New Classes of Unidirectional Error-Detecting Codes

Behrooz Parhami

Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106, USA

Abstract

Unidirectional errors arise as a result of common VLSI failure
modes and certain connection faults, particularly with serial
data transmission. We consider a totally ordered set of
symbols to be encoded in an order-preserving manner for
unidirectional error detection. General order-preserving
encoding and the special case of difference-preserving
encoding (when the value v is encoded with its separate data
part representing v + b to facilitate arithmetic operations) are
considered and optimal codes are devised for each case.

I. Introduction

The theory of error-detecting and error-correcting codes
plays an important role in the design of dependable and
fault-tolerant digital systems {BOSE86a], [FUJI90]. An
error affecting multiple bits in a codeword is unidirectional
if the bit inversions characterizing the error are all of the
same type (0—1 or 1-0). For example, a unidirectional
error may change the codeword 00101101 to 01101111
(only 0—1 inversions) or 00000000 (only 1—0
inversions) but not to 01100101. Unidirectional errors
arise as a result of common VLSI failure modes and
certain connection faults, particularly when data is
transmitted serially [COOK73], [PARH73], [PARH78],
[WAKE75]. Thus many rescarchers have been motivated to
study the properties of unidirectional errors and methods
for their detection and correction in digital systems.

Unidirectional errors are easier to detect or correct than
multiple-bit random errors involving the same pattern or
number of bits in the sense that they require a lower level
of redundancy and simpler encoding/decoding algorithms.
Initial research on unidirectional error codes dealt only
with their detection [BERG61], [FREI62). Numerous
researchers subsequently extended the class of
unidirectional error-detecting codes by considering different
types of codes (e.g., separable, non-separable), certain error
subclasses (e.g., burst errors, byte errors), and varying
system contexts [BLAUSS]} [BOSE84] [BOSE85] [BOSES86]
[BOSE89] [DUNN90] [NICO86] [PARH73] [WAKE75]
[PARH78]. Error correction and combined correction/
detection schemes were also investigated [BLAUS9]

CH3040-3/91/0000/0574$01.00 © 1991 IEEE

574

[BOSE81] [BOSES82] [BOSE82a] [BRUCS89] [KUND90]
[MONT90] [NIKO86] [PRAD8S(O] [TAODS8] [VENK89a].

Encoding and decoding are fairly difficult for non-
separate unordered codes and except through costly table
lookup, virtually no arithmetic operation can be performed
on the codewords without first decoding them. In this
paper, we discuss the two classes of order-preserving and
difference-preserving unordered codes. With the first class,
straight binary comparison of two codewords or parts
thereof can reveal the relative order of the corresponding
symbols (or magnitudes in the case of numerical values).
With the second class, the difference between the ranks of
two symbols or magnitudes of two numbers can be found
by direct subtraction of codewords or parts thereof.

The original motivation for this study was provided by
the need to encode "dependability tags" (d-tags) for data
objects in a data-driven dependability assurance scheme
[PARH89d]. As each data object in this scheme must carry
a d-tag, efficient encoding of d-tag values is of utmost
importance. This application is such that d-tags are
frequently compared and subjected on occasion to simple
arithmetic transformations. If these transformations are
effected through table-lookup (which is practical because
d-tags are typically small), then order preservation is the
only requirement for the code. Otherwise the more
stringent requirement of difference preservation must be
enforced. However the results presented here are of general
interest since they lead to highly efficient arithmetic-type
unordered codes.

Notes on notation: 1g x denotes log, x ; Cn:g = nl/lg!
(n-@)']; v(X) is the base-2 value of the binary vector X;
b(x) is the binary vector representing x in base 2; b(x) is
the k-bit binary representation of x (modulo 2").

