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ABSTRACT

Associative memories and algorithms for performing various
operations on them have been studied extensively over the past
three decades. Speedup analyses offered for such algorithms are
based on the assumption of a fixed cycle time for the associative
memory, independent of size. Whereas this is acceptable for small
capacities which have been practical in the past, the potential for
realizing very large systems by exploiting advances in the VLSI
technology necessitates a reexamination of the above premise.
In this paper, we offer designs for associative memories whose
cycle, times are realistically constant and independent of their size.
The designs are based on well-known principles of pipelining and
systolic operation using a collection of small building-block
associative memories. Several alternative organizations, from a
simple linear array to higher-dimensional meshes and trees are
examined and evaluated with respect to cost and performance.

Keywords: Content-addressable memories. Parallel processing.
Pipelining. Search processors. Systolic systems. Time complexity.

1. INTRODUCTION

Associative or content-addressable memories (AMs or CAMs)
have been studied for over three decades as mechanisms for
speeding up time-consuming searches and for allowing access to
data by name or partial content rather than by location or address
[HANL66], [PARH73], [KOHO87], [CHIS89]. Also, more
functional variants of such systems known as associative or
content-addressable processors [FOST76], [YAUS77] and
database computers [SUSY88], [HURS89] have been the
subjects of extensive research.

In its simplest form, an AM can be viewed as a hardware device
consisting of N fixed-size cells, each being marked as empty or
storing a data word or record. We denote the number of
nonempty words by .

When presented with a "search key" (also known as the
"comparand") and a "mask" specifying the relevant field(s) of
the stored words, the AM responds by "marking" all the words
that "match” the specified key. Marking is done by setting or
resetting a "response bit" or "tag" in the corresponding AM cell.
The N response bits together form the AM's "response store."
A "response indicator" mechanism may provide information on
the multiplicity of responders (zero, one, several).

If there is no responder, the search outcome is negative and we

can proceed to the next step of our algorithm. With one
responder, the required data item has been located and can be
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appropriately dealt with by reading it out or modifying it
in-place. If there are several responders, the appropriate course
of action might be proceeding to further narrow down the
search, simultaneously modifying all responders in-place, or
examining the responders in turn through the use of a "multiple
response resolver."

Many algorithms have been developed for performing search,
retrieval, and arithmetic/logic operations on data stored in AMs.
Although such operations can be programmed using the basic
"masked exact match" search capability of simple AMs,
provision of other types of hardware primitives can have a
significant effect on performance.

A common flaw in the analyses offered by designers of AMs
and of AM algorithms is the assumption that the basic cycle time
of an associative memory is a constant independent of size, thus
leading to the optimistic conclusion that an N-word AM offers
n-fold speedup compared to linear search in an unordered list of
n items (n <N). While this may be accurate for small V, it is
grossly unfair to equate the cycle time of a large associative
memory (say, one holding hundreds of thousands of data items)
with that of simpler hardware used in conventional systems.

Realistic analyses of the speedup offered by AMs and AM
algorithms would require the development of a model that
predicts the cycle time of an N-word AM as a function of N.
Such a model would depend on the technology used to
implement the AM and on its architecture. The dependence of
cycle time on N arises from two factors:

1. Broadcasting instructions to all N cells in the AM.
2. Performing global operations on N response tags.

The required cycle time for broadcasting obviously increases as
we go from single-chip to multiple-chip and multiple-board
systems, simply because longer interconnections will be
involved and a larger number of loads must be driven. Although
work has been done on modelling of propagation delays over
long wires, no universal model exists for predicting the effect of
such delays on the required cycle time [BILA82], [CHAZS85].

As for global operations, such as those required for multiple
response resolution, the effect of long wires is compounded by
the requirement for logic manipulation. It is well-known that
even if propagation delays are insignificant, a global operation
on N bits by limited fan-in circuits requires time that is at least
proportional to log N. Yet even recent works on associative
memory architectures and algorithms assume constant time for
N-operand global operations such as logical OR and logical
AND (see, e.g., [LEED88]).



