The Mixed Serial/Parallel Approach to VLSI Search Processors

Behrooz Parhami

Dept. of Electrical & Computer Engineering
Univ. of California
Santa Barbara, CA 93106, USA

ABSTRACT

Associative memories (AMs) and algorithms for performing various
operations on them have been studied extensively for more than three
decades. In recent years, numerous VLSI-based dictionary machines (DMs),
that are essentially limited types of associative memories, have been
proposed and theoretically evaluated. In both cases, the proposed designs are
generally hardware-intensive and postulate the use of one processing element
for each record or for a small number of records. Given their special-purpose
natures and limited applications, such designs are not technically feasible or
economically viable with today's VLSI technology. Even when future
VLSI advances do allow the construction of such megaprocessor machines,
other architectures and implementation alternatives must be investigated in
search of an optimal design for a given set of requirements. In this paper,
we show that a mixed serial/parallel design methodology offers a wide range
of cost versus performance tradeoffs and results in AM or DM systems that
are practically realizable with today's VLSI technology. We discuss a design
methodology for VLSI search processors whereby most of the processing
elements of previous designs are replaced with high-speed shift registers.
Such an approach results in a significant cost reduction while maintaining a
reasonable suboptimal processing speed for databases of practical interest.
As an added benefit, the proposed designs offer considerable flexiblity in the
handling of variable-length and very long records. Such records are
impossible to handle or lead to intolerable performance penalties with
fixed-format designs. A key to the proposed architecture is the coupling of
high-speed shift registers with systolic string comparators that can operate at
extremely high clock rates. The speed/cost tradeoffs provided by various
architectural features of the proposed system are discussed and its
performance is compared to those of certain theoretically optimal but
currently unrealizable hardware-intensive architectures.

Keywords: Algorithms, Array processors, Associative devices,
Content-addressable memories, Database machines, Dictionary machines,
Information retrieval, Parallel processing, Pipelining, Search processors,
SIMD concurrency, String matching, Systolic design, VLSI-based design.

1. Introduction

Searching is an important subproblem in many computing
applications where.its speed and efficiency affect the respective
parameters of the overall solution. No direct statistics on the
prevalence of searching is available to the author. However,
Knuth suggests that over 25 percent of the running time of
modermn computers is spent on sorting and that in many systems
sorting uses more than half of the computing time [KNUT73].
Since a primary motivation for sorting is to simplify searching
and since searching can also be done without sorting, it is safe to
say that searching consumes directly or indirectly well over a
quarter of our available computational power. Therefore,
techniques for speeding up different types of searches that are
used in practice can have significant performance implications

0073-1129/91/0000/0202$01.00 © 1991 IEEE

202

for digital systems. Accordingly, computer designers have
investigated the use of special-purpose hardware devices and
subsystems to make searching faster and more efficient.

Associative memories (AMs), database computers (DBCs), and
more recently, VLSI-based dictionary machines (DMs) have
received considerable attention in the literature [PARH90a]. In
this paper, we refer to these systems collectively as "search
processors”. Although DBCs are in general capable of much
more than just searching a database, here we are only interested
in their searching capabilities/mechanisms that are quite similar
to those of AMs and DMs. Proposed designs for search
processors are generally hardware-intensive and postulate the
use of one processing element for each record or for a small
number of records. Given that search processors are special-
purpose and have limited applications, such designs are not
technically feasible or economically viable with today's VLSI
technology. Even when future VLSI advances. do allow the
construction of megaprocessor machines, other architectures and
implementation alternatives must be investigated in search of an
optimal design for a given set of requirements.

In its simplest form, an associative memory (AM) is a hardware
device consisting of N fixed-size cells, each storing a data word
or record or marked as empty (Figure 1). When presented with
a search key or comparand, a mask showing the relevant field(s)
of the stored words, and possibly an inszruction specifying the
type of search, the AM responds by marking all the words that
match the given key. Marking is done by setting or resetting a
response bit or tag (bit) in the AM cell. The N response bits
form the AM's response store. A response indicator mechanism
may provide information on the multiplicity of responders (zero,
one, several). If there is no responder, the search outcome is
negative and we can proceed to the next step of our algorithm.
With one responder, the required data item has been located and
can be appropriately dealt with by reading it out or modifying it
in-place. If there are several responders, the appropriate action
might be proceeding to further narrow down the search, simul-
taneously modifying all responders in-place, or examining the
responders in turn through a multiple response resolver.

Research on associative memories started in the mid 1950s.
Early associative memory proposals were in the "fully parallel”
class whereby processing logic is associated with every bit of
the memory array; thus all stored data bits are simultaneously
compared to the comparand bits and the bitwise match results
combined to obtain the word-match indicators. Soon it was
realized that "bit-serial, word-parallel" designs (sometimes
designated simply as "bit-serial") that read out a complete bir
slice of data into processing elements external to the memory
array are much more practical since they take advantage of the
high density and low cost of conventional memories and also

can be designed to perform parallel operations other than simple
searches at little extra cost. This led to a large number of actual
implementations, including Goodyear's well-known STARAN
system. More recently, the Connection Machine [HILL8S5] has
utilized such a bit-serial organization. Although some "bit-
parallel, word-serial" designs ("word-serial” for short) based on
shift registers were also proposed in the early years, they all
turned out to be impractical for real applications. A fourth
alternative organization, the so-called "block-oriented” design,
that emerged in the early 1970s [PARH72], became the basis for
many database machine designs.

CONTROL | Global Operations Control & Response
UNIT -
Comparand Read Response
ILines Store
Mask (Tags)
! Celll 1 1
! Cell 2 | 5
l Global
Ta
Cell 3 s Opéra-
tions
I Unit
Data and - -
Commands . . .
Broadcast . - .
I
CellN N—>

Figure 1. Functional View of an Associative Memory.

