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ABSTRACT

A unified framework and terminology for the study of computer
system dependability is presented. Impairments to dependability
are viewed from six system abstraction levels corresponding to
defects, faults, errors, malfunctions, degradations, and failures.
It is argued that all of these levels are useful, in the sense that
proven dependability assurance techniques can be applied at each
level, and that it is beneficial to have distinct, precisely defined
terminology for describing impairments to and procurement
strategies for computer system dependability at each level.

1. BACKGROUND

The field of dependable computing is an outgrowth of
“fault-toferant cornputing,” a term which was introduced in the
mid 1960s [PIER65], [AVIZ67], following more than a decade
of concern with reliability issues [EJCC53], [MOORS56],
[VONNS6). Tolerance of faults is actually an age-old design
concept reflected for example in engineers’ "safety factor” and
accountants' replicated manual or mechanical calculations,
Forster [FORS28] fancies a civilization conirolled by
self-repairing machines which eventually self-destructs because
the possibility of faults in the "Mending Apparatus” itself was
not taken into account by the system's designers. Following the
initial emphasis on fault tolerance through fault masking and
self-repair, it was r¢alized that "tolerance of faults” is but one
way of achieving high reliability. This broadening of scope was
reflected in the term "reliable computing,” a variant of which had
been used as far back as 1963 for complementing reliable
communication [WINO63].

To avoid confusion between "reliability” as a precisely defined
statistical measure and "reliability"” as a qualitative attribute of
systerns and computations, use of "dependability” was proposed
to convey the second meaning {LAPRS2), resulting in the name
"dependable computing." Thus, dependable computing deals
with impairments to dependability (defects, faults, errors,
malfunctions, degradations, failures, and crashes), means for
coping with them (fault avoidance, fault tolerance, design
validation, failure confinement, etc.), and measures of success
in designing dependable computer systems (reliability,
availability, performability, safety, etc.).

As computers are used for more demanding and critical
applications by an increasing number of minimally trained users,
the dependability of computation results becomes even more
important. Highly dependable systems have been in widespread
use for more than a quarter of a century [DOWN&64] and have
been marketed commercially for over a decade [KATZ77]. Itis

1017

23ACSSC-12/89/1017 $1.00 © 1989 MAPLE PRESS

clear that with the emphasis on highly complex, intelligent
computers for the future, computer system dependability should
become an integral part of the design process for future
generation systems. A general framework within which research
studies in the area of computer system dependability can be
conducted, presented, discussed, and classified will not only
facilitate this integration but also lead to a better understanding of
the concepts and techniques of the field.

2. AN EVOLVING DEFINITION

A prerequisite for progress and effective communication in any
area of study is a set of precise, widely accepted definitions for
the field and its fundamental concepts. Many attempts have been
made at defining (computer) system dependability, In one of the
carly proposals, dependability is defined briefly as [HOSF60!:

"... the probability that a system will be able 1o operate when needed.”

This simplistic definition, which subsumes both of the
well-known notions of reliability and availability, is only valid
for systems with a single catastrophic failure mode i.e. systems
that are either completely operational or totally incapacitated.
The problem lies in the phrase "be able to operate." What we are
actually interested in is "task accomplishment" rather than
"system operation.” The following definition, which is due to
Laprie [LAPR82], is more suitable in this respect:

“... dependability fis defined] as the ability of a system to accomplish the
tasks {or equivalently, to provide the servicefs]) which are expected from it.”

This definition does have its own weaknesses. For one thing,
the commeon notion of "specified behavior” has been replaced by
"expected behavior” so that possible specification slips are
accomodated in addition to the usual design and implementation
inadequacies. However, if our expectations are realistic and
precise, they might be considered as simply another form of
systemn specification (possibly a higher-level one). However, if
we expect too much from a system, then this definition is an
invitation to blame our misguided expectations on the system's
undependability {which, by the way, is common practice!).
Carter provides a much more useful definition [CARTS2]:

“... dependability may be defined as the rustworihiness and continuity of
computer system service such that veliance can justifiably be placed on [it].”

This definition has twe positive aspects: It takes the time
element into account explicitly ("continuity”) and stresses the
need for dependability validation (“justifiably”). Laprie's
version of this definition [LAPR8S] can be considered a step



backwards in that it substitutes "quality” for "rustworthiness
and continuity." The notions of "quality" and "quality
assurance” are well-known in many engineering disciplines and
their use in connection with computing (e.p., [BEIZ84},
[DUNNS2]) is a welcome trend. However, precision need not
be sacrificed for compatibility.

