A NEW PARADIGM FOR THE DESIGN OF DEPENDABLE SYSTEMS

Behrooz Parhami

Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106, USA

ABSTRACT

A new general strategy for dependability pre in digital sy that
allows highly selective use of redundancy with low overhead is described.
The proposed approach is based on attaching a dependability tag (d-tag) to
each data object and updating pertinent d-tag values as the computation
progresses. Normal operations on data objects tend to lower d-tag values
while comparisons and voting on redundant copies of the same result,
possibly obtained by different resources and/or aigorithms, work in the
opposite direction. Judicious intermixing of dependability-lowering and
dependability-raising operations (driven dynamicaily by the dependability
requirements for various results) can lead o desired dependabilities for
computation results with minimal cost. Following an exposition of basic
concepts of the proposed method with the assumption of perfect (error-free)
d-tags and operations, a program of research is outlined for dealing with
erroneous d-lags, imperfect operations, and other extensions. Some benefits
and applications of the proposed approach are discussed in conclusion.

1. INTRODUCTION

Dependability is an important attribute of modern digital systems and of the
computations performed on them. Even though the use of redundant
resources for fauit tolerance is an age-old design technique (e.g., the
engineer's "safety factor"), systematic application of redundancy to the
design of dependable digital systems did not start until the early 1960s when
it was established that the reliability requirements of telephone switching
systems and on-board spacecraft computers could not be met with
conventional designs. Today's components are significantly more reliable
than those used in carly computers and design techniques (for hardware and
software) are far more sophisticated. Yet the need for redundancy as a
dependability prox has not diminished. The main reasons
for greater reliance on redundancy techniques are increased complexity and
diversified applications in online and safety-critical systems. With the
current trends toward more demanding and critical applications of digital
systems by a growing number of minimally trained users, the dependability
of computations becomes even more important.

In the 30-year history of dependable computing and through threc
generations of highly dependable systems, numerous techniques have been
proposed for increasing the dependability of computations through the
avoidance and/or tolerance of undesired conditions such as defects, fauits,
crrors, malfunctions, and degradations that can potentially lead to result-level
failures [5]. Such proposed methods of dependability procurement fall into
two categories: (1) Structural methods and (2) Functional methods.

Structural methods employ static and dynamic hardware redundancy (among
other schemes) to make the system highly dependable, so that any process
run on it can be assumed to produce dependabie resuit, given that the process
itself is trustworthy. The resulting increase in dependability is universal and
applies to every process or algorithm, regardless of whether or not this level
of dependability is needed in all cases. Such processes or algorithms arc
either identical to the oncs run on the corresponding non-redundant systcm

ISCAS °89

or are modified versions that include checkpointing provisions. Clearly,
this "worst-case” philosophy is neither efficient nor flexible for general use.
Functional methods, on the other hand, are applied to specific p or
algorithms and take advantage of particular properties of the problem at hand
1o provide an explicit cost-dependability tradeoff. They are typicaily more
efficient and/or selective in their use of redundancy but imply increased
design effort for computations that deal with the specially modified data
structures or to provide multiple versions of the required processes. Thus,
for example, a process may be selectively replicated 2, 3, or 5 times for
varying degrees of safety and/or resilience as required, provided of course that
the corresp between d dability and degree and type of replication
is known (not a simple issue!).

In many situations, one can benefit from an even more selective approach 10
the application of redundancy, not only from one process 10 another but also
within a single application process. For example, the degree of replication
of a data object manipulated by a process may depend on:
1. Value or criticality of the data: Critical data must be protected
through a higher degree of replication.
2. Ease of regenerating the data: Error detection with good
coverage may be sufficient for easily regenerated data.
3. Size of the data object: High degree of replication is less
desirable for large data objects.
4. Resilience of the data object: The higher the resilience, the
fower the needed degree of replication.
5. Amenability to consistency check: Duplication and checking
may be a substitute for greater replication.
6. Extentand type of use: A data object that is referenced rarely or
in read-only mode may need less protection.
Unfortunately, incorporating various degrees of replication for data objects
in each application process is hopelessly complex, even if all of the above
aspects could be reasonably quantified. Furthermore, certain of these aspects
(e.g., size of data object and its usage) cannot be accurately predicted as they
may depend on run-time conditions. It follows that a general framework for
handling varying degrees of replication along with a capability for
automatically deciding on the required replication factors is needed.