Many algorithms have been developed for performing search,
retrieval, and arithmetic/logic operations on data stored in AMs
[PARH90a]. A common flaw in the analyses offered by
designers of AMs and of AM algorithms is the assumption that
the basic cycle time of an associative memory is a constant
independent of size, thus leading to the optimistic conclusion
that an N-word AM offers n-fold speedup compared to linear
search in an unordered list of » items (n <N). While this may
be accurate for small values of N, it is grossly unfair to equate
the cycle time of a large associative memory (say, one holding
hundreds of thousands of data items) with that of simpler
hardware used in conventional sequential systems to which AM
designs are compared. Realistic analyses of the speedup offered
by AMs and AM algorithms would require the development of a
model that predicts the cycle time of an N-word AM as a
function of N. Such a model would depend on the technology
used to implement the AM and on its architecture. The
dependence of cycle time on N arises from:

1. Broadcasting instructions to all N cells in the AM.

2. Performing global operations on N response bits.
The required cycle time for broadcasting obviously increases as
we go from single-chip to multiple-chip and multiple-board

systems, simply because longer interconnections will be
involved and, a larger number of loads must be driven. As we

203

move towards widespread utilization of advanced submicron
technologies for VLSI, the effect of long wires is becoming
important even within a single chip. The transmission delay on
such wires on a chip is dominated by their RC time delay and
can easily overshadow data manipulation times which are
functions of logic gate delays. Table I shows the RC-delay and
gate-delay values for the MOS technology.

As for global operations, such as those required for multiple
response resolution, the effect of long wires is compounded by
the requirement for logic manipulation. It is well-known that
even if propagation delays are insignificant, a global operation
on N bits by limited fan-in circuits requires time that is at least
proportional to log N. Yet even recent works on associative
memory architectures and algorithms claim "constant time" for
N-operand global operations such as logical OR and logical
AND for which the use of "wired logic" is generally assumed
(see e.g. [DAVI86] and [LEEDSS]).

It follows that the scalability issue for AMs must be explicitly
addressed if large units are to be realized with the VLSI
technolgy. Several authors have dealt with the VLSI realization
of AMs [WEEMS2], [SIVI85], [HURS87]. However, the
scalability issue has only been hinted at by Hurson and Shirazi
[HURS87] who suggest that "large” AMs can be built by taking
advantage of wafer-scale integration and/or a bus-based
interconnection of smaller modules. In this paper, we show that
a mixed serial/parallel design methodology combined with a
pipelined mode of operation not only leads to scalable designs
but also offers a wide range of cost versus performance
tradeoffs resulting in AMs or DM that are practically realizable
with today's VLSI technology.

We discuss a design methodology for VLSI search processors
whereby most of the processing elements of previous designs
are replaced with high-speed shift registers. Such an approach
results in a significant cost reduction while maintaining a
reasonable suboptimal processing speed for databases of
practical interest. As an added benefit, the proposed designs
offer considerable flexiblity in the handling of variable-length
and very long records. Such records are impossible to handle or
lead to intolerable performance penalties with fixed-format
designs. A key to the proposed architecture is the coupling of
high-speed shift registers with systolic string comparators that
can operate at extremely high clock rates. The speed/cost
tradeoffs provided by various architectural features of the
proposed system are discussed and its performance is compared
to those of certain theoretically optimal but currently unrealizable
hardware-intensive architectures.

The remainder of this paper is organized as follows. Section 2
is devoted to a discussion of dictionary machines (DMs), a class
of simple search processors that will be used as a vehicle for
making the architectural descriptions and analyses that follow
understandable as well as more concrete. In Section 3, we
discuss the serial/paralle]l design paradigm by presenting an
example design for a simple DM (with only "search”, "insert",
and "delete" instructions) based on a combination of high-speed,
low-cost shift registers and systolic string comparators. This is
followed in Section 4 by an evaluation of the DM design in
terms of two key performance attributes: The response latency L
and the pipelining period P. Section 5 deals with a
generalization of the serial/parallel design paradigm to multi-level
systolic search processors with more extensive instruction sets.
Counting of responders and shifting of response bits in an AM
are used to illustrate additional problems that need to be dealt
with. Finally, concluding remarks and ideas for further research
are offered in Section 6.

2. A Class of Search Processors

Although the serial/parallel design paradigm presented in this
paper is applicable to many searching problems and the
associated search processors, we initially limit our presentation
to dictionary machines for the sake of clarity. Extensions to the
ideas presented, which would be required for realizing more
complicated searches and related operations, are discussed in
Section 5 of the paper.

A dictionary machine (DM) is a device that stores a set of
records, each having a unique key with some associated
infonpation (info), and supports the following basic set of
operations:

® search(key, info): Return the info associated with the
given key, if stored; return null if not.

® insert(key, info): Add a (new) record with the given
key and info to the database.

® delete(key, info): Delete the (stored) record with the
given key from database; return the info.

Actually, the standard form of the delete operation only needs a
single parameter (the key). However, for the sake of
uniformity, we assume the the DM returns the info part of a
record when it is deleted. With this convention, the search
operation can be viewed as a delete-insert pair, where insertion
is done only if deletion is successful. Ideally, a DM should be
able to deal with duplicate insertions (attempting to insert a
record that is already stored) and redundant deletions (attempting
to delete a nonexistent record) by treating them as no-operations.
However, not all proposed DMs have such a capability.

In addition to the above basic set, many other operations have
been suggested for DMs, depending on the requirements of
particular applications or the capabilities inherent in suggested
hardware implementations. Here is a sample:

® findbest(key, info): Return the info part of a record
whose key best matches the given key.

® findmin(key, info): Return the smallest stored key
along with its associated info.

® deletemin(key, info): Delete the record that has the
smallest key; return both key and info.

In the findbest operation, the criteria for judging the "best"
match are application-dependent. Some possibilities are
“closest” and "next higher" for numeric keys or "smallest edit
distance" or "longest substring match" for bit and character
strings. The findmin and deletemin operations above are
required operations for a "priority queue” (standard deletemin
does not return any value) and can be added to the operation set
of a sorted-key DM with little or no additional cost. Besides the
record having the smallest key, the one with the largest key
(findmax, deletemax) or the median-value key (findmed,
deletemed) may be dealt with in some applications.

