Int. J. Elect. Enging Educ., Vol. 25, pp. 327-334. Manchester U.P., 1988. Printed in Great Britain

URISC: THE ULTIMATE REDUCED INSTRUCTION SET COMPUTER

FARHAD MAVADDAT* and BEHROOZ PARHAMIt
* Department of Computer Science, University of Waterloo, Canada
+School of Computer Science, Carleton University, Ottawa, Canada

1 INTRODUCTION

The usual practice in introducing students to the concepts of hardwired and
microprogrammed control is to consider the sequence of steps needed for
executing some simple instructions and to specify a partial design for the
sequencing unit in terms of the needed logic circuits in AND-OR form or the
bit patterns in horizontal microprogramming format. While most students are
capable of extending the ideas to more complex instructions, they are usually
bothered by the fact that many loose ends still remain and that they may not be
able to carry out a complete design in practice. This is aggravated by the
exceedingly complex instruction sets of most modern computer systems (e.g.
VAX-11) with which the students become familiar.

The idea of using a toy computer with a very simple instruction set as an
educational tool is not new. Many computer organization texts develop such
designs from scratch [FOST85], [GORS86], [TANE84] or attempt to present
a simplified model of some existing machine [WAKE81]. Development of the
concept of reduced instruction set computers (RISCs) [BELL86], [PATTS82],
[PATTS5], [RADI83], [STAL86], [WALLS5] as an alternative to complex
instruction set computers (CISCs) [COLWS85] has been helpful for educators
who now have at their disposal actual implemented systems which are not too
complex to be explained to novices. Despite all these, the instructor of an
introductory computer organization course may find it difficult to present the
detailed design of a complete computer and still cover all the basic concepts of
the field within the time limitation of a single quarter or semester.

We believe that the URISC concept provides educators with a powerful tool
for teaching computer organization concepts in the framework of a complete
design in such a way that the resulting design can even be implemented in a
microprocessor or logic design laboratory if desired. The students derive a
great deal of satisfaction from the fact that they are able to design an actual
working system from scratch; not from microprocessor chips but from stan-
dard low-level components such as registers, counters, adders, and logic gates.
In addition, the URISC concept may be applicable to the practical design of
VLSI systems in cases where the technology being utilized does not support the
level of integration required by single-chip CISC designs [MCNES7].

In the remainder of this paper, first the specifications of URISC are presen-

327

ted along with typical ‘coding’ assignments to convince the students that
URISC is in fact a universal machine (students with a background in automata
theory may need less convincing). Then, in Section 3, a complete micro-
programmed implementation is described. This is followed by a refreshingly
simple hardwired design in Section 4. Finally, Section 5 contains our conclu-
sions based on two years of actual use of the URISC concept in a classroom
environment.

2 URISC SPECIFICATIONS
Reduced instruction set computers (RISCs) are machines with a small number
of simple, fixed-length, fixed-format instructions. The fact that such instructions
are often executable in a single processor cycle (thus resulting in high perfor-
mance in terms of instruction execution speed) has prompted some computer
designers to advance RISCs as the most cost-effective alternative for high-speed
computation. Here, we are not so much concerned with the speed of instruction
execution. Rather, we are striving for simplicity in machine specification and
design.

Consider a machine with a single 3-address instruction as the ultimate in
RISC design (URISC). The format of the single URISC instruction is as
follows:

1st operand’s address 2nd operand’s address Jump target address

To execute a URISC instruction, the CPU subtracts the 1st operand from the
2nd, returning the result to the 2nd operand’s location. It then jumps to the
specified ‘jump target address’ if the subtraction result is negative; otherwise it
proceeds with the execution of the next instruction in sequence. A jump to
memory location 0 will stop the machine. Obviously, with a single instruction,
there is no need for an opcode field in the instruction.

