 1. We show that z; cannot be 1. Let
Sy, be the set of four-digit vectors such that if x;x;_ 1 x;_2X;_3 € Sy,
then z; = A. From Table III, we have

s, = {1100, 1101, 111X, 101X, 0100, 0101,

o11x, 1100, 1101, 111X, 101.x}
s, ={100x, 101X, 111X, 1101, 011 X,

oioi, 100X, 101.x, 111X, 1101}.

By definition, z;_; = 1 implies that x;_;x;_2x;_3x;_4 € 8. Now, if
z; = 1, we must also have x;x;_1x;_»x;_3 € S,. Therefore, S, must
contain two vectors so that the first three elements of one are identical
to the last three elements of the other. We see by inspection that this is
not the case. Thus, z; # 1. Similarly, forz;_, = 1, we can show that
z; # 1 by examining the set Sj. ®

Theorem 2: If the BSD number x = x;_1Xx;_5 -+ * Xp is recoded
according to Table III, the resulting BSD number 2 = ;24— *** 2o
has the same numerical value as x; that is,

k-1

- 3
E 2"x,«= E 2jz_,'.
=0 Jj=0

i

" IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

TABLE III
THE FINAL COMBINED RECODING
X; Xi-1 X2 X3 2
1 1 1 X 0
0 1 0
0 0 1
0 1 1
1 X 1
1 0 1 X 1
0 X 1
1 X 1
1 1 1 X 1
0 1 1
0 0 0
0 1 0
1 X 0
0 1 1 X 1
0 1 1
0 0 0
0 1 0
1 X 0
0 0 X X 0
0 1 X 0
0 1 0
0 0 1
0 1 1
1 X 1
1 1 i X 0
0 1 0
0 0 1
0 1 1
1 X 1
1 0 1 X 1
0 X 1
1 X 1
1 1 1 X 1
0 1 I
0 0 0
0 1 0
1 X 0

Proof: We prove this result by induction on X, the number of
digits in x. For k = 1, there are three possible values of x: 1, 0, and
1. The recoded versions 01, 00, and 11 have the same values as the
original numbers. Now, suppose that the numerical values of x =
X;_1Xi_2 *** Xo and its recoded version z = z;z;_;1 *** Zo are the
same. Consider ¥4 = u;x;_1X;_2 " * Xp and its recoded version w =
Wi 1 W;Zi_1 * - Zo. Note that the last / digits of x and «, and thus of Z
and w, are identical. To show that the numerical values of w and u
are the same, it is sufficient to prove that ; = 2w;,; + w; — z;. The
exhaustive enumeration of Table IV shows that the two sides are
indeed equal for all the 37 cases of Table III. o

The following logic equations specify a minimal two-level AND-OR
(NAND-NAND) hardware realization of the recoding algorithm, defined
in Table III, with the (s, v) encoding

— Uy §
Mo=X;X;_1Xi_2

m=XX]_ X% s

Ty=XVX%3_ x¥

]
ii-1 x—lxi—Z

— U S vV §
My=X; X1 Xi—2%i-3

S — U GV S
Zi=motm+ Mt myEX X, X,

=T+ M+ M+ W3+ XKL +X)X]

vS v
i i—1%i-2%;

-2

U 48 Al v VU S v v v vV vS
FXX] (X GX ]y XX X KX+ XX

v vS v
iXi-1Xi-1%i-2%i-3

2 i

A minimal two-level OR-AND (NOR-NOR) realization requires 15 gates
with 58 input lines. Thus, the above AND-OR realization with 12
gates, having a total of 52 input lines, is optimal.

