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It is well-known that any n-variable logic function can be realized by a
27~L.input multiplexer (universal logic module). In this paper, we
formulate a computationally simple condition to determine whether a
given n-variable logic function is realizable by a multiplexer having 2"~2
or fewer inputs and present an algorithm for finding the set of control
variables for an optimal multiplexer realization.

Index Terms: Boolean algebra. Combinational logic functions.
Multiplexers. Switching circuits. Universal logic modules.

1. INTRODUCTION

Many standard logic design textbooks (e.g., [MANO84], [ROTHS85])
discuss the implementation of logic functions by multiplexers, using
no additional external logic; thus the name universal logic module
[YAUS70] for a multiplexer. A 2™-input multiplexer or selector,
sometimes called a 2”-to-1 multiplexer, is a circuit with m control
inputs ¢; (0 <i <m-1), 2" data inputs dj (0 <j<2m-1), and a

single binary output e. The output e is equal to the selected input dy,
where k is the value of the binary number c,,_; ...cjcg. Touse a
27 Linput multiplexer for realizing a given n-variable logic function
fxp_1:Xp_9, - - . » X1, X)), We arbitrarily select n— 1 of the input

variables, say x,_1, ..., X3, X] as control inputs, with 0, 1, xq, or
x(’ connected to the data input dj as determined by the pair of values
in lines 2j and 2j+1 of the given function's truth table (i.c., 00 = 0,
01 = xq, 10 = x", 11 = 1). This realization may require a single

external inverter if complemented inputs are not available. It is
natural to ask whether for realizing a given n-variable logic function,
a smaller multiplexer (i.e., one having 22 or fewer inputs) will do.

The above question can of course be answered by an exhaustive
search. To see whether a 2”-input multiplexer can be used to realize
the given n-variable logic function, one writes down the Shannon
expansion of the function for every possible set of the m expansion
variables. Any expansion in which all coefficient (residual) functions
are single-variable can be the basis of the desired realization.
Although techniques for facilitating such an exhaustive search have
been developed [TABL76], the process is still very time consuming.
Thus we are motivated to formulate a computationally simple
condition to determine whether a given n-variable logic function is
realizable by a multiplexer having 272 or fewer inputs and an
algorithm for finding the subset of n — 2 or fewer variables to be used
as control inputs of such a multiplexer [PARH39].

2. NOTATION AND DEFINITIONS

Suppose that we have realized a given n-variable logic function
f(xp_1,Xp_2, ..., Xy, Xg) using a 2-input multiplexer with at
most n — m inverters as the only external logic. Let S denote the set
of n input variables, S, the set of m control-input variables, and
Sg =8 -8, the set of n — m data-input variables (henceforth the
single-dependence set). The problem of finding the smallest
multiplexer that can realize the function f can be restated as that of
determining the maximal single-dependence set S;. Note that for the
straightforward 27~ l-input multiplexer realization discussed above,
we have §; = {xg}. We will assume that the logic expressions for all
minimal sum-of-products representrations of f are at hand. Other
specifications are convertible to minimal sum-of-products form(s)
using efficient known algorithms. If a minimal sum-of-products
representation for f consists of ¢ product terms, we write
Sy 13 Xp—2,- - s X1, X0) = Mo+ A+ + Mg,
where the product term 1, is
n-1
p = go (@pe%g @ cpg) -
The binary constant apg signifies the "appearance” of x, in the pth
an

product term 7, the binary constant ¢, indicates the
"complementation” of Xq in . That is:

ape=0 Cpg=0 not allowed;

ape=0 Cpg=1 neither x, nor X4’ appears in ;;
apg=1, Cpg = 0 x, appears in Ty

apg=1 Cpg=1 xq' appears in .

