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ABSTRACT

A parallel counter is a combinational logic circuit that receives a
set of binary count signals in parallel and determines the final
count after some fixed delay. In this paper, a more general
parallel counter is presented whose count inputs have three states
(i.e. down, none, and up or, equivalently, -1, 0, and 1). Such
paratlel up/down counters find applications in arithmetic circuits
dealing with binary signed-digit numbers, in parallel search
schemes where one must combine "approve,” "disapprove” and
"abstain” responses, and in certain signal processing problems.

1. BACKGROUND

In its simplest form, a counter is a sequential circuit that stores
an integer value and can increment (and, in the case of up/down
counters, also decrement) it by 1 upon the receipt of a special
"enable” or "count” signal. Although techniques are available
for designing high-speed counters with conventional number
representations [OBERS81], the speeds that can be achieved are
limited by the requirement for carry propagation. An alternative
1s 1o take advantage of the carry-free addition property of
redundant number representations [AVIZ61], [METZ59],
[PARHR7], [PARHE7a}, [PARHE9], but even with this
method, speeds will be limited by the basic switching
characteristics of components and by the need for final
conversion of the redundant count into a conventional binary
number. Thus, to count the number of 1s among many
thousands of bits by feeding them sequentially to a high-speed
counter of either type would still imply delays well in excess of
several tens of microseconds and such a delay may be
unacceptable in certain applications. Clearly, some form of
parallelism is needed to achieve higher speeds.

A parallel counrer [SWART3], or an {n, m) counter, has been
defined as a combinational digital logic circuit having » binary
inputs and m =logz nl+ 1 binary cutputs (or alternatively,

having between 1 = 2"~ and n = 2™ — 1 binary inputs for m
binary outputs), where the outputs correspond to the base-2
representation of the sum of the n input bits; i.e., 2 number
between 0 and n. Such parallel "up" counters have been siudied
in connection with counting of multiple responders in
associative memories and processors [FOST71] and finding the
sum of a column of 1s in multi-operand adders and in high-
speed parallel array multipliers [SING73], [DADD®65],
[SVOB70], with numerous implementation alternatives
1nvestigated [CURR79], [CURRS0], [DADDS&0], [DORMS1],
[DORME2], [GAIS80], [KOBA78], [LATHS2], [MEOQAT75].
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Up/down sequential counters can count down as well as up.
This property is normally implemented by providing separate
"up-count” and "down-count” binary signals or by a pair of
"count” and "mode" signals as inputs to the counter. Such
counters can be viewed as receiving a binary-encoded three-state
count signal denoting an "increment” in the set {1, 0, 1} at
each cycle and adding this value to the current stored count. The
parallel version of such a counter adds a finite set of signals
from the set {-1, 0, 1}, although a more appropriate
generalization would require adding the sum of such a set of
"stgned binary™ signals to an accumulated count. In this paper,
we ignore this "accumulative” property and concentrate instead
on the design of parallel up/down counters as purely
combinational circuits,

Just as parallel "up” counters are useful for deterrmining the
multiplicity of responders to a parallel search-type operation in
an associative memory [FOST71] where the responses are
binary {"yes/no") in nature, parallel "up/down" counters find
applications in similar situations where three-valued or temary
("agree/disagree/no-opinion”) responses must quickly be
combined. One way to handle such ternary responses is to
decompose them into two binary responses, use two parallel up
counters (or a single such counter twice) to tally cach response
separately, and finally subtract the two output values to find the
actual count. However, speed can be gained by utilizing a
special hardware unit to obtain the count directly.

2. ENCODING SCHEMES

To implement an up/down parallel counter, two encoding issues
must be resolved:

1. Encoding of the output integer count value.

2. Encoding of the three-state input count signals.

Although three-vained logic [SMIT88] finds a natural
application here and does in fact provide a viable design
alternative, we will assume the use of bianry encodings and
standard logic in all of our implementations.

We will consider two encodings for the output count value:
standard two's complement and binary signed-digit. The first
encoding is desirable because the counter output will be usable
directly in other parts of the computations and the second
encoding offers the advantage of design simplicity (as we will
see shortly) but may necessitate a conversion from binary
signed-digit to standard two's-complement format.



As for the three-state count signals, there are 96 possible
encodings for 3 values with 2 bits. Many of these assignments
can be eliminated by ignoring permutations and negations.
Robertson’s list of 9 distinct assignments [CHOW78], with
three of the assignments modified here by complementing the
left bit in order to make 00 represent 0 in all cases, is given in
Table 1.