Many VLSI-based DMs have been proposed in the literature.
These machines typically realize the basic set of DM operations,
plus possibly some of the operations in the extended set, by
using one processor for each record or for a small number of
records. The processors are connected in a tree [ATALSS5],
[BENT79], [BROW79], [CHANSS], [GOYA88], [OTTMS2],
[SCHMB5], [SOMAS8S], [SONG80], hypercube [DEHNS88],
[OMONBS7], [SCHW87], or mesh [DEHNS87], [PROB87],

204

[SCHMS5]. In each case, pipelining or systolic operation is
used to improve the system performance for multiple searches
by allowing a new instruction to be pumped into the system with
every clock tick, while the response latency for individual
searches may be quite large (perhaps hundreds or thousands of
clock cycles). Thus, many searches are processed concurrently.
Consistent handling of search, insert, and delete operations in
view of the inter-operation concurrency leads to many design
problems that have been studied by numerous researchers.

The response latencies of tree- and hypercube-based DMs are
logarithmic (ignoring of course the important effects of layout
and long wires) while that of mesh-connected machines is
realistically proportional to the square root of the number N of
processors or the number n of stored records, depending on
design. Strictly speaking, tree-structured systems cannot be
systolic because they require arbitrarily long wires as the number
of nodes grows [PATE81]. However, the wire length growth
rate appears to be manageable for DM sizes likely to be of
interest in the foreseeable future. The above issue is much more
serious for the hypercube interconnection scheme for which the
requirement of [log, N1 connections to each processor
compounds the scalability problem. The excessive cost of the
one-processor-per-key approach, along with its implicit
assumption of short fixed-length keys, has led to one proposal
advocating the use of a relatively small number of processors
equal to the maximum key length. The resulting "radix
machine" [FISH84] consists of an array of conventional
processors (with large random-access memories) executing
instructions in a pipelined mode (see also [CARES4]).

Like any other data management problem, an application
requiring dictionary operations can be implemented in a variety
of ways; from software implementation on a sequential computer
using conventional data organization and search algorithms
[KNUT73], [MEHL.84] at one extreme to the use of hardware-
intensive DMs at the other. The serial/parallel approach
presented in this paper provides additional points in the design
space of special-purpose DMs. We will only consider the three
basic DM operations in detail. Implementation of the other
operations are briefly discussed at the algorithm level without
much attention to hardware design considerations.

3. A Serial/Parallel Architecture

In its simplest form, the hardware of the proposed DM consists
of a linear array of p processing elements, P;, P,, ..., P,. As
shown in Figure 2, processing element P; is connected to a
circular shift register (loop) having the register elements R;1,
R;2,...,R;;and to a systolic comparator of length k
consisting of the cells C;y, C;», ..., C;;. EachR;;holds one
symbol from a finite record alphabet. Records have the format

(key-string) ¢ (info-string) p

where ¢ is a special field separator and p is an end-of-record
marker. It will be assumed that the empty space in each shift
register is organized into a record having the null key. Thus,
every record starts and ends with p. Each processing element
knows the length of the empty space in its shift register.

Instructions and responses are also symbol strings. Instruction
strings enter P, and response strings emerge from P,. To
simplify things, we will describe the DM operations as if all
processors and shift registers were synchronized by means of
external clocks. The shift clock period will be denoted by c, and
the processor-to-processor communication clock period will be
denoted by ¢,. However, the architecture easily supports an

asynchronous mode of operation in the vertical (processor)
dimension if the processors are provided with input and output
buffers, with a flag indicating the availability of the input buffer
for accepting incoming data. Asynchronous operation in the
horizontal (shift-register) dimension, while possible, is much
more difficult to implement without losing the advantage of
high-speed shifting that is possible in synchronous mode.

Instructions

».1
<«4—— SHIFT REGISTERS —»

«4— SYSTOLIC COMPARATORS —&

Figure 2. Organization of the Proposed Serial/Parallel Search Processor.

A search instruction is characterized by the following input and
output strings:

Input: o (reverse-key-string) p

Output: o (info-string) p

The key is input in reverse order to facilitate the matching
operation in the systolic comparator (alternatively, one could
require that keys be stored in reverse order in the shift registers).
A processor receiving the search symbol o, will pass it and all
following symbols up to and including the first p to the next
processor and shifts the same symbols (o replaced with ¢) into
its systolic comparator cells (for the key string ‘LILIPUT', the
comparator cell contents will be '¢TUPILILp’). When a
processor in state ¢ (search instruction input) receives the p
symbol, it goes into the state ¢’ (search in progress) and starts
pumping the shift register contents into the systolic comparator.

The comparator works as follows. In addition to the permanent
copy of the key, a shifted version representing the tail or the
unmatched portion of the key is kept. Initially, the tail is the
same as the key. The first p that emerges from the shift register
matches the stored p symbol. The key tail is now shifted to the
right, with the head symbol p disappearing. The shifting can be
done without the ripple effect (which would lengthen the
required clock cycle) in accordance with the systolic design
principles in general and implementation details of systolic
stacks in particular (see, €.g., [KUNG82], [GUIB82}).

Intuitively, the following occurs in the systolic stack. The cells
go through two phases of operation for each input symbol
processed. The first shifted key tail for the above example will
be '¢TUPILI-L', with a "hole" (denoted by '-') created as a
result of shifting the 'L' to the right (refer to Table II). The
comparator cell holding 'T' notes the presence of the hole in
Phase 2 and shifts its contents to the right, just in time for the

next shift into the head cell. This process is repeated, with the
next required symbol always being in the correct cell. Because
insertions are not required during the use of our systolic stack
for matching, its design is simpler than a general systolic stack
which requires more "idle” phases between operations. The first
non-matching symbol generates a signal which resets the key tail
to its initial full-key value. Even though the reset signal ripples
from one comparator cell to another, this causes no slowdown
as each symbol will have been reset by the time it is needed.

A complete match is detected when both the key tail symbol in
C;; and the next input symbol are ¢. At this point, the
processor passes a ¢ ' symbol to the next processor and then
pumps downward the info-string symbols as they emerge from
the shift register. An incoming o’ cancels the processor's own
search and puts it in state ¢ ” for relaying the incoming
information stream downward.