A total of 2tn binary constants are needed to specify each distinct
minimal sum-of-products representation of f, where ¢ < 271,

In Sections 3 and 5, we formulate a computationally simple
condition for determining the existence of a multiplexer realization
for the given logic function f(x,_1,X,_2,...,X], Xp) using a
multiplexer with 22 or fewer inputs. Once the existence of such a
multiplexer realization is established, Algorithm 1 given in Section 7
can be used to obtain a corresponding maximal S4 set.
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3. A NECESSARY CONDITION

We start by formulating a necessary condition for the existence of a
22 input multiplexer realization of f.

Lemma 1: The logic function f(x,_;,x, 5, ..

.+ X1, Xxg) has a
n=2

-input multiplexer realization, with Sq=1{x; xj} as the
single-dependence set, only if fhas a minimal sum-of-products
representation in which x; and X; do not appear together in any
product term; i.e., only if for some minimal sum-of-products
representation of the function f, we have Zp piy;=0.

Proof: Suppose that f has a 2"“2-input multiplexer realization
with S; = {x;, x}-] as the single-dependence set and that this
realization corresponds to the following Shannon expansion of f with
S¢ =S - 8§ as the set of expansion variables:

2n-2_q

z

g=0

f [qgcaq ® 759 1 [95(x;, xp] .

The n — 2 binary constants 7,,, ge S,, constitute the binary
representation of g and each of the functions ¢g(x,~, xj) is constant or
single-variable; i.c., g0, x) =0, 1, x; x;', Xj, or x;". We show

that from the above expression, we can always obtain a minimal
sum-of-products expression for f that does not have both x; and X in
any product term. We know from switching theory that any
sum-of-products expression can be transformed to a minimal
sum-of-products expression by repeated application of the following
steps (see, e.g., [ZISS72], pp. 22-28):

1. Finding a pair of product terms of the form xa and x'B,
leading to the "optional product" term af.

2. Deleting any product term of the form afy (such a term
is covered by the two "parents" of af).

3. Replacing the parernt term xe (or x’f) by & (or f) if

ofi=a (or af=f).

4. Replacing both xc and x'8 by af if there are two other
product terms that generate xor and x’B as optional
products when they are combined with af.

If we show that repeated application of these rules starting with the
above Shannon expansion never results in an expression with a
product term containing both x; and x;, the proof will be complete.
We prove this result by induction. “Clearly, the initial Shannon
expansion does not contain both x; and x; in the same product term.
Suppose that at some stage we do not have both x; and Xj in any
product term and consider the application of Rule 2, 3, or 4. Rules 2
and 3 only simplify the logic expression and thus do not introduce
any extra variable. Rule 4 can potentially introduce x; and x; in the
optional product term &f only if the parent products are of the form
xx;¢ and x'xju/ for some x € §,, (since if the parents are x;oand x;/B
or if they are x jo¢ and x'B, the optional product a8 will not contain

xjorx;). The optiona{ product term is then xx;¢y which would
require a product term containing x,-’xj or x;x;’ to reproduce its parent
terms. But such product terms do not exist in our expression by
assumption. Thus, o is introduced as a new term in the expression
only if it does not contain both x; and x;. Bl

Corollary 1: The logic function Sy 1o X5 , X1, %) has a
27-2-input multiplexer realization, with § d = (% x;} as the
single-dependence set, only if f has no essential prime implicant in
which x; and Xj appear together.
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Proof: Immediate upon noting that an essential prime implicant
appears in all minimal sum-of-products representations of f. ll

4. APPLICATION EXAMPLES

By Corollary 1, any function having a minterm as a prime implicant
(e.g., the parity function) cannot be realized by a multiplexer with
fewer than 2#~1 inputs, since such a prime implicant is always
essential and contains all the n variables. Also, many symmetric
functions do not have simpler multiplexer realizations. Corollary 1
enables us to rule out many functions as candidates for simpler
multiplexer realizations directly from a list of essential prime
implicants without knowing or having to obtain all minimal
sum-of-products forms. Example 1 below shows that the necessary
condition given by Lemma 1 (or Corollary 1) is not sufficient and
Example 2 shows that Corollary 1 alone is not adequate in that some
functions are ruled out by Lemma 1 and not by Corollary 1.