In this paper, we propose a class of architectures for systolic
AMs whose basic cycle time is realistically constant and that
achieve a linear speedup of n over an infinite sequence of
independent AM operations through the use of pipelining. The
actual speedup achieved will be a function of instruction
inter-dependencies and will additionally depend on the amount
of optimization performed for finding efficient sequencing of
instructions. Other benefits of the proposed designs are
modularity and scalability which have important implications in
testing, configuration, and expansion of AM systems.

2. A SIMPLE ASSOCIATIVE MEMORY

To illustrate the design technique proposed here, we start by
presenting the functional specification of a simple AM (SAM).
These specifications are adapted from Chapter 4, pp. 39-56, of
[FOST76] with minor changes and additions.

As shown in Figure 1, SAM can be viewed as consisting of N
cells along with their associated tag bits, a Central Control which
includes the Comparand and Mask registers, and a Global Tag
Operations Unit that computes and sends a summary of tag bit
values to the Central Control. The tag bits can be shifted up or
down, thus providing a simple mechanism for inter-cell
communication. The Central Control is responsible for fetching
and broadcasting instructions and common data to all the cells.
The instruction set of SAM is as follows:

SET
MATCH

Initialize all tag bits to 1.

Simultaneously compare the unmasked bits of
the comparand to the corresponding bits of
every cell. If the comparand and cell contents
disagree in any unmasked bit, reset the
corresponding tag bit to 0; otherwise, do not
change the tag bit.

Obtain the logical OR of the contents of all cells
with their tag bits set. The OR function is
selected for convenience because it is easy to
implement in hardware. It can be replaced by
another function, such as logical AND or
arithmetic sum, if desired.

Copy the unmasked portion of the comparand
into the corresponding bits of all the cells with
their tag bits on. Do not change the cell
contents in the masked bit positions or the tag
values. This is sometimes referred to as the
"multiwrite" capability.

COUNT  Tell the Central Control how many responders
there are (compute the sum of all tag bits).
SHIFT = Move each tag bit value up or down by one
position (to the cell above or to the one below).

Many useful programs can be constructed with this simple
instruction set. For example, to locate the largest unsigned
integer in a particular field, we start with the instruction
sequence

SET
MATCH Comparand = X...X1X...X, Mask = 0...010...0
COUNT

where the unmasked bit (the single 1 in the Mask Register) is the
most significant bit of the desired field. If the result of COUNT
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is 1, we are done and a READ operation can supply the desired
maximal value.

If the COUNT result is greater than 1, then we must further
narrow down the search among already selected cells. In other
words, there are several cells storing a 1 in the most significant
bit of the search field and any of these cells may hold the desired
maximal value. The next narrowing step consists of suitably
modifying the Comparand and the Mask values and repeating the
process with the next most significant bit of the field.
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Figure 1. Functional View of SAM: Simple
Associative Memory.

Finally, if the result of COUNT is 0, we must restore the
previous states of the tag bits (assume we write the tag bits in a
scratch field before each phase) and move on to the next bit
position. The number of required phases in the worst case is
twice the length of the field and is thus independent of the AM
size. Foster [FOST76] presents a wealth of other examples for
the use of such instructions.

3. SYSTOLIC ARCHITECTURES

To illustrate the design principles for the proposed systolic
architectures, we will discuss how a basic AM might be
configured from small SAM-like building blocks according to
systolic design principles [KUNGS80], [KUNGS82]. The
proposed techniques can be applied to more complex AMs as
well as to associative processors by simple extension of the
designs and concepts presented here.

3.1. The Building-Block SAM

Clearly a SAM with multiple cells can be realized as a single
VLSI chip. The actual number of cells that can fit on such a chip
will depend on several implementation details, including internal
organization and word length.