Less complex designs are possible by going to a three-level or
four-level realization. For example, taking advantage of the particu-



IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

TABLE IV
EXHAUSTIVE ENUMERATION FOR THE PROOF OF THEOREM 2

U Xi-1 Wi

»
A
N
2

X2 2wy 1+ W —2;

A

1 1

i}
(=]

-}
-

R R s 00000 © OO0 RIS R S

=3

)
HOOOK HOM HOCOKF HOOOK ¥ HOOOrR HOOOR HOX HOOOM
M ord MMM Mrord Mrorid M Xeorid Xeoripd MMM X oripg
RPEHOQ OO0 COOHIN MEHHOO © COOHIR RRHOD 000 ©OO MM
QOO RRIE PR EOO PREEHOO © COCHIH COOMKF HE =R OO
MREEE HHO 00000 00000 © OO0000 CO0OO OOH HIRIEINIE

lar structure of Table II, we can decompose the circuit into two
stages. The first stage generates auxiliary signals designating the
equivalence classes of x;x;_; with respect to value patterns of z;

a,-=l ifinXf_l € {ii, 01, II}
b,'=1 iffx,-x,-_l (S {TO, 10}
c=1 iffx,-x,-_l € {il, Oi, ll}

and distinguishing between the different z; values within each
equivalence class:

fi=1
gi=1

iffx,-_2=i
iffx,'_zxi_3 € {iX, Oi}.

Referring to Table III, we note that the signals a;, b;, and c; designate
the row groups with identical value patterns for z; (e.g., @; = 1
corresponds to the value pattern 00111 in five successive rows of
Table III), while f; and g; subdivide the rows within row groups (e.g.,
fi = 1 singles out the first row in three-row groups having the value
pattern 111 for z;). The resulting four-level design, which is not
necessarily optimal, is as follows:

= VS v VyS v
@G=X;X; X[ XXX

1473

Z=bifi+cig
zj=bit+agi+cigi

This four-level AND-OR realization requires 14 gates with 33 input
lines. However, by rewriting a; and ¢; as

a=x;_ (< %))
e=x; () @ X]_))

and using an XOR gate, a simpler four-level design with 11 gates and
23 input lines is obtained. Finally, omitting the AND gates which
generate @; and ¢; (substituting the expressions for @; and ¢; in those of
z3and z?), we obtain a four-level design with nine gates and 21 input
lines.

With the (n, p) encoding, the minimal two-level AND-OR
realization of the recoding function requires 18 gates with 78 input
lines. The simpler two-level OR-AND realization is as follows:

2= (X7 + X7 WP+ X7 WEL + X))

LB AT XEXI NED X+ XD )

. (x;'_]+xf_1+)Z;'_2)(ff_l+x;'_2+x,’.'_3)
2= (X7 +XP_ )X+ X7 YR +X7_)
. (if_l+i,’.'_2)(x;'+xf+xfiI)(,\‘f,'.‘_l+xl?_2+f;' 3)

c(xr, +xf_ . +x} 2)(Xf_l+xf_z+i;‘_3).

This two-level OR-AND realization requires 18 gates with 56 input
lines. Examining the expressions for z;,, and z;_;, we note that ten
sum terms in the expressions for z7and z?can be shared with adjacent
recoder stages. Thus, the effective complexity is 13 gates with 45
input lines for each digit position.

A four-level realization with the <n, p> encoding can be
obtained in a manner similar to that of the <s, v> encoding.
However, the resulting circuit has 15 gates with 45 input lines and
thus provides no improvement over the two-level design.

IV. ADDITION OF RECODED BSD NUMBERS

Suppose that we have applied the recoding of Section III to a pair of
BSD numbers, obtaining the recoded versions x = Xx_1Xg_2 *** Xo
andy = Yi_1Vk_2 *** Yo, With the properties x; X x;_; # 1 and y;
X yj-1 # 1for 1 < j < k. We now prove that the addition of x and
y entails no carry propagation. .

Theorem 3: In adding two BSD numbers x = Xxz_1Xx_ * * * Xo and
Y = Yx_1¥k-2 * ** Yo which satisfy the properties x; X x;_; # 1 and
yi X yj-1 # lfor 1 < j < k, the ith digit s; of the sum s = S8,
- -+ 5o depends only on x;, ¥;, X;_1, and y;_;.