Table I

Analysis of a 12mm Connection in Metal [LEWI87].

Lambda (um) RC delay (nsec) Gate delay (nsec)

5.0 0.1 5.0

2.5 0.2 2.5

0.5 1.0 0.5

0.1 5.0 0.1
Table I

Example for the Operation of a Simple-Match Systolic Comparator.

Stored Key — ¢ TUPILILYP 4 Input String
Key Tail (Ph. 1) ¢ TUPI LIULp <+ pLILIPUTY
KeyTail Ph.2) ¢ TUPI LI L -

KeyTail®h.1) ¢ TUPI LI - L < LILIPUT
KeyTail@®h.2) ¢ TUPI L - I -

KeyTail(®h.1) ¢ TUPI - L- 1 & ILIPUT$
KeyTailPh.2) ¢ TUP - 1 - L -

KeyTail®h.1) ¢ T U- P- 1 - L & LIPUT
Key Tail (Ph. 2) ¢T-U-P-1TL

KeyTail®h.1) ¢ - T- U- P- 1 & IPUT$
KeyTail ®h.2) - ¢ - T - U- P -

Key Tail (Ph. 1) - - ¢- T- U- P e PUT¢
KeyTailPh.2) - - - ¢ - T - U -

KeyTal ®h.1) - - - - ¢ - T- U& UT¢

KeyTail Ph.2) - - - - - ¢ - T - _

KeyTail Ph.1) - - - - - - ¢ - T o To

KeyTail Ph.2) - - - - - - - ¢ -

Key Tail (Ph. 1) B R

Key Tail (Ph. 2) Complete Match Detected!

205

The search latency, defined as the period of time between the
input of the last key symbol and the output of the first
information symbol, is roughly:

L=pc,+lc

The pipelining period, defined as the period of time between two
successive search requests, is equal to the time needed for one
trip around the loop or roughly:

P =lc

These equations are approximate in the sense that some constant
instruction set-up times have not been included. However, since
pand ! are relatively large, the inaccuracy is not significant.

An insert instruction is characterized by the following input and
output strings:

Input: 1 {reverse-key-string) ¢ (info-string) p

Output: 1’

The first processor that has sufficient empty space for the record
will do the insertion. Upon receipt of the p symbol, a processor
will know whether it has enough space for the insertion. If so,
it simply passes an "insertion-complete” symbol 1’ to the next
processor instead of the p symbol. This symbol is passed
downward, invalidates all insertion requests, and eventually
emerges as the DM response to the insert operation. It is
relatively easy to handle duplicate insertions if the design is such
that the insert instruction also causes any existing copy to be
deleted (as discussed for delete below).

A delete instruction is characterized by the following input and
output strings:

Input: & (reverse-key-string) p

Output: §° (info-string) p

The search part of the delete instruction is identical to that of the
search instruction. Once a match is indicated, the info-string is
pumped downward following the symbol 6. This info-string
is not restored into the shift register. The only remaining
problem is how to delete the key which under the search mode
of operation is completely restored into the shift register by the
time a match is detected. A possible approach would be to
provide a key buffer in each processor. With this buffer, keys
are not automatically restored into the shift register but are
pumped into the key buffer which becomes a variable-length
extension to the shift register. Upon the detection of a match
during a delete operation, the key buffer is bypassed and the
empty-space length counter is incremented by the key length
initially and by 1 with every information symbol pumped out.

The main problem with the above approach is the requirement
for a large key register in each processor to accomodate the
longest possible key. This not only increases the processor
complexity substantially, but also nullifies our architecture's
flexibility in dealing with very long and variable-length keys.
An alternative solution would be to provide a single-symbol
buffer in each processor that essentially delays the storing back
of symbols into the shift register by 1 shift cycle. When a match
is detected during a "delete” operation, the last key symbol will
be replaced by a special "nullifying” symbol. Encountering this
special symbol during a search operation invalidates partial
match results obtained thus far. Future research must deal with
methods for reclaiming the space occupied by such nullified key.

206

The response latency and pipelining delay for insertion and
deletion operations are the same as those for searching which
were derived earlier. Thus, the same equations can be used for
L and P without regard to the dictionary operation performed.
The implications of these equations on the response latency and
throughput of the proposed DM are discussed in Section 4.

If all we needed was "exact comparison” of a given key with
fixed-length stored keys, the proposed DM would probably not
be competitive with conventional (software) approaches in view
of the relatively large pipelining period P. However, if more
complicated search operations are required, then the architecture
presented here becomes quite attractive. For example, if the
search must be based on the longest substring match, the
systolic comparator might work as follows. Initially, all
comparator cells contain zero as the length of the longest match
thus far. The longest match information, when updated, ripples
rightward, so that ignoring pending propagates, the head
comparator cell C;; always contains information about the
longest substring match thus far. Each symbol shifted through
the comparator carries with it a count representing the length of
the present substring match ending in that symbol. Table III
shows an example where the search key is 'LILIPUT' and 'LIP'
enters as an input key. The dots in Table II represent either the
absense of further information (due to the processor skipping the
information part of the record) or the next key that must be
compared. Upon completion of one circulation of the shift
register and after a short delay for the rightward propagation of
the "longest match” information, each processor will know the
longest match that it has found. In the next circulation, each
processor sends the string

o' {match-length) (shift-register-contents)

downward. [Each processor receiving the above string,
compares the received (match-length) to its own value and
decides on relaying or ignoring the input information. Some
post-processing by the host is required to retrieve the desired
record from the shift register contents received. In this way, the
DM filters out a great deal of irrelevant information.

Systolic comparators can be designed for other types of searches
as required. Details for several useful search classes (e.g. the
ones needed for executing instructions such as findmin and
findmax) are being worked out. Such systolic comparators are
useful components for designing high-speed special-purpose
systems and may find applications other than those suggested
here in connection with search processors. Eventually, if the
proposed architecture proves to be practical, shift-register and
systolic comparator libraries may be developed, with individual
members of such libraries automatically selected and combined
by appropriate VLSI design tools into a final hardware layout.