Example 1: Consider the 4-variable logic function
Sz, x9, %1, X0) = Xgx3 + X9F + X1 %2

There are three candidate Sy sets {xq,x2}, {x1,x3}, and {x3,x3},
whose members do not appear together in any product term of the
above unique minimal sum-of-products form. However, none of the
three sets leads to a 4-input multiplexer realization as seen from the
three Shannon expansions

f =X1X3 [1] + X1X3' [xo'] +).’1'X3 [xo+x2] +11'X3'[12]
= xgxp [xy"+x3] + xx9" [x3] +x0"x [1] + x0x2" [x11]
=xgxq [x3] + xgxq’ [xp+x3] +x0'xp [1] + xp'x1" [x2]. W

Example 2: Consider the following 3-variable logic function
given with its two minimal sum-of-products expressions:

Sfxp, x1, xg) = Xpx1" + Xg'x3" + X1Xp = XpXg + XX} + X1'X9’
The function does not have any essential prime implicants, so
Corollary 1 is of no help. However, both minimal sum-of-product
representations above contain product terms with every pair of
variables. Thus by Lemma 1, f does not have a 2-input multiplexer
realization. Again, this conclusion is verified by examining the three
Shannon expansions of the function with respect to one variable. B

5. MAKING IT SUFFICIENT

Even though the above conditions quickly rule out many functions as
candidates for simpler multiplexer realizations, we need a necessary
and sufficient condition to deal with other functions.

Lemma 2: The set {x;, x;} satisfying the condition of Lemma 1 is
a valid single-dependence set S for multiplexer realization of f if and
only if for every pair of product terms (x; ® 9)¢ and (x; & Oy in the
corresponding minimal sum-of-products expression for f (i.e., so that
one product term contains the literal x; or x;" and the other term
contains the literal x; or xj'), the product ¢y is cither identically zero
or an implicant of f.

Proof: We prove the "only if" part by contradiction. Suppose that
we have a pair of product terms (x; ® P)¢ and (x; ® Sy so that y
is not identically zero and not an implicant of f. Then, there exists




an assignment of values to the n — 2 variables in Se=8-{x; xj}

that makes ¢y equal to 1 and f equal to 0. Substitute one such set of
values in the expression for f to get

0= (xi®7)+(xj®6)+h(xi,xj),

where h(x;, x;) is what remains from all other product terms. This is
contradictory, since we can make the right hand side equal to 1 by
choosing x; = ¥’ or x= 6. To prove the "if" part, suppose that for
every pair of product terms (x; ® )¢ and (x;® 8y, the product ¢y
is either identically zero or an implicant of f. We show that the
Shannon expansion of f cannot contain a component term of the form
M, 0, ® ygq)] [x;®p+ (; ® 8)]; i.e. that no residual function
in the ghannon expansion of f, with S, = § — (x;, xj] being the set
of expansion variables, is of the form x &7+ (xj® 8). For
suppose we have such a component term in the Shannon expansion.
This component must have resulted from expanding two product
terms (x; ® )¢ and (xj ® d)y in the minimal sum-of-products form.
But if there are such product terms, ¢y and thus I, (x; © 7,4) must
be an implicant of fand the Shannon expansion of f must contain
I, (x; © 7,,) instead of M, (&, ® qu)] [0 @9+ o; @ dl.m

Example 3: It is easily seen that in the minimal sum-of-products
representation  xgx3 + Xo'xy + x1'xy of the 4-variable function
flxs, xp, xq, xp) of Example 1, the product terms xox3 and x'xp
violate the condition of Lemma 2 for both candidate S sets {11,13)
and {xj,x3} because neither XX nor xgx{’ is an implicant of f.
Thus, the function does not have a simpler multiplexer realization. l

6. OPTIMAL REALIZATION

So far we have only dealt with single-dependence sets of size 2. The
following result shows that larger single-dependence sets can be
easily constructed from single-dependence sets of size 2 by a simple
“transitivity" check. The largest single-dependence set for a given
function obviously corresponds to its optimal multiplexer realization.