To present a suitable definition of dependable computing, we
need to examine the various aspects of undependability. From a
user's viewpoint, undependability shows up in the form of lare,
incomplete, inaccurate, or incorrect results/actions [PARH78).
The two notions of trustworthiness (correctness, accuracy) and
timeliness can be abstracted from the above; completeness need
not be dealt with separately since any missing result or action
can be considered to be (infinitely) late. Thus we are led to:

Proposal: Dependability of a computer system may be defined
as justifiable confidence that it will perform specified actions
or deliver specified resulis in a trustworthy and timely manner,

Our definition retains the positive elements of previous
definitions, while presenting a result-level view of the time
dimension by replacing the notion of "service continuity" by
"timeliness" of actions or results.

Dependability (or trusrworthiness, as some software researchers
prefer to use) is actually a generic term that covers several
system qualitics such as inzegrity, robustness, resilience,
maintainability, and the like. Various aspects of dependability
are quantified by measures such as reliability, availability,
performability, testability, and safety. Measures of dependability
are discussed in Section 5 of this paper.

3. AMULTI-LEVEL VIEW

Impairment to dependability are variously described as hazards,
defects, faults, errors, malfunctions, failures, and crashes.
There are ne universally agreed upon definitions for these terms,
causing different and sometimes conflicting usages within the
ficld of dependable computing. Although some research groups
and authors have tried to present precise definitions for the terms
and be consistent in their usage, progress towards accepting a
standard terminology has been quite slow. There are two major
proposals on viewing and describing such impairments.

Members of the Newcastle Reliability Project [SHRI8S], led by
Professor Brian Randell, have advocated a hierarchic view
[ANDES82]: A (computer) system is a set of components,
themselves systems, which interact according to a design
(another system). This recursion stops when we arrive at atomic
systems whose internal structures are of little or no interest at the
level of detail with which we are concerned. System failure is
defined as deviation of its behavior from that predicted
(required) by the system’s authoratative specification. Such a
behavioral deviation results from errcneous system state. An
error is a part of an erroneous state which constitutes a
difference from a valid state. The cause of the invalid state
transition which first establishes an erroneous state, is a faulr in
a system component or in the system's design. Similarly, the
component's or design's failure can be attributed to an erroneous
state within the corresponding (sub)system resulting from a
component or design fault, and so on. Therefore, at each level
of the hierarchy, "the manifestation of a fault will produce errors
in the state of the system, which could lead 10 a failure.”

While it is true that a computer system may be viewed at many
different levels of abstraction, it is also true that some of these
levels have proved more useful in practice. Avizienis [AVIZ82]
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takes four of these levels and proposes the use of distinct
terminology for impairments to dependability (“undesired
events”, in his words) at each of these levels. His proposal can
be summarized in the following cause-effect diagram:

Al clioh level Undesired Event

Physical Failure

! 1
Logical Fault

l 4
Informational Error

l ]
External Crash

In what follows, we extend and refine this model. There are
some problems with the above choices of names for undesired
events. The term "failure” has traditionally been used both at the
lowest and the highest levels of abstraction. Thus, we have
failure rate, failure mode, and failure mechanism used by
clectrical engineers and device physicists' alongside sysrem
failure, fail-soft operation, and fail-safe system coming from
computer system designers. To comply with the philosophy of
distinct naming for different levels, Avizienis retains "failure” at
the physical level and uses “crash” for the other end. However,
this latter term is unsuitable. Inaccuracies or delays, beyond
what we expect from system specifications, can hardly be
considered "crashes" in the ordinary sense of the term. Besides,
this term emphasizes system operation rather than task
accomplishment and is thus unsuitable for fail-soft systems
which, like airplanes, fail much more often than they crashf

Another problem is that there are actually three external views of
a computer system. The maintainer's external view consists of a
set of interacting subsystems that must be monitored for
detecting possible malfunctions in order to reconfigure the
systemn or to guard against hazardous consequences (such as
total system loss or crash). The operator's external view consists
of a black box capable of providing certain services and is more
abstract than the maintainer's system-level view. Finally, the
end user's external view is shaped by the system's reaction to
particular situations or requests. Thus, we are led to a six-level
view of the impairments to dependability:

A ion level Impainrent
Component Defect
U U
Logic Fauls
U i}
Information Error
4 y
System Malfunction
i ]
Service Degradation
4 ]
Result Failure

Taking into account the fact that a non-atomic component is itself
a system at a Jower level, usage of the term "failure" in failire
rate, failure mode, and failure mechanism can be explained by
noting that the component is the end product (system) from the
component designer's point of view. We can thus be consistent
by always associating the term "failure” with the highest and the
term "defect” with the lowest level of abstraction.