In the following discussion, we will assume the existence of an assembly-level
notation for this machine in the form of

(L):{A>. <B), <P}

where (L) and (P are the instruction label and jump target label, respec-
tively, and (A) and (B} are mnemonic references to memory locations holding
the 1st and 2nd operands, respectively. In addition we assume the availability
of an assembly-type pseudoinstruction in the form of

(LY:WORD (C)

to initialize the location named <L) with the constant value {C>. By conven-
tion, all programs are loaded starting at memory location 0 and are executed
starting at memory location 1. In assembly language, every program has

STOP:WORD 0

as its first instruction for proper program termination. A sample program
fragment follows:

STOP : WORDO

START : DEST, DEST, ADD
ADD : SRC, TEMP, NEXT
NEXT : TEMP, DEST, CONT
CONT : ...

TEMP : WORD 0

The above program fragment ‘moves’ the contents of the memory location SRC
to the memory location DEST.

That the following effects are also easily achievable by the single URISC
instruction should be sufficient to convince most people that URISC is indeed
a universal machine.

(a) Adding the contents of M1 and M2, storing the sum in M3;

ie. M3 «(M1) +(M2).
(b) Exchanging the contents of M2 and M1;i.e. (M1) «——(M2).
(c) Jumping to L1 if the contents of M1 is not less than the contents of M2.
(d) Jumping to L if the contents of M1 and M2 are equal.
Item (a) above shows that addition can be programmed using the machine’s
subtraction capability. Items (c) and (d) imply that other numerical com-
parisons (less than or equal to, greater than, etc.) can be easily programmed. As
an interesting programming exercise, the students may be asked to write a
bubble sort routine for URISC.

3 MICROPROGRAMMED URISC

Consider an implementation of URISC which employs a 64K x 16 (64K words
by 16 bits) memory. Therefore, all instructions are three words long, with each
operand or destination address occupying a full 16-bit word. The micro-
architecture of Fig. 1 is used where all registers and buses are 16 bits wide and a
16-bit adder is permanently wired to form the binary sum of its two 16-bit
inputs, with or without an input carry depending on the presence or absence of
the C,;, micro-order. One input of the adder is permanently connected to the
left bus. The other input can receive either the logical complement of the
contents of R (COMP micro-order) or the value 0 (no micro-order specified).
The adder output is permanently connected to the right bus. If the Z,, or N,
micro-order is specified, the ‘condition’ flip-flop Z or N will be set whenever the
addition result is zero or negative, respectively.

In addition to the control signals shown in Fig. 1, there are two conditional
jump micro-orders: ZEND (zero end) resets the microprogram counter to zero
if the Z condition flip-flop is set. NNEND (non-negative end) resets the
microprogram counter if N is not set. Both ZEND and NNEND take effect
upon the completion of other activities within the same microinstruction. For
example, the following microinstruction causes all subsequent microinstruc-

MDR -

MAR,,
MAR %

==— READ

MEMORY
— WRITE

FIG.1 Organization of a microprogrammed URISC.

tions to be ignored and control transferred to the first microinstruction if the
sum of the complement of R and the contents of MDR is non-negative:

COMP, MDR,,, , N;,, NNEND

All registers are made of master-slave flip-flops; therefore, they may output and
input data within the same microinstruction. The memory is assumed to be
sufficiently fast, so that a memory function initiated in one microinstruction is
completed before the execution of the next microinstruction.

Here is the complete microprogram required for this URISC to continuously
fetch and execute instructions, assuming that PC initially points to the first
word of an instruction and that the microprogram counter counts modulo 9 (it
is automatically reset after it reaches 8). This last assumption can easily be
relaxed.

0. PC,u,Zin, MAR,,, READ , ZEND
1. MDR,,,, MAR,,, READ

2. MDRanREn

3. PC,,,C, . PC, , MAR,, , READ

331

. MDR,,,, MAR,, , READ

MDR,,,, COMP,C,,,N,, . MDR,,, WRITE
PC,.,Ci,PC,, MAR,, , READ

PC,,,C,, , PC,, , NNEND

in>

MDR:M s PCfn

o N L e

4 HARDWIRED URISC

The set of Boolean equations specifying each control signal in a hardwired
implementation of URISC (as specified in Section 3) can be written directly
from the preceding microprogram. Assuming that a modulo-9 sequence
counter produces the timing signals ¢, through ¢4 corresponding to the 9