The internal organization can be fully parallel, bit-serial, or
word-serial [PARH73]. The fully parallel organization is the
most complex and offers the highest speed. With the fully
parallel organization, a VLSI chip can contain a few tens of
cells. With the bit-serial organization, hundreds of cells per chip
may become feasible, but speed is also reduced by a factor
related to the average field length in associative operations.
Finally, the word-serial organization is the least complex and can
be implemented by high-speed shift registers. Because of high
density storage and sharing of processing logic, thousands of
cells may fit on a single VLSI chip, thus achieving significant
cost benefits at the expense of further reduction in speed.

Some implications of the speed-cost tradeoffs offered by
different internal building block organizations are discussed in
Section 4 of the paper. In the rest of this section, we will only
be concerned with the functional behavior of such
building-block SAMs (BB-SAMs).

Let each BB-SAM contain m cells and its instruction cycle time
be ¢;. To build an N-word AM from such building blocks, we
need b = N/m building blocks or chips. To be able to connect
BB-SAMs into a large system, special interface requirements
must be met. Obviously, each BB-SAM must be capable of
executing all SAM instructions and presenting the required
outputs in suitable formats. In addition, extra inputs must be
provided for receiving output information from other BB-SAMs
in order to internally compute a combined output (remeber that in
a systolic system, global control functions are disallowed).
Figure 2 shows a possible interface specification for a BB-SAM.
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Figure 2. The /O Interfaces of a Building-Block
SAM (BB-SAM).

3.2. Mesh-Connected Organizations

The simplest possible interconnection scheme for BB-SAMs is
the one-dimensional mesh or linear array (Figure 3). Although
this organization is less efficient than the others to be described
subsequently, it will be discussed in detail because its conceptual
simplicity provides a basis for understanding the more complex
organizations. Similar structures have been suggested with
much simpler cells to perform relational database operations on
externally supplied data [KUNG80a].
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Instructions are fed to the topmost BB-SAM. Upon receiving an
instruction, a BB-SAM executes it and forwards the result (if
any) along with the instruction itself to the next BB-SAM in the
array. Thus, the result of an instruction input at time ¢ will
emerge from the last BB-SAM at time ¢ + bc,, where c,, is the
cycle time of a BB-SAM. However, the next instruction can be
input to the topmost BB-SAM one cycle later (at time 1 + cp).
Instructions follow one another in the array, causing full
utilization of the BB-SAMs in the ideal case of an infinite
sequence of independent instructions.
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Figure 3. A SAM Structured as a Linear
Array of BB-SAMs.

This, of course, is standard pipelining or overlap processing.
The number b of stages in the pipeline is potentially very large
and full utilization is quite unlikely. Consider for example the
problem formulated at the end of Section 2. For this problem,
the Central Control must wait for the result of the COUNT
instruction after each phase in order to decide what to do next.
Thus, only three instructions will be present in the pipeline and
performance suffers. One way to improve performance is to
save the partial search results and proceed with other
computations while waiting for the outcome of some instruction.
In the case of the above example, this can be done by

COUNT
WRITE Comparand = X..X1X...X, Mask = 0...010...0

where the single 1 in the Mask Register designates a "scratch”
bit into which the current values of the tag bits are stored. The
Central Control is now free to initiate other computations.

For example, if determination of the minimal and median values
are also needed, phases of the three operations can be effectively
interleaved. When the required COUNT value is available, the
original tag values are restored by



MATCH Comparand = X...X1X...X, Mask = 0...010...0

and the next instruction in the sequence is issued.

The above discussion was intended as an illustration of the
concept of interleaving operations through a pipeline of
BB-SAMs. If, as stated earlier, the pipeline has thousands of
stages, such interleaving is unlikely to lead to high utilization
either because the required number of independent operations are
not available in the application or because the number of scratch
bits required becomes unacceptably large.

Higher-dimensional meshes are clearly more desirable because
of their smaller graph-theoretic diameters. However, whereas
the ordering of BB-SAMs in a linear array naturally corresponds

to the ordering of SAM cells, there is no correspondingly natural *

ordering in the case of higher-dimensional meshes.
Establishment of such an ordering is essential for proper
handling of the SHIFT instruction. We will only consider the
case of a two-dimensional mesh. However, extension of the
techniques to meshes with higher dimensions is straightforward.