Proof: There are five possible values for the sum x;_; + y;_;.
We prove that the carry c; entering the ith position is uniquely
determined by x;_; + y;_; in every case. Obviously, ¢; = 0 when
Xi_1 + yi—1 = 0, since in this case the (i — 1)th position stops its
incoming carry. Also, ¢; = 1 whenx;_; + y;-; = —2and¢; = 1
when x;_; + ¥;_; = 2. We now show that ¢; = 0 for the remaining
cases of x;_; + y;_; = *1, completing the proof. The two cases are
similar. Thus, we consider only the case of x;_; + yi—; = 1.
Clearly, in this case we have ¢; # 1. To show that ¢; # 1, we note
that for ¢; to be 1, we must have ¢;_; = 1. But this is impossible,
since x;_, + yi_, = 2 violates either x;,_; X x;_3 # lory,_; X
Yi_a # land x;_5 + yi—, = 1 with ¢;_, = 1 leads to a recursive
requirement which is eventually unsatisfiable for c,. [ J

As a result of Theorem 3, we can construct the addition table for
recoded BSD numbers (Table V). The addition table contains 49
possible combinations of x;, y;, X;_;, and y;_;. The other 32
combinations are ruled out by the fact that x and y have been recoded.
These 32 combinations can be used as DON'T CARE conditions to
simplify the hardware implementation.

When an arithmetic operation is performed on recoded BSD
numbers, the result does not necessarily have the x; X x;_; # 1



1474

property. In other words, the class of RBSD numbers is not closed
under the addition algorithm which was just described. Two
approaches can be used for dealing with this problem. In one
approach, the numbers are recoded prior to entering the adder. Thus,
either two recoding circuits are required or twice as much time will
be spent for recoding. A better approach is to recode each number
initially (upon entering the system) and after it emerges from the
arithmetic unit. The two-stage operation of addition followed by
recoding lends itself perfectly to pipelining for the purpose of
increasing system throughput.

The following logic equations specify a minimal two-level OR-AND
hardware realization of the addition function with the (s, v) encoding:

[\ =ff +yf +}7;’
o =X]tyi+X_ +Yi
o=x]{+yl+X]_ +¥i_,
Oy=Xi+yi+ Xty i,
Oy =X]+PiHX]_ X T
§7=0001020304(X} + F)(xX]+ Y5+ x3_ Yx5+yi+y5_))
§7=0001020304(x{ + X} + P X+ FI+x7_,)
S HIIHY DOy X YY)
S XY HE Y DY X )
A minimal two-level AND-OR realization requires 18 gates with 78
input lines. Thus, the OR-AND realization with 17 gates, having a total
of 72 input lines, is optimal.

Less complex designs are possible by going to a three-level or
four-level realization. For example, if we decompose the circuit into
two stages, so that the first stage computes ¢; from x;_; and y;_; as

P\ =Xi_1 ® Yi,
e=xi_ i,
Ci=X]_1Yi1Piy

and the second stage generates s; as a function of x;, y;, and ¢; (six
logic variables)

pi=Xi ® ¥j
S ss oAb L w0y s
Sy=ciy XTI+ Ry
si=c] @ pi,
then nine gates (including three XOR’s) with 22 input lines will

suffice. This realization can easily be transformed into a three-level
circuit by noting that

AU — G s
E=X;_ tFitei

and substituting in the equations for s§ and s! to obtain

S — vS gV ¢V
SS=XSPURY

X HXYI_ X T e + XYk}

ii-1
CREYIT X Vi X Yy
Si=p; @ X\ Y] \Fi_y
This three-level realization uses 12 gates with 37 input lines.
With the (n, p) encoding, the minimal two-level AND-OR

realization of the addition function requires 14 gates with 60 input
lines. The simpler two-level OR-AND realization is specified by the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

following logic equations:
S1= (R0 +yPYxP + JONRT + PINRE_ +52_)

MCIR SRSV CIE S FEs (Y
SP=(R]+ 7YX} +PINEE + PENXT_ +P]_))

YR ML)

This two-level OR-AND realization requires 14 gates with 40 input
lines. Examining the expressions for s;,; and s;_;, we note that four
of the sum terms in the expressions for s7 and s? can be shared with
adjacent adder stages. Thus, the effective complexity is 12 gates with
36 input lines for each digit position. This can be reduced to ten gates
with 30 input lines if the product of the first two sum terms in each of
the above expressions is realized by a two-input XNOR gate.