2. A DATA-DRIVEN APPROACH
2.1. The Concept of Dependability Tags

Suppose that a dependability tag (d-tag) is attached to cach data object as an
indicator of the data object's correctness probability. Thus, a data object D

and its d-tag d will comprise a composite object (D, d). The d-tag d assumes
values from a finite sct of dependability designationsd € {0, 1, ..., -1},
where § is an application-dependent constant. Associated with each d-tag
value d, are constants 74 and 7’4 such that the d-tag d in (D, d) signifies:

g < prob[D is correct] < 7wy
We will assume that 7 < 7j4] and 7j < Wjs1, S0 thata larger d-tag value

implies higher confidence in the correctness of the associated data object.
Unless otherwise stated, the upper bound 7’ is assumed to be 1 in the

CH2692-2/89/0000-0561 $1.00 © 1989 IEEE

remainder of this paper. We also assume) = 0, 15-1 = 1 (d-tag values of

0and &~ 1 reserved for hopeless and perfect values, respectively), as well as
randomness and statistical independence of errors in various data objects.

Note that as defined, d-tags essentially represent a general and very flexible
discretization sch for probabilities. In other words, the #j
values need not be selected to conf to any f lar rule or pauern.
However, in practice, it is desirable to have a capability for greater
discrimination at the high end of dependability values. This is because
correctness probabilities 0.99 and 0.999 are significantly different while the
valucs 0.4 and 0.5 need not be distinguishable as they both represent
practically useless valucs. Although theoretically it is possible to associate
d-tags with data objects at any level, practical considerations such as data
storage redundancy and computational overhead will probably restrict
meaningful applications to high-level data objects with complex structures
and operations. Of course, regardless of the level at which d-tags are

pplied, the problem of d ining d-tag values is non-trivial and must be
dealt with in depth. However, given correctly assigned d-tags and ignoring
for now the possibility that the d-tags themselves may be corrupted in the
course of our computations, we can discuss the manipulation of tagged data
in terms of dependability-I ing and dependability-raising operations.

2.2. Dependability-Lowering Operations

Normal operations on data objects tend to lower the d-tag values. Assuming
that operations are themselves perfectly dependable, the dependability of cach
result is only a function of the op s’ dependabilities. A unary operator u
tansforms the data object D into u(D). In our scheme, we define for each u,
a unary operator u* such that u*((D , d)) = (u(D) , d). This simply means
that the dependability of the result u(D) is the same as the dependability of
the operand D. In the case of a binary operator b in D = &(D’, D), we
define the corresponding operator b* which operates on composite data
objects giving (D, d) = b*((D", d)(D", d"™)). The key to this extension is a
procedure for determining d from ¢’ and d. Thus

(D", d) . (D", d") = (D", D"), g(d", d"))
where g is the dependability evaluation function associated with binary
operators. More generally, one can consider a dependability evaluation
function gp(d’, d”) for each binary operator b or even gp(d’,d", D', D").
However, let's keep things simple for now.

Assuming that b(X,Y) depends on both X and Y (i.e., b is not actuaily a
unary function) we can define g(4’, 4") as follows:
8. d") = d suchthat 74< mymg < ngy]

Because of the way d-tags are defined, the value of d thus obtained satisfies
d < min(d’, d”). The above can easily be generalized to a k-variable function
by using a recursive definition. At any rate, the dependability of the result
is never more than the smallest d-tag vaiue involved. This is why we call
ail such operations "dependability-lowering” operations. If the final data
objects (computation results) end up with acceptable d-tags after all such
lowerings, then nothing more needs to be done. Otherwise, we need 1o
structure the computation in such a way that it also includes
dependability-raising operations at some points.

2.3. Dependability-Raising Operations

Suppose that we obtain a result in two different ways using hardware,
software, or time redundancy. Let the two results and their corresponding
d-tags be (D(.dp) and (D1,d1). We wish to draw the conclusion that the
result is (D,d)where d is the highest possible d-tag that can be attached 10 a
value D inferred from the inputs. Obviously, if Dg=D1, then (D dy=(Djdj),
i€ (0,1}, such that d; > dy-;. 1Dy =D}, then D =Dg=Diand d is
computed as follows. Let pp and p| be the actual correctness probabilities
for D@ and D1, respectively. By definition, p; > nd; for i=0,1.