4. Performance Parameters and Tradeoffs

The analyses in this section are based on the latency and delay
equations obtained in Section 3. Given a fixed overall DM
capacity N (in terms of the number of R-symbol records), we
can writte N=1Ip /R or:

I =NR/p

Substituting this value for / in the latency and pipelining period
equations, we get:
L=pc,+NRc,/p

P

NRc/p

Clearly, the DM throughput (inverse of P) is proportional to the
number p of processors. Thus if throughput is of primary
importance, the number of processors must be made as large as
possible within the given cost constraints. On the other hand, if
latency is to be minimized, the number of processors should be:

p =NRc,/ ¢y
This choice will yield the minimal latency of
Lpin = 2VN R ¢ ¢,

and a corresponding delay of half this amount. This delay is too
large to be of practical interest. Thus the DM is likely to be
designed with a higher latency and a correspondingly higher
throughput.

Let us compare these performance parameters to those of mesh-
connected DMs that have constant p‘iﬁglining delays of c,, and
response latencies proportional to VN; say 2c,, VN. Because
each processor in such DMs has to compare a complete key in
each clock cycle of length c,, while a processor in our design
compares only a single symbol in its clock cycle of length ¢, it
is true that:

cs << ¢

p << Cp

Although precise estimates cannot be given at this stage, let us
assume somewhat arbitrarily

cmlcp = cylcs =20

corresponding to clock periods of a few nanoseconds for
shifting, a few tens to a hundred nanoseconds for simple
interprocessor transfers, and a couple of microseconds for
matching a complete key in a more complex processor. With
these values, the above latency and pipelining period equations
yield the following ratios for the latency and pipelining period of
our proposed dictionary machine relative to mesh-connected
DMs assuming an average record length of R = 20:

Latency Ratio = 0.025 (/YN + VN/p)
Pipelining Period Ratio = 0.0SN /p

Again arbitrarily choosing p = VN, latency and pipelining period
ratios become 0.05 and 0.05 VN, respectively. This means that
the proposed DM with VN processors is about 20 times faster in
terms of response latency. With a database of size N = 106
records, the delay ratio and thus throughput reduction factor will
be 50. This performance is achieved with orders of magnitude
less hardware.

Table IV shows the tradeoffs available to the designer by listing
the above two ratios for different values of p assuming a
database of N = 106 records. The important point is that even if
the values used for c,,/c, and c,/c; are not valid for a particular
technology or implementation alternative, the existence of such
tradeoffs will not be affected. Only the values and specific
crossover points will change. Note that in the extreme case of
one record per processor , we obtain a DM based on a linear
array of processing elements. In the other extreme of a single
processor for all records, we obtain a record-sequential DM
which is similar to the word-serial associative processors of
many years ago. Clearly, neither of these two extremes is of
practical interest for large dictionaries.

The above estimates are quite rough and are therefore subject to
refinement. However, consider what would happen even if

207

Table I

Example for the Operation of the Longest-Substring-Match
Systolic Comparator.

Stored Key — ¢ T UP 1 L I L IlnputStringd
pLIP...

Current Match * - e e e - e - .

Longest Match * .

Comparands p LIPG®...

Current Match - - - - - - -0

Longest Match - - - - - - -0

Comparands p L 1 P¢

Current Match e | S |

Longest Match - - - - - - 01

Comparands p L1 Pg¢.

Current Match - - - - - 010

Longest Match - - - - - 0 1 1

Comparands p L 1T P ¢

Current Match - - - - 01 2 0

Longest Match - - - - 01 2 1

Comparands p L 1T P ¢

Current Match - - - 01 0 0 O

Longest Match - - - 0 1 1 2 2

Comparands p LI P ¢

Current Match - - 012000

Longest Match - - 01 2 2 2 2

Comparands p L1 P ¢

Current Match - 01 2 0 0 0 O

Longest Match - 01 2 2 2 2 2

Comparands p L1 P ¢

Current Match 01 2 3 0 0 0O

Longest Match o1 2 3 2 2 2 2

* initial zeros are denoted by - for clarity.

these estimates were an order of magnitude too optimistic. We
would still have a DM that is considerably less expensive than
one with millions of processors while having competitive
response latency and a throughput that is inferior by two to three
orders of magnitude. Thus, a search instruction can be inititated
every millisecond or so rather than every few microseconds.
Such a system can satisfy the requirements of many applications
and provides a valid point in the design space of special purpose
search processors.

If the processors of Figure 2 are connected in a two-dimensional
mesh or in a binary tree structure instead of a linear array,
performance parameters will improve theoretically. However,

such a tree or mesh of shift registers is not directly realizable in
today's two-dimensional VLSI technology. Thus to be
completely fair in our comparison, we chose to compare our
linear array of shift registers, which is essentially a 2-
dimensional structure, to 2-dimensional standard DMs. Despite
the above observation, such variations on the basic architecture
discussed in this paper deserve further study.

Table IV

Latency and Pipelining Period Ratios for a Database
of N = 108 Records.

)4 Latency Ratio Pipelining Ratio

100 0.253 500
200 0.130 250
500 0.063 100
1000 0.050 50
2000 0.063 25
5000 0.130 10
10,000 0.253 5

20,000 0.501 2.5

50,000 1.250 1.0

100,000 2.500 0.5

5. Multi-Level Systolic Search Processors

The serial/parallel design discussed in Sections 3 and 4 can be
viewed as a spcial case of a two-level search processor where at
the coarse or high level, p processors are used that are arranged
as a linear array and operate in parallel while at the fine or low
level simple sequential search is utilized. It is natural to
generalize this scheme to a multi-level search processor where
possibly different architectures and processor interconnection
schemes are used at each level. To simplify our discussion, we
will only deal with two-level systolic search processors here.

We start by presenting the functional specification of a simple
AM (henceforth, SAM). With reference to Figure 1, SAM can
execute the following instructions:

SET Initialize all tag bits to 1.