II. Order-Preserving Codes

Consider an error code mapping the totally ordered set
of values xj<xp<...<x, into encoded representations
or bit-vectors £, E5, ..., E;. The code is said to be
order-preserving with respect to the subvector D of its bits
if for all i < j, we have v(D;) < v(Dj). We call D the data-

ordering subvector and the rest of the bits, say C with E; =
{D;, Cy), the check subvector. Note that some checking
may have been incorporated into D; bits also, but whereas
all bits of D; are required to establish the correct relative
order of two codewords, the bits in C; are redundant in this
respect and can be ignored to simplify the comparisons.
Additionally, even though data-ordering and redundant bits
are separate, we don't call the codes "separable” since the
data-ordering part need not contain the standard binary
encoding of the values being represented. In coding theory
parlance, a separable error-detecting code is obtained when
one starts with a particular set of k-tuples as the data parts
and attaches to them suitable redundant bits. Our codes are
not separable in this sense.

A. Use of Existing Codes

Any unordered code can be used as an order-preserving
code. All that needs to be done is to assign the codewords
in increasing order of their numerical values (as binary
numbers) to the symbols in their ascending order. The
third column in Table I shows how a 2-out-of-5 code can
be used as an order-preserving code for the ten BCD digits.

Table I: Examples of Order-Preserving Codes.

Info Part: Berger Order- Another
BCD Check Preserving Five-Bit
Data (No. of 2-out-of-5 @ plus-1)
Words Zeros) Code Code
0000 100 00011 00110
0001 011 00101 01010
0010 011 00110 01100
0011 010 01001 01111
0100 011 01010 10010
0101 010 01100 10100
0110 010 10001 10111
0111 001 10010 11000
1000 011 10100 11011
1001 010 11000 11101

The following result allows us to ignore the rightmost
(“least significant”) code bit in ordering of two codewords.

Theorem 1: In any order-preserving unidirectional
error code, removal of the rightmost (“least significant™)
code bit will leave the ordering unchanged. In general, no
other bit can be removed in the same way.

Proof: There are no two codewords that differ only in
the rightmost bit, since the minimum distance between
pairs of codewords in a unidirectional error code is 2.
Thusif E=E, 1E, 9...EjEgand E' =E’, 1E', 5 ...
E'|E’y are codewords, we have v(E) < v(E") if and only if
WE, 1Ep_p ... E}) <v(E'p_1E"p2...E’1). Hence
the rightmost bits Eq and E’ need not be compared in

575

determining order. To show that the same cannot be said
about any other bit position in general, we need to provide
a single counter-example. The 2-out-of-5 code in Table I
is sufficient for this purpose. In this example, it is easy
to see that removal of any other bit position from the 5-
bit code will reverse the ordering of some consecutive pair
of codewords.

By Theorem 1, the non-separable 2-out-of-5 code shown
in Table I can be viewed as a pseudo-separable code
(consisting of 4 “data” bits followed by one “check” bit)
with respect to ordering of codewords. Clearly as far as
order preservation is concerned, the 2-out-of-5 code is
superior to the 7-bit Berger code with 4 data bits.

B. Modified Berger Codes

As mentioned earlier, for many values of s, Berger
codes are not guaranteed to be optimal. The following
result allows us to use more efficient codes which we call
modified Berger codes.

Theorem 2: The unidirectional error detection
property of Berger codes is preserved if Berger check values
are encoded by any order-preserving code to obtain a
modified Berger code.

Proof: Consider two arbitrarily chosen Berger-code
codewords (Dy, By) and (D5, By) with By < B, and the
order-preserving mapping k. We show that if B; is
replaced by C; = h(B;), no unidirectional error can
transform (D1, Cy) into (D5, C5). By assumption, D
has fewer Os than D,. Thus if a unidirectional error
changes D into D,, it must do so through 1-to-0
inversions. But 1-to-0 inversions in Cy can only decrease
its value and thus cannot transform it into C5. A similar
argument shows the impossibility of changing (D, C5)
into (D, C1) through O-to-1 inversions.

A natural question of interest at this point is to find a
general procedure for constructing optimal modified Berger
codes given the size s of the symbol set to be encoded.

C. Optimal Order-Preserving Codes

Optimal order-preserving codes for unidirectional error
detection are obtained if we choose the s data parts so that
a minimal number of Berger check values are required. We
need at least [1g s bits for the data part.