It is possible to realize a simpler adder in three levels by utilizing
‘‘transfer genrate’’ signals g7 | = x7_,y!  and g7 | = x?_ y?_ |
Then, with the above-mentioned XNOR modification, the logic
equations become

sT=GP @ yPYERI+PIEL +F0 NP +yI+er)
$7=GT © YR +PONEL + I N0+ Y0422 ).

This three-level realization of the addition function requires eight
gates with 22 input lines, provided that the shared sum terms between
adjacent adder positions are taken into account.

V. ADVANTAGES OF BSD AND RBSD NUMBERS

The carry-free addition property is not unique to BSD and RBSD
representations. It is therefore necessary to compare BSD and RBSD
numbers to other redundant schemes.

BSD and RBSD numbers require the same amount of storage as the
widely used BSC representation (2 bits per digit position). Assuming
two-level realization of BSD recoding and RBSD addition functions,
the overall addition process is of equal speed in the two systems,
since two BSC numbers are added by a two-stage carry-save adder
requiring four logic levels. It is natural to ask whether BSD and
RBSD numbers offer any advantage over the BSC system. The
answer is positive for the following reasons:

1) ease of multiplication, division, and other arithmetic operations

2) ease of zero detection

3) suitability for use with arithmetic error codes.

Each of these points will be explained briefly.

The stored-carry representation was devised in connection with the
design of fast multioperand adders [16]. Even though other arithmetic
operations such as multiplication and division can be performed on
stored-carry numbers, the required hardware is much more complex
than those for binary, BSD, or RBSD numbers. In fact, RBSD
numbers are already in the proper form for high-speed multiplication
in radix 4 [22], [1], while multiplying two stored-carry numbers is
much more complex unless the lower speed radix-2 implementation
is used. These claims are substantiated by the digit sets encountered
in radix-4 multiplication:

Binary: {0, 1, 2, 3}
BSD: {3,2,1,0, 1, 2, 3}
RBSD: {3, 1, 0, 1, 2}
BSC: {0, 1,2, 3, 4, 5, 6.

Negation of a number (change of sign) can be performed in parallel
for BSD and RBSD numbers, while it is nontrivial for any redundant
GSD representation with o # 3. Similar observations apply to
division and other arithmetic operations such as square rooting.
Zero has a unique BSD and RBSD representation and can thus be
easily detected when needed for proper sequencing of arithmetic
algorithms. Zero detection is also possible with the stored-carry



IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

TABLE V
ADDITION TABLE FOR RECODED BSD NUMBERS
Xi Yi Xj-1 i Si
i 1 0 0 0
0 1 0
1 0 0
1 1 1
1 0 0 X 1
1 i i
1 0 1
1 1 0
1 1 0 1 0
0 0 0
1 1 0
1 0 0
0 i X 0 1
1 1 1
0 1 1
1 1 0
0 0 1 i 1
X 0 0
1 1 0
0 X 0
1 1 0
1 1 1
V] 1 1 1 0
X 0 1
0 1 1
1 I 1
1 1 1 0 0
1 1 0
0 0 0
0 1 0
1 0 1 1 0
i 0 1
1 1 1
0 X 1
1 1 1 1 1
1 0 0
0 1 0
0 0 0

representation but requires more hardware, expecially for 2’s-
complement numbers (check that every 0 or 2 is followed by a 0 and
that every 1 is followed by a 1 or a 2).

Finally, the BSD system’s suitability for use with arithmetic error
codes is a direct result of the compatibility of BSD representation
with the binary system. In particular, effectiveness studies performed
for arithmetic error codes in connection with the binary system [5],
[17] carry over with little change to the BSD system. As an example
of possible difficulties with error coding in the stored-carry system,
consider unidirectional multiple faults affecting a single-digit posi-
tion. With the (n, p) encoding of BSD numbers, such a fault may
result in the error magnitude +2/ which is the same as the set of
possible error magnitudes for binary numbers. With stored-carry
representation, the set of possible error magnitudes for digit position j
is {—2/*1, —2/, 2/, 2/*1} which is different from the assumption
used in existing effectiveness studies and leads to a larger number of
undetectable error combinations.