MATCH Reset the tag bits of all mismatching cells to 0.
READ OR the contents of all cells with their tag bits set.
WRITE Write into all cells that have their tag bits set.
COUNT Tell Central Control how many responders there are.
SHIFT Move each tag bit value up or down by one position .

We next discuss how a basic AM might be configured from
small SAM-like building blocks (BB-SAMs) according to
systolic design principles. Clearly a BB-SAM with multiple
cells can be realized as a single VLSI chip. The actual number
of cells that can fit on such a chip will depend on implementation
details, including internal organization and word length. The
internal organization can be fully parallel, bit-serial, or word-
serial [PARH73]. With the fully parallel organization, which is
the most complex and offers the highest speed, a MOS VLSI
chip can contain a few tens of cells. With the bit-serial
organization, hundreds of cells per chip may become feasible,

208

but speed is also reduced by a factor related to the average field
length in associative operations. The word-serial organization is
the least complex and can be implemented by high-speed shift
registers, making it possible to fit thousands of cells on a single
chip to achieve significant cost benefits.

Let each BB-SAM contain m cells and its instruction cycle time
be ¢. To build an N-word AM from such building blocks, we
need b = N/m building blocks or chips. To connect BB-SAMs
into a large system, special interface requirements must be met.
Figure 3 shows a possible interface specification for a BB-SAM.
Any one of the three instruction inputs I, J, or K can carry a
command for the BB-SAM of Figure 3 (not all three are needed
in some organizations). Similarly, a BB-SAM can pass on an
instruction to at most two other BB-SAMs by using the
instruction outputs I' and J'. The values on count inputs and
output of a BB-SAM are related by:

C'= C + D + Internal Count

For the purpose of executing the SHIFT instruction, each cell
within a BB-SAM is assigned a sequence number. Let / and £
be the smallest and largest sequence numbers within the BB-
SAM under consideration. It has been established [PARH90],
[PARH90b] that for tree-structured designs, the cells cannot be
consecutively numbered from 4 to k and that two extra pairs of
shift input and output lines (say A1, Al', B1, and B1') will be
needed to properly handle the SHIFT instruction. For now, let
us assume that cells are consecutively numbered &, £+ 1, ...,
k. Then the shift inputs A and B will carry the tag bit values
from cells A — 1 and k + 1, respectively. Similarly, the shift
outputs A' and B' will carry the tag bit values from cells 2 and k
and are connected to the shift inputs of BB-SAMs containing the
cells —1 and k + 1, respectively.

Instructions

Shift Inputs (and Data) 0
Input Instruc-
tion Count BA I C
Inputs Inputs

BB-SAM 1

voy || T

BA I (o]

I-to-O BB-SAM 2

Delay | BB.SAM A v o
rb Latency HE
=g i

! A'B T J C
Oulput%

ety

Above

¥ Instruc- Count
Output tion Output A
to Outputs A ¢
Below BB-SAM b
Shift Qutputs BA I o
L Final
Data Count

Figure 3. The I/O Interfaces of a Building-Block SAM (BB-SAM)
and a Linear Array of Such Building Blocks.

The simplest possible interconnection scheme for BB-SAMs is a
one-dimensional or linear array (Figure 3). Instructions are fed
to the topmost BB-SAM. Upon receiving an instruction, a BB-
SAM executes it and forwards the result (if any) along with the

instruction itself to the next BB-SAM in the array. Thus, the
result of an instruction input at time ¢ will emerge from the last
BB-SAM at time + bc, where c is the cycle time of a BB-SAM.
However, the next instruction can be input to the topmost BB-
SAM one cycle later (at time 7 + ¢). Instructions follow one
another, causing full utilization of the BB-SAMs in the ideal case
of an infinite sequence of independent instructions.

Higher-dimensional arrays are clearly more desirable because of
their smaller graph-theoretic diameters. In the case of a two-
dimensional mesh, the result of an instruction input at time ¢ to
the leftmost BB-SAM in the top row will emerge from the
rightmost BB-SAM in the bottom row.at time ¢ + Vb — Dy
where ¢y is the cycle time of a BB-SAM for mesh
interconnection. However, the next instruction can be input to
the topmost BB-SAM one cycle later (at time ¢ + cy). The cycle
time ¢y, for a mesh BB-SAM is likely to be larger than the cycle
time ¢ for a linear-array BB-SAM due to the slightly greater
complexity. For a binary-tree organization of BB-SAMs, the
result of an instruction input at time # to the root cell will emerge
from the root BB-SAM at time t + (2@ — 1)cy, where ¢y is the
cycle time of a BB-SAM for tree interconnection. Again, the
next instruction can be input to the topmost BB-SAM one cycle
later (at time ¢ + ¢7). The cycle time ¢y for a tree BB-SAM is
larger than the cycle times ¢ and ¢,y for linear-array and mesh
BB-SAMs, both because the former is more complex internally
and because it is connected to its neighbors by longer wires.
Details of these organizations are omitted here for brevity.

As mentioned earlier, the number m of cells that can fit on a chip
will depend on the internal organization of the BB-SAMs. The
slower word-serial organization accomodates more words per
chip, thus reducing the number b of chips, and thus the cost, at
the expense of a larger pipelining period c;, (lower throughput).
A fast fully parallel organization will maximize the throughput
but will also increase the cost and possibly the response latency
(which may become quite unacceptable in the case of a linear
array). A wide range of tradeoffs are thus available.

To illustrate these tradeoffs in more concrete terms, let us
examine in some detail the design of a BB-SAM for the linear
array interconnection scheme. We consider 3 implementation
alternatives of fully parallel, bit-serial, and word-serial, with the
number of cells that would fit on a chip being m, m’, and m”,
respectively. In general, the parameters for the fully parallel,
bit-serial, and word-serial organizations will be denoted by
simple, primed, and double-primed variables. We are interested
in two performance indicators: the response latency L = bc and
the pipelining period P = ¢. The hardware cost will be roughly
proportional to b, the number of chips. We have b =N/m, b’ =
N/m’, and b” = N/m". Thus, to compare the performance of the
three organizations being considered, estimates for the relative
magnitudes of ¢, ¢, ¢” and m, m’, m" are needed.