Theorem 3: Given k 2[1g 5| bits available for the
data part, the number of check bits required in an optimal
order-preserving unidirectional error-detecting code
representing a set of s symbols is the minimum value of ¢
for which the inequality

2iapChiZs
holds, where @ = max(0, Lk/2] - 2¢-1 +1) and B =
min(k, Lk/2] + 2¢-1).

Proof: Given ¢ check bits, we can represent 2¢
different check values and can thus have 2¢ different weight
classes in our data parts. By taking these different
weights as close to /2 as possible (i.e., from | k/2]-2¢-1
+1 to Lk/2J+2C—1), the number of codewords is
maximized. If this maximum is at least s, we can
successfully construct the code with ¢ check bits.
Otherwise we need more check bits.

Algorithm 1: To construct an optimal order-
preserving unidirectional error code:

1. Initialize k « [1g s]and n ¢« o.

2. Use Theorem 3 to construct a (k + ¢)-bit code for the
smallest possible c.

3.Ifn>k+c,thensetne k+c, ke k+1,and
return o Step 2.

4. The last code that was constructed is the answer.

III. Difference-Preserving Codes

Difference-preserving codes constitute a more restricted
class of order-preserving codes in which if D; and Dj are
the data parts in the encodings of values x; and x;, then:

Xj —-X = V(D]) - V(Di)

In other words, there must exist an integer bias b such
that v(D;) = x; + b. We will restrict our treatment of
difference-preserving codes to the special case where x;,
—-x; =1forall i; i.e. when a set of consecutive integer
values are to be encoded.

Theorem 4: With k-bit data parts, the longest
possible sequence of consecutive data vectors in which no
more than w different weights occur is:

2% ifw=k+1

2k-1if w=k

2w+l 2 if w<k.

Proof: The set of all k-bit data words contains k + 1
different weights. Thus for w = k + 1, all the 2% data
words can be accommodated. In the case of w = k, one of
the k£ + 1 weights must be excluded. By choosing the
excluded weight to be 0 or &, we obtain 2 — 1 data words
which is obviously the maximum possible. The proof in
the final case of w < k is more involved. Let the number
of consecutive data words in this case be fiw). We prove
by induction on w that f(w) = 2¥*1 — 2 with the data
words being b(1) through bkgwﬂ —2); i.e., the bin
vectors 05~D1 through 0*-%-11M)g where o
represents a subvector consisting of 7 repetitions of the
symbol o. Clearly the assertion holds for w = 1 when the
two consecutive data words bg(1) = 0%-D1 and bi(2) =
0*-210 represent a maximal set of size 2. Let (f(u? =
24+l _ 2 for u < k — 1 with the data strings 0%~1)1
through 0%~#=11®)p, The following construction shows
that f(u + 1) > 24+2 _ 2 = 2f(u) + 2. In addition to the
code vectors 051 through 0tk-#-11()g having

weights 1 through u, we include in the new code the two
strings 0%~4-D1W+Danq ok-4-2)10®+1) paving weights
u+ 1and 1, respectively. Then for each vector 0k—4-1)g
in the original set, we include the vector 0¢-4=2)1§ in
the new code, where § is any subvector of length u + 1.
These new vectors will have weights 2 through u + 1. To
complete the proof, we observe that the above number of
data words is maximal (i.e. we have f(w) < 2#+1 _2)
since any sequence of 2¥+1 — 1 consecutive data words
involves at least w + 1 different weights.

Theorem 5: A separable difference-preserving
unidirectional error code for s symbols can be constructed
with k =[1g 5 data bits and ¢ check bits where:

c=[1gk + 1] if 5= 2k

c=[lgkl ifs=2¢k—-1

c=[lglgl +s2)17 ifs <2t - 1.

It is interesting to note that the first two cases in the
statement of Theorem 5 (i.c. s = 2% and s = 2% — 1) can be
represented by the single expression ¢ =[1g[1g(1 + 5)]1.