Higher radix SD numbers generally consume less storage space
due to the fact that they need fewer extra bits to accommodate the digit
signs. In the following discussion, we consider only radices of the
form r = 22, since such radices allow more efficient implementation
of arithmetic functions. In the extreme case of @ = k, we have the
conventional representation of k-bit numbers with a single sign bit.

Let us first consider the case of r = 4. The required digit set is {3,
2,1, 0,1, 2, 3} in OSD representation which can be represented
using a 3-bit encoding for each digit. The recoding of Section III can
be applied to the binary digit representations in radix-4 SD numbers
to reduce the digit set to {2, 1, 0, 1, 2}. This can be done by simply
attaching the common sign to both bits and recoding as usual. Such an
unconventional radix-4 SD representation is superior to both the
conventional radix-4 SD and BSD representations in that it results in
simple multiplication while consuming less space than BSD.

1475

TABLE VI
THE COMPLEXITY OF VARIOUS HARDWARE REALIZATIONS*
Encoding BSD Recoding RBSD Addition Addition + Recoding
L G 1 L G I L G F 1
<> 2 12 s2 2 17 MR 4 29 12 124
3 12 37 5 24 9 8
4 9 2 6 21 9 4
4 9 2 2 11 12 6 26 12 9B
3 12 37 7 21 7 58
1 9 n g8 18 3 4
a,p> 2 13 45 2 10 30 4 23 8 75
3 8 22 s 21 8 67
* L=Levels, G=Gates, I=Inputlines, F =Maximum fan-in

Conversion from such a radix-4 representation to BSD representation
is trivial.

For r = 8, the recoding (when applied as discussed for r = 4)
converts the SD number to minimally redundant form, since the
largest resulting digits are +5 which correspond to RBSD patterns
101 and 101. However, this type of recoding does not simplify the
multiplication process considerably for r = 8 and all higher radices.
It is interesting to note that even though addition with limited carry
propagation is possible with the digit set {r/2, ---, 1,0, 1, -+, r/
2}, such a choice offers neither better storage efficiency nor easier
multiplication compared to OSD representation for r = 2¢ whena >

VI. CONCLUSIONS

We have presented a recoding for BSD numbers which not only
simplifies the addition process by eliminating carries altogether, but
also speeds up the multiplication process at no extra cost in terms of
circuit complexity (area used in VLSI implementation). Even though
this technique can be applied to intermediate computation results in
order to speed up conventional binary computers, its main application
area is in the design of special-purpse arithmetic ‘‘engines’ [10] which
deal with long sequences of computations and/or long operands.
Since conventional binary numbers are easily converted to RBSD
numbers, and since reconversion can be accomplished by a single
binary subtraction, compatibility between the two (conventional and
RBSD) computational systems can easily be achieved.

Several hardware realizations were considered for the (s, v) and
(n, p) encodings of BSD numbers. Table VI summarizes the
complexity results for recoding and addition, as well as the overall
complexity for addition followed by recoding. An immediate
conclusion is that the (n, p) encoding is superior to the (s, v)
encoding form a complexity point of view. For the sake of
comparison, one might note that the addition of two BSC numbers by
two stages of full adders (four logic levels) requires 18 gates with 50
input lines (maximum fan-in of 4) for each digit position. This
represents a lower complexity than the four-level realizations in
Table VI. However, despite this higher overall complexity for
addition, BSD and RBSD representations are still useful in view of
the advantages discussed in the preceding section.

REFERENCES

[1] S.F. Anderson et al., ‘“The IBM System/360 Model 91: Floating-point
execution unit,”” IBM J. Res. Develop., pp. 34-53, Jan. 1967.