To obtain the required estimates for ¢, ¢’, and ¢”, let us look at
the operation of each scheme. In the fully parallel organization,
m comparators are built into each chip. Because of the relatively
long words of typical AMs (say 256 bits or more), rippling time
for the match signals in a comparison cycle, and thus ¢, may
well exceed 1 microsecond (256 * 2 logic levels * 2 nsec, say).
In the bit-serial organization, data is stored in a conventional
memory module with bit-slice access. The time needed for
MATCH, READ, and WRITE instructions is proportional to the
average length k of the search or data field. Thus, we have ¢'=
kc,,, where c,, is the on-chip memory cycle time (typically less
than 100 nsec). Processing time can be overlapped with
memory access and thus need not be considered separately.
Clearly, c,, < ¢, with the ratio r’, = ¢ /c,,, potentially exceeding
10. In the word-serial organization, records are shifted

209

sequentially into the processing section. If the processing
function is pipelined, the data rate is dictated by the much
smaller shift cycle c, rather than the full comparison cycle c.
Thus, ¢” = m"c,. With proper design, c; should be much smaller
than c,, (as low as 10 nsec or less) and like ¢ /c,,, the ratio r”, =
¢, /c can easily approach or exceed 10.

The relative magnitudes of m, m’, and m” cannot be as easily
deduced without the benefit of actual hardware realizations.
Assume m’/m =r’,, and m”/m =r",. Combining the above
relationships and estimates, we can write P = ¢, L = Nc/m, and:

P'=c¢' = k¢, = ck(c,/c) = PkIr';

P"=c¢" = m"c; =cm"(ClXcsfep)ey = PmI(rr"o)
L' = Nc¢'/m’ =Nkc,, m’ = Lk(c,, /c)(mm) = Lk/(r'; 7'p,)
L" =Nc"Im" = Nc, = Lm{c,, [c)(cs/cy,) =Lm/(r'cr";)

Because k and m are almost certainly less than . 7, = 100 and
r'. r".~ 100, respectively, the bit-serial and word-serial
organizations perform better with respect to the latency
parameter L. On the other hand, since k is likely to be greater
than r’, ~ 10 and m" greater than r’, ", = 100, the fully parallel
organization has the edge in terms of pipelining period P or
throughput. To see how sensitive the above analyses are to the
rough estimates r’, = r", = r’, = 10, we proceed as follows.
Taking our previous discussions and estimates into account, it is
not unreasonable to assume for the sake of simplicity (reducing
the number of parameters to be dealt with) that:

o e
ro=r'.=r,=r

Figure 4 shows the variation of the ratios P”/P and P"/P for a
wide range of values for the parameter r and for a few
representative values of the parameters k and m”. Similarly,
Figure 5 depicts the variations of the ratios L'/L and L"/L for
several reasonable values for the parameters k and m. Figures 4
and 5 confirm our previous conclusions in a broader context.

P"/P for m"=

1/16 i l i l jr

Figure 4. Ratios of Pipelining Periods for the Three AM Organizations.

16 L L'/L for k
L"IL for m

1/4

1/16

0 4 8 12 16 20

Figure 5. Ratios of Response Latencies for the Three AM Organizations.

6. Conclusion

We have suggested design paradigms for special-purpose search
processors that provide a wide range of speed/cost tradeoffs to
designers. A key feature of our serial/parallel approach is the
replacement of many processors in previously proposed systems
by a much denser high-speed shift register connected to a single
processor. This results in considerable reduction in size and
cost and at the same time provides the flexibility of dealing with
variable-length and very long keys at acceptable speeds. Such
machines can be constructed with today's VLSI technology for
databases containing a million or so records (a few thousands of
processors). Our analysis demonstrates that hardware-intensive
designs do not necessarily offer significant performance gain
over architectures that match the requirements of the application
but utilize fewer processors.

We have also proposed systolic architectures for associative
memories, resulting in systems whose performance parameters
are realistically independent of size for long sequences of
operations with proper optimization of instruction sequencing.
The proposed architectures should lead to practical VLSI
realizations of large associative memories which would be
impossible to implement under the "operand-broadcasting” and
»reduction-by-wired-logic" paradigms.

The proposed serial/parallel approach is applicable to many other
searching problems, provided that the required matching can be
performed in a character-serial fashion by a systolic string
comparator. Systolic comparators can be designed for other
types of searches as required. Such systolic comparators are
useful components for designing high-speed special-purpose
systems and may find applications other than the one suggested
here in connection with DMs. Eventually, if the proposed
architecture is judged to be practical, shift-register and systolic
comparator libraries may be developed, with individual members
of such libraries automatically selected and combined by
appropriate VLSI design tools into a final hardware layout.
Further research is clearly needed to refine our approximate
analyses and to translate the concepts presented into actual
hardware and software design guidelines.

[ATALSS]

[BENT79)

[BERT90]

[BROW79]

[CARES4}

[CHANSS]

[DAVIS6]

{DEHN87]

[DEHNSS]

[FISHR4]

[GOYAS8]

[GUIB82]

[HILL8S]

[HURSS87]

[KNUT73]

[KUNGB82]

[LEEDS88]}

210

7. References

Atallah, M.J. and S.R. Kosaraju, "A Generalized Dictionary
Machine for VLSL" IEEE Transactions on Computers, Vol.
C-34, No. 2, pp. 151-155, Feb. 1985.

Bentley, J. and H. Kung, “A Tree Machine for Searching
Problems,” Proc. of the Int'l Conf. on Parallel Processing,
1979, pp. 265-266.

Bertossi, A.A., “A VLSI System for String Matching,”
Integration, Vol. 9, pp. 129-139, 1990.

Browning, S.A., "Computations on a Tree of Processors,”
Proc. of the Caltech Conf. on VLSI, Jan. 1979, pp. 453-478.

Carey, M.J. and C.D. Thompson, "An Efficient
Implementation of Search Trees on [1g N + 17 Processors,"
IEEE Transactions on Computers, Vol. C-33, No. 11, pp.
1038-1041, Nov. 1984.