(217 3334789

562

Then the probability that D is correct can be written as:
P = pop1/ pap1-+ (1 - poX1 - p1)]
The valuc of p given above is a nondecreasing function of pg and py. Thus:
P 2 mdgrdy / (Adgndy + (1 - mag)(1 - dy))
To maximize the d-tag of the result, d must be selected such that:
d < mdortdy | (Rdgdy + (1 - mdg)(l - 7dy)] < 7ide1
Even though these inequalities do not guarantee that d will be higher than dg
or d1, judicious choice of the constants #j can ensure that in all practical
cases dependability is raised to at least j+1 when both inputs have d-tags ;.

The above is easily generalized to n versions of a result. Let the n versions
be D, Dy, ..., Dp-1, with the corresponding d-tags do. d1.....dn_1.
If all of these data objects are different, then the output is taken to be (Dj,dj)
such that d; > dj for 0 < j < a. At the other extreme, if all of the » data
objects are identical, then the output is set to one of them and assigned the
d-tag value d such that:

d S Wi 174 | Uiy 17y # 1Ty (1-70)) < 71
In general, the # data objects can be partitioned into classes of identical
objects. For each class, a d-tag value is computed and the class with the
largest associated d-tag value determines the output.

3. APROGRAM OF RESEARCH
3.1. Formalization and Refinement

Several issues arise in selecting the discretization probability thresholds ; ,
0<j <5 1 for practical application of d-tags. Clearly, the value of & affects
both the storage and processing overheads for dealing with d-tags. The
optimal value of & for each application must initially be selected on the
basis of estimates for these overheads and the requirements of
dependability-lowering and dep y-raising operations. Intuitively, a
larger value of &, with the correspondingly finer subdivisions defined by mj,
causes smaller reductions in d-tag values while a smaller & may yield
potendally larger increases in cc ison-type op Initial h
has shown that there are values of & with associated values for ;j that satisfy
these two conflicting requi imul ly.

Hahili

In general, a range of values for § satisfies the requirements of
dependability-lowering and dependability-raising op The smaller
values in the acceptable range obviously imply lower direct storage and

processing overheads. However, selecting a larger value for & may

eventaily translate into lower replication requirements for data and
computations in view of the higher likelihood of smaller decreases in d-tag
values and thus a potentially lower overall cost. To be able to properly
evaluate such tradeoffs, the concept of d-tags, and their associated direct and
indirect costs, must be formalized and further refined.

3.2. Dealing with Imperfect d-Tags

Obviously, d-tags are themselves subject o errors and cannot be trusted
completely. An crroneous d-tag may be lower or higher than the correct
value. In the first case, the error is "safe” in the sense that at the end, a
negative d-tag error can lead to one of three things:
1. A correct result with erroneously low, but still acceptable, d-tag
value that is trusted and used.
2. A correct result with unacceptably low d-tag value that is either
discarded or used cautiously.
3. An incorrect resuit with correct d-tag that is either discarded or
used with an appropriate level of care,
The third possibility arises because emmoneously low d-tag values for correct
results may cause incorrect values to prevail in comparison-type operations.
However, such incorrect values will carry with them appropriate d-tags that
indicate their dependability, provided that no error of the second type occurs.

T ruruier miormanon cdan pe ootdinea Irom pr. vv. nennetn Jenkins.

It is, therefore, sufficient to guard against errors that improperly raise the
d-tag values. Such positive d-iag errors may have three causes:

1. Incorrect storage and/or transmission of d-tag values.

2. Errors during dependability-lowering operations.

3. Emors during dependability-raising operations.
Storage and transmission errors are the easiest to deal with. One can of
course use error codes in a straightforward manner for protection. However,
several properties of this particular application can be expioited o devise
more effective methods. The fact that we are only interested in protecting
against positive d-tag errors sugg that any asy y of errors (e.g.,
higher likelihood of 1-t0-0 compared to 0-to-1 errors) can be exploited by
proper encoding. Also, since the arithmetic value of a d-tag is significant,
arithmetic error codes are potentially useful. These can be combined with a
gray-like encoding scheme to limit the damage caused by an uncaught error.