Proof: By Theorem 4, if s = 2, the data parts of our
codewords will contain w = k£ + 1 different weights. Thus
encoding_of the corresponding check values requires
[1g(k+1)1 bits in this case. Similarly, if s = 2% — 1,
Theorem 4 suggests that w = k different weights will be
involved. This implies [1g k1 bits for the check part. The
final case of s < 2% — 1 can be handled as follows. By
Theorem 4, w different weights will be involved such that:

w2 >
The above inequality yields

w 2 [1g(1 + s/2)]
The number ¢ of check bits must be such that 2€ > w.
Combining this inequality with the above, we obtain ¢ >
[g[1g(1+s/2) 1] as required.

Algorithm 2: To construct an optimal difference-
preserving unidirectional error code:

1. Setk «[lgs].

2. Use Theorem 5 to find the number w of weights and
the number c of check bits required.

3. Ifs#2k s #2F — 1, and w = 2°, pick the s
consecutive data vectors to start from b(1) = O(k‘l)l,
resulting in a bias of b = 1. Otherwise start them with
b(0) = 0K,

We note from Algorithm 2 that in most cases, the
optimal choice will have a bias of b = 0, resulting in a
separable code. In the special case of s # 2K, s #2¢ — 1,
and w = 2 for some ¢, the bias can be 1. No other value
for the bias is ever necessary to achieve optimality.

IV. Conclusion

We have introduced the two classes of order-preserving
and difference-preserving unidirectional error-detecting
codes. With the first class, straight binary comparison of

576

two codewords or parts thereof can reveal the relative order
of the corresponding symbols (or magnitudes in the case
of numerical values). With the second class, the difference
between the ranks of two symbols or magnitudes of two
numerical values can be obtained by direct subtraction of
codewords or parts thereof.

For order-preserving UED coded, it was shown that in
many cases, efficient pseudo-separable codes can be devised
for which the determination of order between a pair of
codewords is based on a subset of the bits (the “data” part).
For difference-preserving UED codes, it was shown that
modified Berger codes, which differ from regular Berger
codes in that the data part does not necessarily cover all the
2k possible combinations and the check part is modified
by an order-preserving transformation, are optimal.

Further work is needed to replace the iterative procedure
of Algorithm 1 with a formula that yields the number n of
bits in the optimal code as a function of s, the symbol set
size. This will be of theoretical interest though, since
practically, the number of iterations is always fairly small.

References

Abbreviations: IEEETC = IEEE Transactions on Computers,
FTCS = Proc. Int'l Symp. on Fault-Tolerant Computing.

[ALBA89] Al-Bassam, S. and B. Bose, “Design of Efficient
Balanced Codes”, FTCS, June 1989, pp. 229-236.

[BERG61] Berger, JM., “A Note on Error Detection Codes
for Asymmetric Channels”, Information and Control,
Vol. 4, pp. 68-73, Mar. 1961.

[BLAU88] Blaum, M., “Systematic Unidirectional Burst
Detecting Codes”, IEEETC 37:453-457, Apr. 1988.

[BLAU89] Blaum, M. and H. van Tilborg, “On ¢-Error
Correcting / All Unidirectional Error Detecting Codes”,
IEEETC 38:1493-1501, Nov. 1989.

[BOSE81] Bose, B., “On Systematic SEC-MUED Codes”,
FTCS, June 1981, pp. 265-267.

[BOSE82] Bose, B. and T.R.N. Rao, “Theory of
Unidirectional Error Detecting/Correcting Codes”, IEEETC
31:521-530, June 1982.

[BOSES2a] Bose, B. and D.K. Pradhan, “Optimal
Unidirectional Error Correcting/Detecting Codes”, IEEETC
31:564-568, June 1982.

[BOSE84] Bose, B. and T.R.N. Rao, “Unidirectional Codes
for Shift Register Memories”, [EEETC 33:575-578, 1984.

[BOSE85] Bose, B. and D.J. Lin, “Systematic
Unidirectional Error Detecting Codes”, [EEETC 34:1026-
1032, Nov. 1985.

[BOSE86] Bose, B., “Burst Unidirectional Error Detecting
Codes”, IEEETC 35:350-353, Apr. 1986.