Figure 1 provides an analogy for accentuating the chain of
cause-effect relationships in our multi-level model. The six
congcentric water reservoirs correspond to the six levels of our
model. Pouring water from above corresponds to defects, faults,
errors, and other undesired events, depending on the layer(s)
being affected. These undesired events can be avoided by
controlling the flow of water through valves or tolerated by the
provision of drains of acceptable capacities for the reservairs. If
walter ever gets 10 the outermost reservoir, the system has failed.
This may happen, for example, as a result of a broken valve at
some layer combined with inadequate drainage at the same and
all outer layers. The heights of the walls between adjacent
reservoirs correspond to the natwral inter-level latencies in our
mulii-level model. The outside world is represented by the area
surrounding the reservoirs. Water overflowing from the
outermost reservoir into the surrounding area is analogous to a
computer failure affecting the larger corporate or societal systern,

Wall heights represent
inter-level latencies

Inlet valves reprasent
avoidance techniques

Concentric rsservoirs are
enalogues of the six model
lovels (defect is innermost)

Drain valves represent
tolerance techniques

Figure 1. A simplc analogy for cur multi-level model of
dependable computing. Flow of water represents defects, faults
errors, malfunctions, degradations, and failures.

4. USE OF THE MODEL

The field of dependable computing deals with the procurement,
forecasting, and validation of computer system dependability.
As discussed in Section 3, impairments to dependability can be
viewed from six levels. Thus, the subfields of dependable
computing ¢an be thought of as dealing with some aspects of
one or more of these levels. Specifically, we take the view that a
System can be in one of seven states: Ideal, Defective, Faulty,
Erroneous, Malfunctioning, Degraded, or Failed. Note that these
states have nothing to do with whether or not the system is
"working." A systern may be "working" even in the failed state;
the fact that it has failed simply means that it isn't delivering
what is expected of it.

Upon the completion of its design and implementation, a system
may end up in any one of the seven states, depending on the
appropriateness and thoroughness of validation efforts. Oncein
the initial state, the system moves from one state to another as a
result of deviations and remedies. Deviations are events that
take the system to a lower (less desirable) state, while remedies
are techniques or measures that enable a system to make the
transition to a higher state.” Figure 2 shows the various system
states and state transitions.

Each state in Eigure 2 can be entered initially (through the
sxdeways transition), from above as a result of a deviaiton
(undesired event), or from below as a result of a remedy.
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Associated with each transition in Figure 2 are five properties
that can be specified as transition labels or tags:

¢: Natural cause of the transition.

i:  Natural impediment 1o the transition.

f:  Techniques for facilitating the transition.
a: Techniques for gvoiding the transition.
n : Tools for modeling the transition.

Recognized subfields of dependable computing deal with one or
more of the above tags and some of the tags can be the basis of
new studies and subfields. In addition such transition tags can
be used for classifying or indexing of techniques and research
studies in the field of dependable computing. For example, a
research project or proposed redundancy technigque may be
described as dealing with a[— faulty] and {[faulty— erroncous].

Detailed discussions of the non-ideal states and their related
transitions appear in an extended survey [PARH88]. Here, we
present some general observations on the various system states.
First, we note that the observability of the system state (ease of
external recognition that the system is in a particular state)
increases as we move downward in Figure 2. For example, the
inference that a system is "ideal” can only be made through
formal proof techniques; a proposition which is currently
impossible for practical computer systems in view of their
complexity. At the other extreme, a failed systern can usuvally be
recognized with little or no effort. As examples of intermediate
states, the "faulty" state is recognizable by extensive off-line
testing, while the "malfunctioning” state is observable by on-line
monitoring with moderate effort. It is therefore common practice
to force a system into a lower state {e.g., from "defective” to
"faulty" by means of burn-in or rorture testing of components) in
order to deduce its initial state.

FAILED

Figure 2. System states and state transitions in
the multi-level model of dependable computing.