Determination of d-tag values during dependability-lowering and
dependability-raising operations essentially involves simple function
evaluations. Assuming that these functions are evaluated by tabie lookup,
many different methods can be used to detect and correct potential errors.
For example, with 4-bit d-tags, a 256-word by 4-bit table will be needed in a
binary operation. For protection against errors, one can store the two 4-bit
tags with each 4-bit table entry and then encode the resulting 12-bit entries
in some error code. Alternatively, the use of self-checking circuits for the
manipulation of d-tags may be contemplated.

3.3. Dealing with Imperfect Operations

Even when the data objects D’ and D" are perfectly dependable, the data
object D = (D", D) may have potential errors due to imperfect hardware or
software implementing the binary operation 4. To deal with this problem,
appropriate dependabilities must be assigned to various operations and used
in determining the d-tag values for operation resuits. The key issue here is
to use dependability estimates that are pessimistic (so that any resulting
d-tag error is on the safe side) but not too pessimistic so as to require
excessive redundancy 1o overcome their effects.

Comparison and voting operations may also be imperfect. For example, in
the comparison of two versions of a result giving (D.d)=c((D1,d41)(D2.42)),
an efror may occur in judging the equality of D1 and D2. If D1 = D2 but it
is erroneously determincd that they are unequal, the error is on the safe side
in that dependability is not raised. If, on the other hand, DI # D2,
dependability may be erroneously raised by a comparison error. Therefore
comparison mechanisms (hardware or software) must be designed to have
asymmetric error modes. Similar observations apply to voting errors when
more than two copies of a data object are involved. Obviously, the
criticality of the method for dealing with imperfect operations increascs
directly with any increase in the dependability of original data sources.

Imperfect operations on tagged data objects can be modelled in several ways.
One possibility is to view the operation as simply another element of the
computation with its associated d-tag. Then, for example, a binary
operation with the associated d-tag dp performed on data objects having
d-tags d) and d2 will be like a perfect ternary operation on data Objects
having the d-tags dp, d1, and d2. This conceptually simple scheme does not
solve all of our problems as the assignment of d-tags to various operations
is nontrivial. Another possibility is to attach to each data object a second
"operation count” tag. Then, assuming that all operations have roughly
equal complexities, the operation count tag provides a second indication of
how dependable the data object is by showing how many transformations it
has undergone. Operation count tags can be periodically reset to zero and
their effects incorporated into d-tags by suitable adjustment algorithms.

3.4. Evaluation and Extensions

Although the development of mathematical modeis for evaluating the
cost-effectiveness of the proposed approach should proceed in parallel with
the resolution of the above problems, it is still necessary 1o integrate the

563

various aspects of the modeling process into a "clean” mathematical model
and (o evaluate and fine-tune the proposed techniques. An aspect of this
evaluation is the identification of application areas where the proposed
approach is likely to lead to improved cost-effectiveness compared to current
design paradigms and to formulate a research plan for dealing with these
application areas in more detail.

Once the promising application areas for data-driven dependability
procurement have been identified, design issues must be examined in greater
detail for selected areas in order 10 develop verifiable quantitative resuits on
the gains and benefits versus the accrued cost. It may also be desirable to
examine the areas where data-driven dependability procurement appears (o be
impractical or uneconomical 10 discover the underlying reasons and to look
for extensions and/or variations of the technique (or combinations with other
methods) that may overcome the perceived problems. There is also a
potential for using the data-driven dependability procurement paradigm to
build a unified framework for the automatic synthesis of ultrareliable
systems. Some ideas along this line are presented in Subsection 4.5.
Given that such a framework can be established, reduction of the design time
and cost will appear as a new factor in comparing the cost-effectiveness of
various approaches and may well tip the balance in favor of the data-driven
dependability procurement approach in additional application areas.

4. BENEFITS AND APPLICATIONS

In this Section, we will enumerate and briefly discuss certain areas where the
application of data-driven dependability procurement with d-tags seems
promising or where it provides a beneficial way of looking at old problems
and techniques. The examples in this section are primarily based on very
simple data objects although as stated earlier, practical considerations wiil
probably restrict meaningful applications to higher-level data objects.