Figure 4 shows a SAM structured as a two-dimensional mesh
(henceforth, simply mesh), with the ordering of BB-SAMs
given by their index numbers. The mesh has Vb rows and Vb
columns and completes the execution of one SAM instruction in
2Vb — 1 BB-SAM cycles.
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Figure 4. A SAM Structured as a 2-D Mesh.

Such mesh-connected structures have been proposed previously
for VLSI dictionary machines [DEHNS87], [PROBS87],
[SCHMSS5], which although similar to associative memories,
have more limited capabilities. Here, we borrow heavily from
the techniques offered in these proposals.
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Instructions are input at the upper left corner and move
downward and to the left. We will assume synchronous
operation of BB-SAMs in the following exposition for the sake
of clarity. Asynchronous operation, which is much more
desirable, is only slightly more complicated in terms of
hardware. With the assumption of synchronism, all BB-SAMs
located on the same SW-NE diagonal will receive the same
instruction simultaneously.

Execution of SET, MATCH, and WRITE instructions is
straightforward, since each BB-SAM essentially operates
independently. The outcome of READ depends on the contents
of all BB-SAMs. However, because of the logical-OR
combination rule, it does not matter how many times each
BB-SAM affects the result being formed. If another combining
operation is specified, then the considerations discussed below
for the COUNT instruction apply to READ as well.

To obtain the proper result for the COUNT instruction, it must
be ascertained that each BB-SAM affects the result only once.
One way to do this is shown in Figure 4, assuming that the
count inputs and outputs of 2a BB-SAM are related by

C'= C+ D + Intemal Count

and that unconnected count inputs carry zeros. As can be seen
in Figure 4, all BB-SAMs except for the ones in the last column
adjust the counts and pass them horizonatally (to the right) while
those in the last column add the internal count to the sum of C
and D and pass the result downward.

Finally, with the ordering of BB-SAMs shown in Figure 4, the
SHIFT instruction can be easily executed through information
passed on diagonal lines, horizontal lines in the first row, and
vertical lines in the first column (dotted arrows in Figure 4).

Consider for example a "shift down" instruction. BB-SAM 1
receives this instruction first, executes it internally, and passes
the shifted-out bit along with the instruction to BB-SAM 2,
while BB-SAM 3 receives only the instruction. For these two
BB-SAMs to execute the shift simultaneously, the last tag bit of
BB-SAM 2 must be wired to BB-SAM 3 so that it is available to
the latter at the beginning of the second cycle.

In general, the SW-NE diagonal connections carry the first and
last tag bit values of a BB-SAM to its diagonal neighbors. In
addition, unidirectional connections are required in the first row
and the first column for proper execution of the "shift up"
instruction for which data movement is against the instruction
flow in the pipeline. The input and output terminals for the
SW-NE diagonal connections have not been labelled in Figure 4
to avoid cluttering the diagram.

3.3. Tree-Structured Organizations

A tree-structured design seems quite natural for a search
processor in view of the effectiveness of tree data structures in
the efficient implementation of search operations on sequential
computers. Again, similar structures have been suggested for
implementing VLSI dictionary machines and database
processors [ATALSS], [BENT79], [BROW79], [CHANSS],
[GOYAS88], [OTTMS82], [SCHMS5], [SOMASS5], [SONGS0].

Figure 5 shows a SAM structured as a tree. As was the case for
mesh, executions of SET, MATCH, and WRITE instructions
are straightforward. READ (even in its generalized form where
logical OR is replaced by an arbitrary associative operation) and
COUNT are also simple because the tree structure has a built-in




capability for summarizing subtree results without a danger of
repetition. The only remaining problem is proper execution of
the SHIFT instruction.