[BOSE86a] Bose, B. and J. Metzner, “Coding Theory for
Fault-Tolerant Systems”, Chap. 4 in Fault-Tolerant
Computing: Theory and Techniques, Ed. by D.K. Pradhan,
Prentice-Hall, 1986, pp. 265-335.

577

[BOSE87] Bose, B., “On Unordered Codes”, FTCS, July
1987, pp. 102-107.

[BOSE89] Bose, B., “Byte Unidirectional Error Correcting
Codes”, FTCS, June 1989, pp. 222-228.

[BRUCS89] Bruck, J. and M. Blum, “Some New EC/AUED
Codes”, FTCS, June 1989, pp. 208-215.

[COOK73] Cook, R.W. et al, “Design of Self-Checking
Microprogram Control”, JEEETC 27:302-308, 1973.

{DUNN90] Dunning, L.A., G. Dial, and M.R. Varanasi,
“Unidirectional Byte Error Detecting Codes for Computer
Memory Systems”, IEEETC 39:490-503, Apr. 1990.

{FREI62] Freiman, C.V., “Optimal Error Detecting Codes
for Completely Asymmetric Channels”, Information and
Control, Vol. 5, pp. 64-71, Mar. 1962.

[FUJI90] Fujiwara, E. and D.K. Pradhan, “Error-Control
Coding in Computers”, Computer 23:63-72, July 1990.

[KNUT86] Knuth, D.E., “Efficient Balanced Codes”, IEEE
Trans. Info. Theory 32:51-53, Jan. 1986.

[KUND90] Kundu, S. and S.M. Reddy, “Symmetric Error
Correcting and All Unidirectional Error Detecting Codes”,
IEEETC 39:752-761, June 1990.

{MONT90] Montgomery, B.L. and B.V.K. Vijaya Kumar,
“Systematic Random Error Correcting & All Unidirectional
Error Detecting Codes”, IEEETC 39:836-840, June 1990.

[NICO86] Nicolaidis, M. and B. Courtois, "Design of
NMOS Strongly Fault Secure Circuits Using Unidirectional
Error Detecting Codes," FTCS, July 1986, pp. 22-27.

[NIKO86] Nikolos, D., N. Gaitanis, and G. Philokyprou,
"Systematic r-Error Correcting / All Unidirectional Error
Detecting Codes,” IEEETC 35:394-402, May 1986.

[PARH73] Parhami, B. and A. Avizienis, "Application of
Arithmetic Error Codes for Checking of Mass Memories,"
FTCS, June 1973, pp. 47-51.

[PARH78] Parhami, B. and A. Avizienis, "Detection of
Storage Errors in Mass Memories Using Low-Cost
Arithmetic Error Codes," IEEETC 27:302-308, 1978.

[PARH89d] Parhami, B., "A Data-Driven Dependability
Assurance Scheme with Applications to Data and Design
Diversity," Proc. of the Int'l Conf. Dependable Computing
for Critical Applications, Aug. 1989, pp. 105-112.

[PRAD80} Pradhan, D.K., "A New Class of Error-
Correcting/Detecting Codes for Fault-Tolerant Computer
Applications," IEEETC 29:471-481, June 1980.

[SMIT84] Smith, J.E., "On Separable Unordered Codes,"
IEEETC 33:741-743, Aug. 1984,

[TAOD88] Tao, D.L., C.R.P. Hartman, and P.K. Lala, "An
Efficient Class of Unidirectional Error Detecting/
Correcting Codes," IEEETC 37:879-882, July 1988.

[VENK89a] Venkatesan, R., "t-Error Correcting / d-Error
Detecting / All Unidirectional Error Detecting Codes,"
Proc. of the IEEE Pacific Rim Conf. on Communications,
Computers & Signal Processing, June 1989, pp. 412-415.

[WAKE75] Wakerly, J.F., "Detection of Multiple

Unidirectional Errors Using Low-Cost Arithmetic Codes,"
IEEETC 24:210-212, 1975.