CLOCK —>{
_ | FOUR-BIT COUNTER
o c3 céa dlct €
[[i
3-TO-8
z DECODER
b | |
98 |$7 |96 |95 94 |93]d2 81]¢0
NNEND
N
MDR,.,
do + ¢ [_
PCo
65 + ¢ [
CM
: Cn
#3+ dg (
PG,
MAR,,
READ
COMP
g)
MDR,,
WRITE
R
7

FIG.2 Hardwired controller design for URISC.

microinstructions (execution steps), we have:

PC;, =¢3+ ¢+ P71+ ds MDR;, =¢;

PCoi =¢o+d3+ ¢+ ¢, MDR,,, =¢,+¢,+ ¢+ ds+ s
Rin =@, MAR;, =¢o+ ¢+ @3+ ds+ dg
COMP =¢5 READ =¢0+¢1+¢3+¢4+¢’6
Cin =¢3+ds+ds+ o, WRITE = ¢4

Z, = ¢y ZEND =¢,Z

N =5 NNEND =¢, N

Fig. 2 shows a complete design for URISC’s hardwired controller. A four-bit
hex or decade counter and a 3-to-8 decoder are used to provide the timing
signals ¢, through ¢g.

The above equations are also useful in the design of an ‘optimized’ micro-
programmed version since they help the students to realize the following equiv-
alences among the micro-orders:

COMP = N,;, = MDR;, = WRITE

MAR,;, = READ

MDR,, = PC,,
Thus, only 9 bits are required in each microinstruction rather than 14
(as implied by the 12 control signals shown in Fig. 1 plus the two micro-orders
ZEND and NNEND). The length of microinstructions is further reduced to
8 bits by noting that the ZEND micro-order can be made redundant if the
output of the Z flip-flop is connected directly to the ‘clear’ input of the
microinstruction counter, sinze Z can be 1 only during ¢,. This property is
utilized in the design depicted in Fig. 2, which in addition uses only NOT
and two-input OR gates to facilitate the implementation.

5 CONCLUSIONS

We have described URISC as a powerful tool for teaching fundamental
concepts of control unit design and microprogramming. The simple version of
URISC discussed in Sections 3 and 4 can be extended in several different ways
in order to introduce more advanced concepts. For example, the ‘ultrafast
memory’ assumption can be relaxed by introducing the MFC (memory
function complete) signal and the WMFC (wait for MFC) micro-order which
will be appended to a microinstruction before each memory-referencing
microinstruction. As another example, the ZEND micro-order can be replaced
by the ZHALT micro-order which causes microinstruction fetch and execution
to stop completely when PC contains zero and to restart when a ‘RUN’ button
on the machine’s control console is pressed. Elementary 1/0 facilities can be
added by the provision of switches and lights on the control console and the
addition of appropriate control circuits or micro-routines.

Several versions of URISC have been used by the authors in computer
systems courses at the University of Waterloo. At one instance, micropro-
gramming of an earlier version of URISC was given as a final exam question
constituting 10% of total marks in a 3-hour session. Most students did well in

333

coming up with a correct and efficient microprogram, considering the fact that
they were facing the URISC concept for the first time. The average mark for
the 102 students was about 70% (75% if blank answers were ignored). A
common mistake was to treat the first and second parts of an instruction as
operands rather than addresses. In another case, the design of URISC was
given as an assignment problem for non-computer-science majors. Again, the
performance of the 90 students who handed in the assignment was quite
encouraging. In all cases, the students were amused by the idea of URISC and
found it an interesting and useful exercise.

Aside from the obvious educational value for computer organization courses,
the concept of URISC is interesting for at least two other reasons. First, it
serves to show that very simple arithmetic and conditional jump capabilities
are sufficient for the universality of a computing device. Even though such an
observation is readily made in automata theory courses, it becomes much
easier to understand when derived from an actual computer system with a
familiar programming model. Second, VLSI implementation of a hardwired
URISC requires a very small area and can be made quite fast. It is conceivable
that a large collection of such simple processors can be gainfully employed in
certain large computing problems which lend themselves to cooperative
solution. For this purpose, a simple communication mechanism must be added
to the minimal URISC design presented in this paper.