It is relatively easy to show that if the cells in each BB-SAM are
considered to be consecutive, then no ordering of BB-SAMs in
the binary tree structure of Figure 5 will allow the execution of
the SHIFT instruction in the sense of assuring that all pairs of
consecutive cells are either in the same BB-SAM or in
neighboring BB-SAM (connected by a tree link). A more
general result (corresponding to the case where the tree nodes
and their built-in algorithms are not required to be identical) is
stated and proved below.
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Figure 5. A SAM Structured as a Tree of BB-SAMs.

Theorem: Suppose that disjoint subsets of the set of integers
{1,2,...,N] defining a partition on the set are assigned to
nodes of a complete binary tree having three or more levels such
that for each node B, the corresponding subset consists of
consecutive integers (say, {ig,ip+1,...,jp }). Then, there
exist integers k and k + 1 assigned to different nodes By and
By, such that neither node is a parent of the other (i.e., the
nodes B, and By, are not directly connected).

Proof: Clearly the theorem does not hold for one-level
(single-node) and two-level (three-node) complete binary trees.
This is why the number of levels is constrained to be 3 or more.
The proof is by contradiction. Assume that the required
assignment is made such that no two adjacent values are in
non-adjacent nodes. Consider the first three levels of a complete
binary tree with the nodes named as follows:
R
/\
S T
IANWA
UVWX
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Suppose that the root R is assigned the numbers i,i + 1, ..., j.
Then, one of its children, say S, must contain the consecutive
sequence A, h+1,...,i—1 and the other, say T, the sequence
j+1,j+2, ...,k Furthermore, all numbers assigned to the
subtree with root S must be less than i and all those residing in
the subtree with root T must be greater than j. For if there are
numbers less than i in both subtrees, the conclusion that adjacent
values exist in non-adjacent nodes is immediate. Now the
values assigned to the subtrees rooted at U and V must all be
less than h, which is impossible without having adjacent values
in non-adjacent nodes. &

The above theorem indicates that numbering of the cells in each
BB-SAM should not be consecutive. Non-consecutive
numbering of cells does not introduce any additional complexity
in the execution of SET, MATCH, READ, WRITE, and
COUNT instructions. However, it does complicate the logic
required for SHIFT and may lead to increased communication
complexity between neighbors for the exchange of tag values.

Fortunately, a numbering scheme can be devised that implies
insignificant logic overhead and no additional wires for
inter-node communication. The propopsed numbering scheme
for the cells is shown in Figure 6 for a seven-node tree of
BB-SAMs with 5 cells per node.
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........hn..

Figure 6. Ordering of Cells in a Tree-Structured AM.

In general, assuming that m = j —i + 3, the m cells of a given
BB-SAM are numbered h,i,i+ 1, ..., j, k, where all cells in
the left subtree have numbers between 4 and i and all cells in the
right subtree have numbers between j and k. This is a
generalization of a data storage pattern suggested for systolic
search tree structures [CHANS88]. The slight additional
complexity in shifting results from the fact that the end cells of a
BB-SAM should behave differently according to whether the
corresponding node is a leaf or an internal node of the tree.

The number of levels in a balanced binary tree with N =29 -1
nodes is a or 1 +log, N]. Instructions travel from the root of
the tree to the leaves and back to the root. Thus, the result of an
instruction input at time ¢ will emerge from the root BB-SAM at

time ¢ + (2a — 1)c’p, where ¢’ is the cycle time of a BB-SAM



for tree interconnection. However, the next instruction can be
input to the topmost BB-SAM one cycle later (at time ¢ + ¢%).
The cycle time ¢’ for a tree BB-SAM is larger than the cycle
time ¢, for a mesh BB-SAM, both because the former is more
complex internally and because it is connected to its neighbors
by longer wires.

Even though strictly speaking, tree-structured systems cannot be
systolic because they require arbitrarily long wires as the number
of nodes grows [PATES81], the wire length growth rate is
manageable for associative memory sizes likely to be of interest
in the foreseeable future.