The unifying influence of this model is that it allows us to think
of all known dependability procurement techniques as being
related to initially aveiding a particular undesired state, forcing a
transition to a higher state by removing the underlying cause,
and tolerating particular undesired events by siructuring the
system so that transition to a lower state is severly impeded.
Thus, the three strategies of avoidance, removal, and tolerance
for the design of dependable systems actually correspend to
starting the system at the highest state that is practically feasible,
facilitating upward transitions corresponding to remedies, and
impeding downward transitions resulting from deviations.



Defects are avoided through component screening,
systematicatly removed by prevenrive maintenance, and tolerated
through component-level redundancy techniques. Faults are
avoided and removed through faulr testing and tolerated by
means of logic-level redundancy techniques such as
self-checking design, logic circuit duplication, and signal-level
voting. Note that the restricted use of the term "fault tolerance”
in cur model and terminology is in contrast to the traditional use
of the term to denote the entire field of dependable computing
[ANDESL], [AVIZ78], [COMPyr], [FTCSyr], [JOHNB9],
[PRADS6], [NELS87].

Continuing with the states in our model, we note that errors are
avoided through system validation, removed by error detection
and the associated recovery mechanisms, and tolerated through
the use of error-correcting cades. Malfunctions are identified by
malfunction diagnosis {(currently known as system-level fault
diagnosis) techniques and are tolerated by system-level recovery
and resource redundancy. Design diversity [AVIZ82a]
incorporated in a recovery block architecture [RAND78] orina
replication-and-voting arrangement is a malfunction tolerance
technique that extends the protection provided against random
independent malfuncrions to related or common-cause
malfunctions and also to design slips.

Degradation detection and management is essentially a software
task that is normally built into the operating system with
extensive hardware support. Degradation tolerance, on the other
hand, is both a system function and a property that can be
incorporated into applications. Finally, failures are detected by
external monitoring and are tolerated by the higher-level societal
or corperate system in much the same way as malfunctions are
tolerated by a computer system; namely by higher-level
replication or through a recovery block architecture.

Modeling studies and tools can also be related to the multi-level
model of Figure 2 in a natural way. Defect modeling deals with
the transition from ideal to defective state, while fault modeling
relates physical defects to logic faults. The transition from
malfunctioning to degraded state is the subject of performability
analysis methods. Finally, Safery analysis deals with the
terminal transition into the failed state and its conseguences.

5. DISCUSSION

The 30-year history of dependable computing can be divided
into three periods or "generations” that conveniently coincide
with the past three decades. The 1960s can be viewed as the
initiation and experimentation period. First-generation
dependable machines built by pioneers of the field in the 1960s
paved the way for significant progress in the following two
decades [AVIZ88]. The middle period, the 1970s, can be
described as the growth and diffusion period when numerous
research projects dealt with both the theoretical and practical
problems in dependable computing and many resulted in
working prototypes. The 1980s have seen widespread practicat
application of the basic theories of dependable computing. This
period can also be characterized by the many refinements and
extensions introduced as a result of both operational experience
and the emergence of challenging new problems (e.g. massively
parallel processing, distributed systems, VLSI).

One may observe that over the years, emphasis has shifted from
dependability procurement techniques at the lower levels of our
model (defects, faults, errors) to the higher levels (malfunctions,
degradations, failures). Therefore, we can expect future
dependable computers to use avoidance and removal techniques
at the lower levels plus tolerance techniques at the higher levels
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to achieve their goals. This, however, does not mean that
researchers will become disinterested in the lower levels
altogether. Much work needs to be done in the areas of defect
and fault medeling and interest will probably remain high in the
use of defect and fault tolerance techniques as methods for VLSI
yield enhancement [MOORS86].

In spite of significant progress made in dependable computing
over the past three decades, the field is still full of interesting and
challenging open problems and much work remains to be done.
Incorporation of dependability enhancement features will
become routine practice in the design of future computer systems
and the question facing the designers of such systems will
become how to use a multitude of seemingly unrelated
techniques in an optimal and coherent fashion to achieve given
dependability goals. Methodologies for guiding the designers of
hardware and software systems in their search for useful wols
and strategies in a vast database of dependability procurement
techniques are badly needed. It is hoped that the unifying
framework presented in this paper along with a flexible strategy
for dependability assurance suggested elsewhere [PARHS9],
[PARHS89a] will contribute to clear formulation of such
methodologies and their areas of applicability in future.
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