4.1.Data Diversity and d-Tags

Take the simple example of computing the area of a triangle. For this
computation, it is sufficient to know two sides and the angle between them.
Suppose that we know all three sides and all three angies, each with its
associated d-tag. Then, various subsets of the available data can be used
with different procedures (formulas) to obtain the desired result. Each result
will have an associated d-tag. At the end, we can either select the result
with the highest d-tag value or try to combine the various resuits into a
single result through some form of inexact comparison and/or voting. The
difference between the above suggested method and the data diversity scheme
as defined by Amman and Knight [1] is that in the latter, the computation is
always performed with the primary data first; altemate or "reformulated” data
enter the picture only if an acceptance test is not satisfied. Because
acceptance tests seldom provide perfect coverage, it may be advisabie (0
perform the computation with several sets of data before making the final
decision. Dependability tags provide a convenient mechanism for keeping
track of potential errors and inaccuracies and for algorithmically combining a
multiplicity of potentially incorrect results.

4.2. Design Diversity and d-Tags

Consider the "consistent comparison problem” defined by Brilliant, Knight,
and Leveson [3). The problem, simply stated, is as follows. If multiple
versions of a system with diverse designs (2] are used for performing an
inexact computation, slight computation errors do not necessarily produce
correspondingly small inaccuracies in the final results of the versions. One
reason is that when a version reaches a decision point where one of two
algorithm paths must be sclected based on a comparison of inexact values
that happen to be nearly equal, cither path may be selected with non-
negligible probability and the result becomes unpredictable. We can solve
this problem through the use of d-tags if each comparand has a d-tag that
reflects its accuracy as well as dependability and if the d-tag for the
comparison result is made a function of the relative difference of the two
values; i.e., the comparison result is assigned a high d-tag value if one

operand is much larger than the other and a very low d-tag value if the two
are nearly equal. When such a comparison result becomes the basis for a
path selection, its dependability will affect the d-tags of all data that are dealt
with subsequently. Again, routi bination of muitiple resuits and their
d-tags yields the final resuit along with an indication of its dependability.

4.3. Dependable Dataflow Systems

The dataflow model of computation {7] is particuiarly supportive of the use
of data-driven dependability procurement with d-tags. One can envisage data
tokens carrying one or more dependability-related tags that are manipulated
according to specific rules as the computation unfoids. At the very end,
results will have dependability indi hed to them. If in the course
of a computation, dependabilitics fall below a certain threshold, program
segments holding backup or alternate compusations are activated in order to
check or verify the obtained results. Such verifications will raise the
dependability values and will allow the computation to proceed. In the
demand-driven variant, much effort can be saved by producing results that are

“voting” for non-atomic data objects. Simple voting
is based on retaining the matching majority and discarding the non-matching
minority. However, for complex data objects, this approach is overly
pessimistic b it invalidates a non hing data object in its entirety.
Component-by-component voting may be impossible because objects may
be incomplete or non-identical in structure. Again d-tags provide a
mechanism for keeping track of error probabilities and for algorithmically
combining several potentially incorrect values into dependabie final results.

5. CONCLUSION

Much of the li on d dabl g is built on the binary
distinction between correct and incorrect data. Thus, any data object, such as
a word or a record, is either completely dependable or totally incorrect.
Various levels of data y are i taken into but
accumcy is quite different from dependability. Whenever "gray-level”

dability is idered, it is with respect to functional units that
genmoruansfomandchamelsumunythedmmmerumnmedam

not overly dependable. This claim may seem strange at first but supp

that we want to compute f(g(D), A(D)), where f, g, and h are arbitrary
functions and D represenis a data object. The computation starts by
generating a demand for the value of f with a certain d-tag value df. This
will in turn generate demands for the evaluation of g and & with d-tag values
dg and dp, that are just high enough to ensure that the final result will have
the desired dependability. Finally, the demand for the values of g and A will
generate a demand for the data object D will a certain dependability 4. In
general, several sets of values for d g and dj may satisfy the final
dependability req and the selection of optimal values is non-trivial.

However, the concept is quite useful and worthy of further research.

4.4. Dependable Distributed Systems

In a distributed computing environment, d-iags can be used in many different
ways. Consider for example a distributed database consisting of various data
objects (e.g., relations in the relational database modet), each with multiple
copies stored at different sites. Each processor may have copies of several
data objects with their associated d-tags. Exchanging information about the
data objects between processors can modify the d-tag values dynamicaily,
restoring the gradually deteriorating dep bilities 10 levels and
correcting erroneous information which may have aquired high d-tag valucs
due to malicious faults. Developing the detailed protocols and decision
algorithms for this class of applications constitutes a fruitful area for further
investigation. Note in parucular that d-tags provide a convenient

h for impl g probabilistic protocols. Each
processor can be viewed as working on the construction of an "agreement”
data object that it initializes with its own view of the world and a low
assocmed d-tag value. As information is exch d b rs,

"agreement” data objects gradually acquire higher associated d tag values.