3.4. Applicability of Other Interconnections

The hypercube network has become a very popular alternative
for interconnecting the components of multicomputer systems
and has also been proposed for the design of special-purpose
dictionary machines [DEHN88], [OMONS87], [SCHW87].
Unfortunately, the hypercube itself is not scalable (because its
nodes require r connections for a 2"-node system) and thus does
not satisfy the requirements for modular expansion and fixed
cycle time. However, a variant known as cube-connected cycles
[PREP81], with three links per node, can conceivably be used.

Another potential candidate is the the well-known perfect shuffle
network. There also exist a rich array of other interconnection
schemes that have been proven useful in different contexts for
parallel computers and multiprocessors (see, e.g., [SIEG85]).

A natural question is whether any of these interconnection
schemes offers advantages over the mesh and tree structures
discussed earlier. Although the application of various
interconnection schemes for implementing AMs deserves further
study, the following informal argument shows that the answer to
the above question is negative when simple AMs such as our
SAM system are to be realized.

The cube-connected cycles network provides logarithmic delay
but has a richer interconnection structure than the complete
binary tree (an N-node binary tree is interconnected by N — 1
links whereas an N-node cube-connected cycles network
requires roughly 3N/2 links). Since the binary tree already
offers this level of performance, nothing is to be gained from the
additional connectivity to compensate for the degradation
resulting from longer wires and more difficult wiring and layout.
The perfect shuffle interconnection has comparable complexity
to that of the cube-connected cycles network but is slightly more
difficult to lay out [PREP81].

Similar arguments apply to other interconnection schemes. In
any useful scheme, the nodes must have three or more links (the
only connected graphs that can be built from nodes of degree 2
are linear arrays and rings). Therefore, the nodes are at least as
complex as the tree nodes and the latency is at best logarithmic.

4. ORGANIZATIONAL TRADEOFFS

As mentioned in Subsection 3.1, the number m of cells that can
fit on a chip will depend on the internal organization of the
BB-SAMs. A slower word-serial organization accomodates
more words per chip, thus reducing the number b of chips, and
thus the cost, at the expense of a larger pipelining period ¢,
(lower throughput). A fast fully parallel organization will
maximize the throughput but will also increase the cost and
possibly the response latency (which may become quite
unacceptable in the case of a linear array). A wide range of
tradeoffs are thus available to the designer.
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Performance/cost tradeoffs must be considered in the design of
any parallel system. For example, it has been pointed out in
connection with dictionary machines [CARE84], [FISH84] that
processor-intensive designs do not necessarily yield significant
performance improvements over architectures that match the
requirements of the application area but utilize fewer processors.

To illustrate these tradeoffs in more concrete terms, let us
examine in some detail the design of a BB-SAM for the linear
array interconnection scheme. We consider three
implementation alternatives of fully parallel, bit-serial, and
word-serial, with the number of cells that would fit on a chip
being m, m’, and m", respectively. In general, the parameters
for the fully parallel, bit-serial, and word-serial organizations
will be denoted by simple, primed, and double-primed variables.

We are interested in two performance indicators: the response
latency L = bc;, and the pipelining period P = c,. The hardware

cost will be roughly proportional to b, the number of chips. We
have b =N/m, b’ = N/m’, and b” = N/m". Thus, to compare
the performance parameters for the three organizations being
considered, estimates for the relative magnitudes of ¢, ¢}’ ¢;"
and m, m’, m" are needed.

To obtain the required estimates for c;, ¢, and c;", let us look
at the operation of each scheme. In the fully parallel
organization, m comparators are built into each chip. Because of
the relatively long words that are typical in AMs (say, 128 or
256 bits), rippling time for the match signals in a comparison
cycle, and thus ¢,, may well exceed 1 microsecond.

Provision of m lookahead logic circuits to speed up the
propagation of match signals may of course be contemplated.
But this is clearly impractical for all but very small values of m.
Such a small value of m will in turn lead to an increase in the
number of chips and thus adversely affect the system cost.