Lemma 3: IfS;is a single-dependence set for the n-variable
function f(x,, 1, %, 5,...,x;, %) and a variable x; ¢ S satisfies
the conditions of Lemma 1 and Lemma 2 with every variable x;, Sq
(e, {x; x} is also a single-dependence set for all X € S4), then
Sq U {x;} is a single-dependence set for f.

Proof: Consider the multiplexer realization of f based on the
single-dependence set S, with x; assigned as the least significant
control variable. Then, in the smaller multiplexer realization of f
based on the single-dependence set Sz {x;}, the jth data input line
must assume ther value xi'}’Zj +FXY24e15 where ¥2j and ¥2j+] are
single-variable input expressions corresponding to the original
multiplexer realization. We must show that the above expression
necessarily represents a single-variable function. The only way that
this can occur is if both ¥2; and y, j+1 are constants or identical
literals. To show that this is indeed always the case, we have to
prove that the four representative cases of

L y2j =X 251 =0,
2. y2j =Xp Yo =1,
3. vy = yaje =1
4 ¥2j =xe Y1 =X,

with xz, x; € Sy, are impossible. In these cases, when the values of
all selection variables except for x; are fixed, the function is
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transformed into x;'xg, x;xp + x; = xp + x;, XX+ xxy's and
X% + x;x;, respectively. In each case, {x;, x;} cannot be a single
dependence set; clearly a contradiction. l

7. THE DESIGN PROCEDURE

Putting all of the previous results together, we are led to the
following algorithm for obtaining all optimal multiplexer
realizations of a given logic function.

Algorithm 1: (Constructing all maximal single-dependence sets
for an n-variable logic function f).

Step 0 - Find all minimal sum-of-products representations of f. Then
perform Steps 1 through 3 for each minimal sum-of-products form.

Step 1 - Construct a lower-triangular n — 1 by n — 1 table with all
entries initially blank, labelling the n — 1 rows as xy, Xy, ... , X1
and the n — 1 columns as xg, X1, ... , X,,_2- Examine every product
term in the selected minimal sum-of-products representation of f and
for every pair of variables appearing together in a product term, mark
the corresponding table entry with an "X". At the end of this
process, entries that remain blank identify two-element S candidates.

Step 2 - For every two-element Sy candidate {x;, xj} obtained in
Step 1, check the condition of Lemma 2; i.e., check to see whether
two product terms, one of the form ¢x; or ¢x;" and the other of the
form yx; or yx; ’, exist such that ¢y is not identically zero and not
an implicant of f. If so, delete the pair from the list of S, candidates.

Step 3 - Merge the remaining sets into the largest possible S; sets
according to the procedure of Lemma 3; i.e., find the largest sets of
variables such that every pair of variables in each set corresponds to a
single-dependence set.

Step 4 - Select the largest S; sets obtained from various minimal
sum-of-products expressions. ll

We can now state the main result of this paper.

Theorem 1: Algorithm 1 yields all maximal single-dependence
sets for a given logic function f.

Proof: Immediate from Lemmas 1, 2, and 3. B

8. MORE EXAMPLES

We now present a few more examples to illustrate the application of
Algorithm 1 and to identify several interesting special cases.