The process of information exchange, which itseif is driven by the d-tags,
continues until desired dependability levels are reached.

4.5. Unification of Concepts

As an added benefit, the data-driven d dability p digm can
provide a framework for the unifi caum and extension of seveml concepts in
the field of dependable computing and contribute 10 a better understanding of
the underlying principles of the field. Consider, for example, the two
extremes of binary (two-valued) and continuous (real-valued) d-tags. With
binary d-tags, voting on multiple copies of a result is achieved by ignoring
all results that have d-tags of 0. This is equivalent to the self-purging
redundancy scheme {4]; a generalization of hybnd redundancy which itself is
a combination of voting and dby hniques. With binary
results (bits as data objects) and real-valued d-mgs denoting exact correctness
probabilities (rather than a lower bound on them; i.c., 7= /') voting on

muitiple copies is equivalent to the use of optimal adapuve vote-takers {6].
The proposed data-driven approach can also lead to the development of

(217) 3334789

Ives. Clearly, different data objects, or even diverse
mpmscmauons of the same object, can have different "error characteristics”
when ipulated by identical functional units or ransmitted over identical
channels. Thus, the desirability of a data-driven approach.

In a way, the data-driven dependability p method is nothing but
replication plus comparison and/or voting. The major difference with
existing methods of dependability p based on the same concepts
is that the replication factors and the invocation of votng and consistency
check proced are dynamically lled by the d-tags associated with
various data objects. The replication factor may be not only a function of
the particular data object (structure and) but also dependent on the
access method and frequency for a given critical computation. Although
custom design based on a-priori estimates of data object size and access
patterns may be effective in some cases, it is both expensive and ineffective
when there are wide dynamic variations in the relevant parameters.
Dependability tags, as defined here, provide a convenient mechanism for
keeping track of potential errors and for algorithmically combining a
multiplicity of potentially incorrect data into dependable results.

At least two application areas will greatly benefit from the proposed
method. [n the area of dataflow systems, where dependability studies have
been few, sketchy, and inconclusive, data-driven dependability procurement
is a natural method and is expected to lead to the a satisfactory approach for
ultrareliable dataflow computation. For distributed computer system,
important theoretical contrit have established the difficulty of the
dependability procurement problem but few have led 10 practical desngn
strategies. The use of d-tags (along with suitable distributed ipulation
algorithms) is likely to lead to a solution to this problem as well.

REFERENCES

{1l Ammann, P.E. and J.C. Knight, "Data Diversity: An Approach to
Software Fault Tolerance,” IEEE Transactions on Computers, Vol. 37,
No. 4, pp. 418-425, Apr. 1988.

Avizienis, A. and J.P.J. Kelly, "Fault Tolerance by Design Diversity:

Concepts and Experiments,”Computer, Vol. 17, Aug. 1984, pp. 67-80.

Brilliant, S.S., J.C. Knight, and N.G.Leveson, "The Consistent

Comparison Problem in N-Version Sofi " Software Engineering

Notes, ACM SIGSOFT, Vol. 12, No. 1, pp. 29-34, Jan. 1987.

[4] Losq, J., "A Highly Efficient Redundancy Scheme: Seif-Purging
Redundancy,” /EEE Transactions on Computers, Vol. C-25, No. 6,
pp. 569-578, June 1976.

[51 Parhami, B., "From Defects 1o Failures: A View of Dependable
Computing," Computer Architecture News, ACM SIGARCH, Vol. 16,
No. 4, pp. 157-168, Sep. 1988.

[6] Pierce, W.H., "Adaptive Decision Elements to Improve the Reliability
of Redundant Systems,” /RE International Convention Record, Mar.
1962, pp. 124-131.

[T} Veen, A.H., "Dataflow Machine Archi " C
Vol. 18, No. 4, pp. 365-396, Dec. 1986.

[2

3

=

iputing Surveys,

ruruier miormanon cdan pe ootdinea Irom pr. vv. nennetn Jenkins.