In the bit-serial organization, depicted in Figure 7, data is stored
in a conventional memory module with bit-slice access. Because
bit slices can be read out selectively, the time needed for
comparison is proportional to the average length k of the search
or data field in MATCH, READ, and WRITE instructions.
Thus, we have

Cbl = ka

where c,, is the on-chip memory cycle time for reading out a
bit-slice inside the BB-SAM (processing steps in the bit-serial
organization can be overlapped with memory access and thus
need not be considered separately). Clearly, ¢, < ¢, with the
ratio ¢,/c,, potentially exceeding 10.

Finally, in the word-serial organization of Figure 8, the words
stored in each BB-SAM are shifted sequentially into the
processing section and compared to the common search key or
are appropriately modified. Because there is only a single
processor in each BB-SAM, it is possible (with low additional
cost) to fully pipeline its function such that the processing rate is
dictated by the much smaller shift cycle ¢, rather than the full
comparison cycle ¢;. Thus:

Cb“ = m"cs

With proper design, ¢, should be much smaller than c,, and like
cp/c,p, the ratio ¢, /c, can easily approach or exceed 10.

The relative magnitudes of m, m’, and m"” cannot be as e?sily
deduced without the benefit of actual hardware realizations.
Taking the intuitive discussion of Subsection 3.1 as a guide, we




can write m’/m = 10. Combining the above relationships and
estimates, we obtain:

P =c¢, = 1pusec
P'=c"y, = ke, = k(c,,/cp)e, = (k/10)P

P"=c"y = m'c; =m"(c,lc,)(Cplcp)cy = (m"/100)P

L = Ncy/m = N/m usec

L' = Nc'y/m' = Nkc,,/m’ = k(c,, [cp)(m'/m)L = (k/100)L
L" = Ne"y/m" =c, = m(cg/en)cpley)l = (m/100)L

Because both £ and m are almost certainly less than 100, the
bit-serial and word-serial organizations perform better with
respect to the latency parameter L. On the other hand, since k is
likely to be greater than 10 and m” greater than 100, the fully
parallel organization has the edge in terms of pipelining period P
or throughput.

Admittedly, the above estimates are quite rough and are therefore
subject to refinement. However, the preceding discussion has
hopefully convinced the reader that the parameters for the
various organizations are close enough to warrant detailed
inspection of the three alternatives for any specific application.
In particular, it is quite surprising that the very inexpensive
word-serial BB-SAM implementation can come so close to
matching the performance parameters of the most expensive
fully parallel version.
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Figure 7. Internal Organization of a Bit-Serial
BB-SAM.
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5. CONCLUSION

We have suggested systolic architectures for associative
memories, resulting in systems whose performance parameters
are realistically independent of size for long sequences of
operations with proper optimization of instruction sequencing.
The proposed architectures should lead to practical VLSI
realizations of large associative memories which would be
impossible to implement under the "operand-broadcasting" and
"reduction-by-wired-logic" paradigms.

Although the presentation was in terms of a synchronous mode
of operation for the building blocks (BB-SAMs), asynchronous
operation is more appropriate in practice and quite easy to
incorporate into the proposed systems. Similarly, an actual
system is likely to have a richer instruction set consisting of a
variety of searches, storage and manipulation of multiple tags in
the response store, and various modes of read and write
operations. Such additional instructions can be accomodated
with virtually no change in the conceptual framework of the
proposed designs.

Further research can be carried out in many directions. First, the
analyses offered in this paper for the linear-array structure need
to be refined and also extended to other interconnection
schemes. Second, numerous "optimistic" results on the
complexity of associative memory algorithms must be
reexamined in light of the new model, leading to fairer and more
realistic results. Third, the simple search and retrieval
operations considered in this paper can be augmented to include
more sophisticated data manipulation and retrieval primitives.



Additionally, the simple linear intercommunication capability of
the AM cells (provided through the SHIFT instruction) can be
extended in several different ways.

It would be interesting to observe the effects of such extensions
on the various organizational tradeoffs. Finally, the problem of
optimal instruction sequencing in the context of various
applications needs to be studied in order to assure efficient
utilization of the proposed systolic architectures.
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