Example 4: Consider the problem of finding a minimal
multiplexer realization for the 4-variable logic function defined by the
following unique minimal sum-of-products expression:

f(x3,x2, X],XO) = xgxp' + xgx3 + X2'13 + X)Xy

In Step 1 of the algorithm, we obtain iwo candidate S sets, {xg,x1}

and {x1,x3}. We know right away by the absence of {xq,x3} in the
above set, that the best we can hope for is a 4-input multiplexer
realization. Neither set passes the test of Step 2 since we have the
product terms xpx3 and x3xp with neither xpx3 nor xgx, an

implicant of f. Thus, the given function f does not have a 4-input
multiplexer realization. ll




Example 5: Consider the problem of constructing a minimal
multiplexer realization for the 4-variable function

flxa, x9, X7, Xg) = XgXy + Xgx3 + X1'Xg + X X%’

represented by its unique minimal sum-of-products expression. From
Step 1 of the algorithm, we find two candidate Sy sets, {x1, x3} and
{x2,x3}. The set (xp, x3} does not pass the test of Step 2. The
remaining single-dependence set {xp,x3} yields the 4-input
multiplexer realization defined by the Shannon expansion:

xgxy [11 + xgxp" [x3] +x9'xp [x1"1 + xp'x" [x1]. W

Example 6: Consider the problem of constructing a minimal
multiplexer realization for the 6-variable logic function

f=x1% + xgxp + x1x'x3" + X1x4x5,

where the expression is the unique minimal sum-of-products form.
In Step 1 of the algorithm, we find eight candidate S sets, {xp.x3},
{xpx4), {x0x5), (x3.%4), {x3.X5), (x0.x1}, {x2.x4}, and {x3.x5},
the first five of which pass the test of Step 2. Step 3 yields two
maximal single-dependence sets, {xg.x3.x4) and {xg,x3,x5}, with
two corresponding 8-input multiplexer realizations having data inputs
xs, %3 1, x9, 0, x3°, 1, xg and 0, x3°, 1, xg, x4, x3', 1, x0. W

Example 7: This last example is interesting because it involves a
function with two minimal sum-of-products expressions, each of
which yields a different minimal multiplexer realization. Consider
the 4-variable logic function f defined by the following two minimal
sum-of-products expressions

f

XoX1X3 + XgX1Xy + Xg'X1Xp" + X0'x1 %3]
X9X3Xg + xzx3’x1' + XZ'X3X1 + XZ'X:;'X()'

The first expression yields the candidate S set {x, x3} while the
second expression yields the candidate S, set {xg, x1}. Both sets
pass the test of Step 2, giving the two different 4-input multiplexer
realizations defined by the original expressions (that happen to be in
the required Shannon expansion form, with the expansion variable set
being {xg. x1} and (x, x3), respectively). B

9. CONCLUSION

We have presented an efficient algorithm for finding minimal
multiplexer realizations for arbitrary logic functions. The algorithm
requires all minimal sum-of-products representations of the logic
function as input, but this presents no problem as other
representations can be converted to minimal sum-of-products form
using efficient known algorithms. It would be interesting to find
efficient algorithms that work directly on other representations (e.g.,
on the function's truth table) without a need for finding the minimal
sum-of-products representations first.

Analysis of the computational complexity of this algorithm
constitutes another possible area for further investigation. Both
worst-case and average-case analyses need to be considered. However,
both analyses appear to be difficult. It is not clear what input
conditions constitute the worst case for the algorithm. For example,
the parity function of n variables has the largest possible number of
product terms in its minimal sum-of-products representation. But for
this function, the large number of terms only lengthens the execution
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of Step 1 of the algorithm. The results of Step 1 then lead directly to
the conclusion that a smaller multiplexer realization is impossible,
thus saving the execution time associated with Steps 2 and 3.
Average-case analysis is similarly difficult but may be possible
through the use of results on the characteristics of random Boolean
functions [MILE64], [FLEI89].

It was noted in Example 7 that different minimal sum-of-products
representations for a given function may yield different minimal
multiplexer realizations (Example 6 showed that a single minimal
expression can also lead to multiple minimal multiplexer
realizations). It is conjectured that these realizations obtained from
different minimal sum-of-products forms are always equally optimal,
so that one can obtain a minimal multiplexer realization from any
minimal sum-of-products form, thus saving a great deal of effort in
generating and handling of multiple minimal sum-of-product forms.
However, this conjecture has not been proven yet.
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