Chang, J.H., O.H. Ibarra, M.J. Chung, and K.X. Rao,
"Systolic Tree Implementation of Data Structures,” [EEE
Transactions on Computers, Vol. 37, No. 6, pp. 727-735,
June 1988.

Davis, W.A. and D.-L. Lee, “Fast Search Algortihms for
Associative Memories," IEEE Transactions on Compulers,
Vol. C-35, No. 5, pp. 456-461, May 1986.

Dehne, F. and N. Santoro, "Optimal VLSI Dictionary
Machines on Meshes," Proc. of the Int'l Conf. on Parallel
Processing, University Park, PA, Aug. 1987, pp. 832-840.

Dehne, F. and N. Santoro, "An Optimal VLSI Dictionary
Machine for Hypercube Architectures," School of Computer
Science, Carleton Univ., Ottawa, Canada, Report SCS-TR-
135, Apr. 1988.

Fisher, A L., "Dictionary Machines with a Small Number of
Processors,” Proc. of the Int'l Symp. on Computer
Architecture, pp. 151-156, 1984

Goyal, P. and T.S. Narayanan, "Dictionary Machine with
Improved Performance,” The Computer Journal, Vol. 31,
No. 6, pp. 490-495, Dec. 1988.

Guibas, L.J. and F.M. Liang, "Systolic Stacks, Queues, and
Counters," Proc. of the MIT Conf. on Advanced Research in
VLSI, 1982, pp. 155-164.

Hillis, W.D., The Connection Machine, The MIT Press,
1985.

Hurson, A.R. and B. Shirazi, "Associative Memories: Has
Their Time Come? -- Applications and VLSI Complexity,”
Proc. of the Hawaii Int'l Conf. on System Sciences, 1987,
pp. 284-292.

Knuth, D.E., The Art of Computer Programming: Vol. 3 —
Sorting and Searching, Addison-Wesley, 1973.

Kung, HT., "Why Systolic Architectures?" Computer, Vol.
15, pp. 3746, Jan. 1982.

Lee, D.-L. and W.A. Davis, "An O(n + k) Algorithm for
Ordered Retrieval from an Associative Memory," IEEE
Transactions on Computers, Vol. 37, No. 3, pp. 368-371,
Mar. 1988.

[LEWIS7]

[MEHL84]

[OMONS7]

[OTTMS82)

[PARH72]

[PARH73]

[PARH90]

[PARH90a]

{PARH90b]

Lewis, E., "The Design and Performance of 1.251 CMOS,"
VLSI System Design, Mar. 1987,

Mehlhomn, K., Data Structures and Algorithms 1: Sorting and
Searching, Springer-Verlag, 1984,

Omondi, A.R. and J.D. Brock, "Implementing a Dictionary on
Hypercube Machines," Proc. of the Int'l Conf. on Parallel
Processing, University Park, PA, Aug. 1987, pp. 707-709.

Ottman, T.A., A.L. Rosenberg, and L.J. Stockmeyer, "A
Dictionary Machine for VLSI," IEEE Transactions on
Computers, Vol. C-31, pp. 892-897, Sep. 1982.

Parhami, B., "A Highly Parallel Computing System for
Information Retrieval," AFIPS Conf. Proc., Vol. 41 (Fall
Joint Computer Conf.), AFIPS Press, Montvale, NJ, 1972,
pp. 681-690.

Parhami, B., "Associative Memories and Processors: An
Overview and Selected Bibliography,” Proceedings of the
IEEE, Vol. 61, No. 6, pp. 722-730, June 1973.

Parhami, B., "Associative Memory Designs for VLSI
Implementation,” Proc. of the Int'l Conf. on Databases,
Parallel Architectures, and Their Applications, Miami, Mar.
1990, pp. 359-366.

Parhami, B., "Massively Parallel Search Processors: History
and Modern Trends," Proc. of the Fourth Annual Symp. on
Parallel Processing, Fullerton, CA, Apr. 1990, pp. 733-747.

Parhami, B., "Systolic Associative Memories,” Proc. of the
Int'l Conf. on Parallel Processing, St. Charles, IL, Aug. 1990,
pp. I-545 to 1-548.

211

[PATES81]

[PROB871]

[SCHMSS5]

[SCHW87]

[SIVI8S)

[SOMABS]

[SONG80]

[WEEMS2]

Paterson, M.S., W.L. Ruzzo, and L. Snyder, "Bounds on
Minimax Edge Length for Complete Binary Trees," Proc. of
the ACM Symp. on the Theory of Computing, May 1981,
PP. 293-299.

Probst, D.K. and H.F. Li, "Optimal Systolic Dictionary
Machines on Mesh-Type Architectures,” Proc. of the Canadian
Conf. on VLSI, Winnipeg, Oct. 1987, pp. 247-252.

Schmeck, H. and H. Schroder, "Dictionary Machines
for Different Models of VLSL" IEEE Transactions on
Computers, Vol. C-34, pp. 472-475, 1985.

Schwartz, A.M. and M.C. Loui, "Dictionary Machines on
Cube-Class Networks," IEEE Transactions on Computers,
Vol. C-36, No. 1, pp. 100-105, Jan. 1987.

Sivilotti, M., M. Emerling, and C. Mead, "A Novel Asso-
ciative Memory Implemented Using Collective Compatation,”
Proc of the Chapel Hill Conf. on Very Large Scale
Integration, Computer Science Press, 1985, pp. 329-342.

Somani, AK. and V.K. Agarwal, "An Efficient Unsorted
VLSI Dictionary Machine," IEEE Transactions on
Computers, Vol. C-34, No. 9, pp. 841-852, Sep. 1985.

Song, S.W_, "A Highly Concurrent Tree Machine for Database
Applications,” Proc. of the Int'l Conf. on Parallel
Processing, Aug. 1980, pp. 259-268.

Weems, C. et al, "TITANIC: A VLSI Based Content
Addressable Parallel Array Processor," Proc. Int'l Conf. on
Computer C ications, 1982, pp. 236-239.