[21 A. Avizienis, ‘‘Signed-digit number representation for fast parallel
arithmetic,”” IRE Trans. Comput., vol. EC-10, pp. 389400, 1961.

, ““On a flexible implementation of digital computer arithmetic,”
in Inform. Processing ’62. Amsterdam: North-Holland, 1963, pp.
664-670.

[4] ——, ‘“Binary-compatible signed-digit arithmetic,”’ in AFIPS Conf.
Proc., 1964 Fall Joint Comput. Conf., pp. 663-672.

[5] , ‘‘Arithmetic error codes: Cost and effectiveness studies for
applications in digital system design,”” IEEE Trans. Comput., vol. C-
20, pp. 1322-1331, Nov. 1971.

[6] A. D. Booth, ‘‘A signed binary multiplication technique,”’ Quarterly
J. Mech. Appl. Math., vol. 4, part 2, pp. 236-240, 1951.

31




1476

7
(8]

T. C. Chen, ‘‘Maximal redundancy signed-digit systems,”” in Proc.
Symp. Comput. Arithmetic, Urbana, IL, June 1985, pp. 296-300.
C. Y. Chow and J. E. Robertson, ‘‘Logical design of a redundant
binary adder,’’ in Proc. Symp. Comput. Arithmetic, 1978, pp. 109~
115.

L. J. Guibas and F. M. Liang, ‘‘Systolic stacks, queues, and
counters,”’ in Proc. Conf. Advanced Res. VLSI, MIT, 1982, pp.
155-164.

M. J. Irwin and R. M. Owens, ‘Digit-pipelined arithmetic as
illustrated by the paste-up system: A tutorial,”” Computer, vol. 20, pp.
61-73, Apr. 1987.

L. B. Jackson, Digital Filters and Signal Processing. Boston, MA:
Kluwer, 1986.

R. W. Hockney and C. R. Jesshope, Parallel Computers. Bristol,
England: Hilger, 1981.

S-Y. Kung, R. E. Owen, and J. G. Nash, Eds., VLSI Signal
Processing II. New York: IEEE Press, 1986.

O. L. MacSorley, ‘‘High-speed arithmetic in binary computers,”’
Proc. IRE, vol. 49, pp. 67-91, Jan. 1961.

N. Metropolis and R. L. Ashenhurst, ‘‘Significant digit computer
arithmetic,”” IRE Trans. Electron. Comput., vol. EC-7, pp. 265-
267, 1958.

G. Metze and J. E. Robertson, ‘‘Elimination of carry propagation in
digital computers,”” in Inform. Processing ’59, Proc. UNESCO
Conf., June 1959, 1960, pp. 389-396.

B. Parhami and A. Avizienis, ‘‘Detection of storage errors in mass
memories using low-cost arithmetic error codes,”” IEEE Trans.
Comput., vol. C-27, pp. 302-308, Apr. 1978.

B. Parhami, ‘‘Systolic up/down counters with zero and sign detection,’’
in Proc. Symp. Comput. Arithmetic, Como, Italy, May 1987, pp.
174-178.

——, ““‘A general theory of carry-free and limited-carry computer
arithmetic,”” in Proc. Canadian Conf. VLSI (CCVLSI-87), Winni-
peg, Canada, Oct. 1987, pp. 167-172.

J. E. Robertson, ‘“A new class of digital division methods,”” IEEE
Trans. Electron. Comput., vol. C-7, pp. 218-222, Sept. 1958.

K. D. Tocher, ‘‘Techniques for multiplication and division for
automatic binary computers,”’ Quarterly J. Mech. Appl. Math., vol.
11, part 3, pp. 364-384, 1958.