Table 1

The 9 distinct assignments of 2-bit code vectors
to digits in the set {~1,0, 1}.

Code Vectors

Assign. 00 01 10 11  Comments on encoding
R2 0 1 x -1 {s,%)
RS G -1 x 1 {s, v} with reverse sign
R4 0 t -1 x {n, p)
R3 6 1 0 -1 {s, v} with both 0 and -0
R1 011 0 {n, p) with 11 denoting 0
R6 0 1 11
R§' 0 -1 1 1 {p, n) with p dominating
R7 0 1 -1 -1 {n, p) with n dominating
R9' 0 -1 -1 1

Assignment numbers in the first column of Table I indicate the
numbering of Robertson's assignments in the cited reference
and primed numbers correspond to modified encodings as

explained above. The {5, v} encoding is the natural sign-and-
value encoding with s = 1 representing a negative sign and the
{n, p) or {p, n) encoding consists of "negative" and "positive”
flags, one of which is set to denote a nonzero digit (p=1
representing 1 and n=1 representing —1), These can also be
interpreted as two's-complement and one's complement two-bit
encodings.

With two's-complement output, the cases with don't-cares (i.e.
R2, R5', and R4 in Table Iy will result in simpler realizations

(thus only the {5, v} and {n, p} encodings need to be considered)
whereas with binary signed-digit output, the encodings with
double codes for one of the values must also be dealt with. In
the latter case, the flexibility gained in the generation of one of
two possible output codes may offset the loss of don't-care
conditions in the input. Despite the above observation, in this

paper we will limit cur discussion to simple (s, v} and (n, p)
encodings in all cases above.

If binary signed-digit representation is chosen for the final
count, then an obvious way to design a parallel up/down counter
is to realize a "signed full adder” cell for three signed binary
digits such that the two output signed bits represent the radix-2
sum of the three signed input bits (note that this signed full
adder is different from a binary signed-digit adder cell
[CHOW?78]). Once such a signed full adder cell is available, it
can replace the standard full adder cell in any parallel up counter
design to obtain a paralle! up/down counter. Thus, we first
consider the design of a signed full adder cell,
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3. SIGNED FULL ADDERS

A signed full adder (SFA) receives three signed binary digits as
input and produces two signed binary digits (sum and carry) as
output. In this section, we present designs for such full adders
with the (s, v} and {n, p} encodings and will compare them with
standard full adders. In both cases, subscripts 1, 2, and 3 will
identify the three input values while "double-primed” and
"primed" names designate carry and sum digits, respectively.

Five of the seven possible cutput values of a signed full adder
(i.e. -3, =2, 0, +2, +3) have unique representations with binary
signed digits, while -1 and +1 each can be represented by two
carry-sum pairs: (0,—-1) or (-1, 1) and (0, 1) or (1, -1). This
results in "coupled” don't-care states in the realization of the
carry and sum outputs and renders the logic minimization
problem more difficult.

With the {s, v) encoding, minimal two-level sum-of-products
realization of a signed full adder is as follows (the notation is
explained above):

§" = 5189854815V 3,85V 1+835 V5

»

Vi =TSV vy ¥ S gvavs + s vy
5= 515V Sa5qV | 4835 Vo +S | VU 3RSV gV 53V VY
V=V Valgt vy ap v vVt Vv,
These expressions correspond 10 the case where the sums of —1
and 1 are output as the pairs (0, 1) and (0, 1), respectively.

The other three combinations result in more complex
realizations.

With the {r, p) encoding, minimal two-level sum-of-products
realization of a signed full adder is as follows:

n" =apn, + ngng + ngmy

P" =PiPy+ PPt Py

" AyRD I ANID H APy D P YR D TR3p Py

P’ = Pupyngtpopan pap ngp Ny pon g 4pan' ny
Again, these expressions correspond to the case where the sums
of -1 and 1 are output as the pairs (0, -1} and (0, 1),
respectively,

Table 1I

Complexity of signed full adders compared to
conventional full adders.

Complexity Parameter  {sv)-SFA {n,p}-SFA  FA
I/O connections 10 10 5
No. of legic gates 21 22 9
No. of gate inputs 78 66 25




Table II shows a comparison of complexities for (s, v-encoded

and (n, p)-encoded SFAs o that of conventional full adders.
The speeds (delays) are roughly the same as two-level logic is
used in both cases with small variations on average gate fan-in.
As seen from Table II, the number of I/O connections is
doubled, while the number of logic gates and gate inputs are

multiplied by 2.33 and 3.12, respectively, for {s, v}-encoded

SFAs and by 2.44 and 2.64 for {n, p)-encoded SFAs. The {(n.p)
encoding is thus more efficient; a conclusion which is consistent
which results for other types of arithmetic circuits on binary

signed-digit numbers where the (n, p) encoding offers similar
advantages over the (s, v) encoding [PARHSS).