ACKNOWLEDGEMENT

The research reported here was carried out while B. Parhami was with the
Department of Computer Science, University of Waterloo, and was supported
in part by the Natural Sciences and Engineering Research Council of Canada
under grant A5515,

REFERENCES

[BELLB6] Bell, C. G., ‘RISC: Back to the Future’, Datamation, 32, No. 11, pp. 96-108 (1 June
1986)

[COLWR5] Colwell, R. P. et al., ‘Computers, Complexity, and Controversy’, Computer, 18, No. 9,
pp. 8-19 (Sep. 1985)

[FOST85] Foster, C. C. and Iberall, T., Computer Architecture, Van Nostrand Reinhold, 3rd Ed.
(1985)

[GORS86] Gorsline, G. W., Computer Organization: Hardware/Software, Prentice-Hall, 2nd Ed.
(1986)

[MCNES87] McNeley, K. I, ‘Emulating a Complex Instruction Set Computer with a Reduced
Instruction Set Computer’, [EEE Micro, 7, No. 1, pp. 60-72 (Feb. 1987)

[PATTS2] Patterson, D. A. and Sequin, C. H., ‘A VLSI RISC’, Computer, 15, No. 9, pp. 8-18,
(Sep. 1982)

[PATT85] Patterson, D. A, ‘Reduced Instruction Set Computers’, Communications of the ACM,
28, No. 1, pp. 8-21 (Jan. 1985)

[RADIB3] Radin, G, ‘The 801 Minicomputer’, IBM Journal of Research and Development, 27, No.
3, pp. 237-246 (May 1983)

[STALS86] Stallings, W. (Ed.), Reduced Instruction Set Computers, IEEE Computer Society Press,
(1986). The annotated bibliography from this volume is reprinted in Computer
Architecture News, ACM SIGARCH Publication, 14, No. 5, pp. 13-19 (Dec. 1986)

334

[TANER4] Tanenbaum, A.S., Structured Computer Organization, Prentice-Hall, 2nd Ed. (1984)

[WAKES1] Wakerly, J. ., Microcomputer Architecture and Programming, Wiley (1981)

[WALLS85] Wallich, P, ‘“Toward simpler, faster computers’, IEEE Spectrum, 22, No. 8, pp. 38-45
(Aug. 1985)

ABSTRACTS-ENGLISH, FRENCH, GERMAN, SPANISH

URISC: The Ultimate Reduced Instruction Set Computer

URISC is a single-instruction universal computer which appears to be ideal for introducing basic
computer organization concepts to novice students. In this paper, the specifications of URISC are
given and complete implementations of its control unit are presented. The authors’ experiences
with the use of URISC in the classroom environment are discussed briefly.

URISC: ensemble réduit d’instructions pour processeur

URISC (Ultimate Reduced Instruction Set Computer) est un processeur universel d une seule
instruction, qui apparait idéal pour introduire les concepts de base de I'architecture des ordinateurs
4 des eétudiants débutants. Dans cet article, les spécifications de URISC et la réalisation compléte
de son unité de contréle sont présentées. Lexpérience des auteurs dans I'utilisation de URISC dans
P'enseignement est briévement discutée.

URISC: Der endreduzierte Instruktionssatzcomputer

URISC ist ein Eininstruktiohs-Universalcomputer, der ideal geeignet scheint, um Neulingsstuden-
ten in die Konzeptionen grundlegender Computerorganisation einzufiihren. In dieser Arbeit wird
die technische Beschreibung des URISC gegeben und vollstindige Ausfiihrungen seiner Regelein-
heit werden vorgelegt. Die Erfahrungen des Verfassers bei der Benutzung des URISC im Lehrsahl-
milieu werden kurz besprochen.

URISC: El conjunto computador de instrucciéon més reducido

URISC oc un computador universal de ensefianza que parece ser ideal para introducir en los
conceptos basicos de organizacion de un computador a los estudiantes noveles. En este articulo se
dan las especificaciones del URISC y se presenta completamente la implantacion de sus unidades
de control. Las experiencias de los autores en el uso de URISC en el entorno de una clase se
discuten brevemente.