C. S. Wallace, ‘A suggestion for a fast multiplier,”’ IEEE Trans.
Electron. Comput., vol. EC-14, pp. 14-17, Feb. 1964.

V. Zakharov, ‘‘Parallelism and array processing,”” IEEE Trans.
Comput., vol. C-33, pp. 45-78, Jan. 1984.

9
[10]

(1]
[12]
[13]
[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21)

22]
(23]

A Distributed Algorithm for Fault Diagnosis in Systems with
Soft Failures

CHE-LIANG YANG AND GERALD M. MASSON

Abstract—The problem of diagnosis of soft failures at the system level
in large and fully distributed networks of processors (or units) is
considered. A system model in which each of the network’s unmits is
assumed to possess the ability to test (or evaluate) certain other units for
the presence of failures is employed. Using this model and assuming that
the total number of faulty units does not exceed a given bound, a
distributed algorithm is presented which allows all the fault-free units to
independently converge to correct and consistent diagnoses of the system
status. This algorithm is also shown to be applicable to bounded fault
situations where both units and communication links can be faulty.

Manuscript received July 9, 1986, revised May 29, 1987 and July 31, 1987.
This work was supported by the National Science Foundation under Grant
ECS-8412245.

C.-L. Yang is with GTE Laboratories, Inc., Waltham, MA 02254.

G. M. Masson is with the Department of Computer Science, The Johns
Hopkins University, Baltimore, MD 21218.

_IEEE Log Number 8718950.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 11, NOVEMBER 1988

Index Terms—Byzantine faults, distributed fault diagnosis, hard
faults, PMC models, soft faults, syndrome, test assignment.

1. INTRODUCTION

The problem of diagnosing soft failures, at the system level, in
large and truly distributed networks of processors (units) will be
considered. For the purpose of fault diagnosis, it is assumed that no
central facility is involved, and units in the system can exchange
information with one another only through normal communication
links of the network. The well-known PMC model [1], in which the
network units are assumed to possess the ability to test (or evaluate)
certain other units for the presence of failures, will be used as the
framework of our approach. Using this model and assuming that the
total number of faulty units does not exceed a given bound, say ¢, a
distributed algorithm will be considered for fault diagnosis such that

1) each fault-free unit in the system is able to independently
achieve correct (but, perhaps, incomplete) diagnosis of the condition
(faulty or fault-free) of all the units,

2) the diagnoses performed by all the fault-free units will converge
to a consistent evaluation of the system as testing proceeds,

3) when the system is inflicted with only hard failures, the
diagnosis performed by each fault-free unit will be correct and
complete.

Using a soft-fail model (that is, a model which assumes that it is
possible for faulty units to pass tests of fault-free units), as opposed to
the hard-fail model used in the earlier research efforts in this area [4]-
[7], has the following advantages and therefore makes system-level
fault diagnosis theory more practical for fault-tolerant distributed
network design.

1) A soft-fail model can account for the behaviors of intermittent
and transient faults.

2) A soft-fail model can account for the situation where units can
become faulty during testing as long as the number of faulty units
accumulated does not exceed the upper bound #.

3) A soft-fail model includes the hard-fail model as a special case.

However, regarding faulty unit identification, test outcomes with a
soft-fail model in general give less information than with a hard-fail
model, and the consequence of this is that while the correctness of
diagnosis is desired, incompleteness sometimes is inevitable. We
choose correct diagnosis (that is, a diagnosis in which no fault-free
unit will be diagnosed as faulty but, perhaps, a faulty unit can remain
unidentified due to insufficient information) because, otherwise, a
fault-free unit can conclude that some other fault-free units are faulty,
and consequently refuse to interact with them. This could result in a
situation where the majority of units with which a fault-free unit
interacts being faulty. This clearly would lead to the collapse of the
system.

II. PRELIMINARIES
A. System Diagnosis

A system S is composed of 7 units, denoted by the set U = {u,,
Uy, ***, U, }. Bach unit 4; € U is assigned a particular subset of the
remaining units in S to test. In the following, it will be assumed that
no unit tests itself. The complete collection of tests in S is called the
test assignment [1] and is represented by a directed graph G(U, E),
where each unit #; € U is represented by a vertex and each edge (u;,
;) is in E if and only if u; tests ;. With each unit »; € U, we
associate the set

P-Yu)={u; : (4, w;) € E}.
For a set of units X € U, we define

r-i(x)=J r-'m-x.

u€X

0018-9340/88/1100-1476$01.00 © 1988 IEEE