4. COST AND DELAY

As stated earlier, a parallel up/down counter with binary signed-
digit representation of the final count is obtained if we replace
each full-adder cell in a paraliel up counter with a signed full
adder. Therefore, all of the developed theories for parallel up
counters (including the cost and delay analyses) carry over
directly if we replace the cost and delay of a standard full adder
with the corresponding parameters of a signed full adder. The
delay of an SFA is the same as that of an FA. The cost
parameters are given in Table I,

An n-input parallel up counter requires approximately » standard
FA cells (more precisely, at least #— m and no more than n FAs)
organized into a tree-like structure of depth (delay) between

Omin(n) = Mogznl+llogon]— 1
and &, () obtained from the following recurrence
Fmax(m) = Sann/2) + 2

with 80 (3) = Gpax(2) = 1, where the unit of delay is that of

full adder; i.e. 2 logic levels. The expression for Sminln) is
derived by observing that at least [logsn] levels of full adders are
required for computing the least significant bit of the count and
Llogyn)— 1 stages are present in the final carry propagation path,

The recurrence far &,,.(n) is based on the observation that an
n-input parallel counter can be synthesized from two (Ln/2])-
input parallel counters and a (Llogy(Ln/20)J+1)-bit ripple-carry
adder. Each ripple-carry adder in the resulting tree structure is
one bit longer than its predecessors and contributes an additional
two stages of delay. In practice, the actual delay is usualty

closer to 8,4 (n) than to 8;,(n) [FOSTT6].

Rather than adapting parallel up counter designs, one can use the
limited-carry property of binary signed-digit numbers to create a
different type of design. The new design is also based on the
divide-and-conquer strategy. An n-input parallel up/down
counter is synthesized from two (Ln/2))-input counters plus a
(Llog(Lr/2]) [+1)-bit binary signed-digit adder. Then, the delay
recurrence becomes

Omax(n) = Spax/2y + 1

where the unit of delay is now the time required for a limited-
carry binary signed-digit addition. It has been shown [PARHS8]
that this addition process can be performed by a recoding stage
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requiring 2 logic levels followed by a carry-free addition stage
realized by another 2 logic levels. Thus, delays of the two
schemes are comparable.

Assuming {n, p)-encoded signals, the total complexity (recoding
plus addition) for each binary signed-digit adder stage is 23
logic gates having 75 input lines [PARHS8]. Although this is
more complex than the signed binary adder (Table II), the new
scheme can be easily pipelined to achieve twice the throughput
because the recoding stage and the subsequent carry-free
addition stage are essentially independent. This increased
throughput justifies the added complexity in some applications.

Parallel up/down counters with two's-complement output can be

designed in a similar way. If {s, v}-encoded inputs are used, the
adder tree structure of parallel up counters is applicable with
minor madifications to account for the signed values. With

{n,p)-encoded input signals, either a first level of special adders

must be used 10 convert groups of three (r, p}-encoded signed
signals into 3-bit two's-complement numbers and then
continuing as before or else a single level of OR gates must be

utilized at the input to translate each {n, p)-encoded signal to the

equivalent {5, v} ={n, r + p} pair. In either case, the cost and
delays are roughly the same.

5. CONCLUSION

We have investigated design and implementation issues for
parallel up/down counters and presented cost and delay analyses
for various design alternatives, comparing each to the respective
parameters of parallel up counters. The conclusion is that
handling of signed signals is only slightly more complicated
than that of unsigned signals in standard parallel counters. The
author is currently pursuing several ideas for generalizing the
designs to accumulative and modular paraliel counters.

In addition to the two-bit encodings of signed binary signals
considered here, it is also possible to use 1-out-of-3 encoding of
the binary count signals to provide added flexibility and/or fault

tolerance. The resulting {n, 0, p) code consists of "negative,”
“zero,” and “positive"” flags. Such a “three-rail”
implementation, which has also been found useful in the design
of high-speed multipliers using binary signed-digit numbers
[TAKARB7], offers strong error detection properties at the
expense of a larger number of interconnections.
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