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Results useful to: Designers of fault-tolerant hardware systems

Summary & Conclusions — Voting is a fundamental operation
in the realization of ultrareliable systems that are based on multi-
channel computations. When data to be voted on are generated
at a high rate, the voter must be able to keep up with the process-
ing speed. The actual voting delay might not be critical but the
voter throughput must match or exceed the input data rate. Designs
of hardware voters are presented that can be easily pipelined to
accommodate extremely high data rates. Design strategies for bit-
voters and word-voters are described. Examples of resultant designs
are given and each design is evaluated with respect to cost and per-
formance. Both ordinary and generalized m-out-of-n voting, with
arbitrary votes assigned to the inputs, are considered. Majority
and many other types of threshold voters are simply special cases
of generalized m-out-of-n voters. Median voters can be synthesiz-
ed by simple variants of our design methods. Using currently
available technology, these designs can operate at speeds of many
millions of votes per second. For majority bit-voters with small
values of n, a multiplexer-based design method generally yields the
best realizations while for larger values of n, designs based on selec-
tion networks tend to be most efficient. For word-voters, cost-
effective designs based on modified or augmented sorting networks
are feasible. In either case, the rich theory developed for the analysis
and synthesis of parallel/pipelined sorting networks directly benefits
the design process.

1. INTRODUCTION

Voting is an important operation in the realization of
ultrareliable systems that are based on the multi-channel com-
putation paradigm. Voting is required whether the multiple com-
putation channels consist of redundant hardware units, diverse
program modules executed on the same basic hardware, iden-
tical hardware and software with diverse data, or any other com-
bination of hardware/program/data redundancy and/or diver-
sity. Depending on the data volume and the frequency of voting,
hardware or software voting schemes are appropriate. Low-level
voting with high frequency necessitates the use of hardware
voters whereas high-kevel voting on the results of fairly com-
plex computations can be performed in software without serious
performance degradation or overhead.

The use of voting for obtaining highly reliable data from
multiple unreliable versions was first suggested by von Neumann
in the mid 1950s [28]. Since then, the concept has been used
in fault-tolerant computer systems and has been extended and
refined in many ways. Reliability modeling of voting schemes
by considering compensating errors [22], handling of imprecise
or approximate data [5], combination with standby or active
redundancy [17], voting on digital ‘signatures’ obtained from
computation states to reduce the amount of information to be
voted on [25], and dynamic modification of vote weights based
on a priori reliability data [21] constitute some of these exten-
sions and refinements. More recently, generalized voting with
unequal vote weights has been proposed for maintaining the
reliability and consistency of data stored with replication in
distributed computer systems [12]. This has become a very ac-
tive research area [11, 27].

Replicated systems operating synchronously can achieve
extremely high reliabilities if each computation result is voted
upon as it is produced. Such frequent voting involves some delay
which lengthens the system cycle time and degrades the per-
formance. However, since networks can be pipelined, voter
throughput is a function of pipelining period which is unrelated
to latency. Thus, 2 performance parameters need to be specified
for the voters. When voting is performed to obtain a majority
value in order to detect and isolate disagreeing units, delayed
detection of disagreement can be acceptable, provided that the
delay is not so large as to make the probability of fault accumula-
tion intolerably high. In this situation, voter throughput, rather
than its delay, is of primary importance. Similarly, when the
voter is part of a pipelined special-purpose computation scheme,
voter delay is much less important than its throughput. In either
case a cellular pipelined voter consisting of multiple stages, with
each stage having a fairly small delay, is desirable.

This paper considers the design of such cellular pipelined
voters whose general structure is depicted in figure 1. The n
hardware computation units produce a continuous stream of
values that must be voted upon in order to pass a dependable
value to the next phase of the computation or to detect and
disable the unit(s) producing non-conforming output(s). The D
stages are designed to have small, roughly equal latencies in
order to maximize the throughput. The design of m-out-of-n
or threshold bit-voters and word-voters is discussed in sections
2 and 3. Section 4 covers some variations and extensions as
well as directions for future work. The appendix provides proofs
of all theorems and lemmas.

Hardware voter designs in the literature are essentially ‘bit-
voters’ that compute a majority function on # input bits [14,
24]. Combined bit voting and disagreement detection has also
been discussed [6]. Hardware voting on words and higher-level
data objects has traditionally been handled by using indepen-
dent parallel bit-voters or feeding the data sequentially through
a single unit. Such independent bit-voting yields results that are

optimistic, particularly when correlated errors are likely (see
]
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Figure 1. General Structure of a Pipelined Cellular Voter.

section 3.1). Hardware voters in actual systems include 3-way
voters in MIT’s FTMP design [13], CMU’s C.vmp system [23],
and August Systems’ industrial control computers [30]. The JPL
STAR computer [4] used a special 2-out-of-5 voter that was
symmetrically connected to 3 active modules and 2 standby
spares for its critical Test and Repair Processor (aerospace
systems used hardware voters even before STAR). To the best
of my knowledge, no hardware voter with adjustable or variable
vote weights has been described in the literature. Similarly, ap-
proximate or other context-dependent voting algorithms have
not been implemented in hardware. The effect of pipelining be-
tween voting stages on the performance of triple-modular redun-
dant systems has been recently discussed [9] but this is different
from my use of parallelism and pipelining within each voting
circuit.

2. BIT-VOTING NETWORKS

Define an m-out-of-n hardware bit-voter as a circuit with
n bit-inputs x;, i=1,2,...,n, and 1 bit-output y, such that y=1
iff at least m of the n input bits have the value 1. This defini-
tion is asymmetric with respect to 0 and 1 values in that an out-
put of 0 does not imply and is not implied by the presence of
at least m 0’s at the inputs. Such asymmetry should not be wor-
risome and is useful in the design of fail-safe systems where
one of the two output values is considered ‘safe’ (more on this
below). Simple majority bit-voting corresponds to the special
case of m = gilb(n/2)+1 = liub( (n+1)/2). This special
case has 0/1 symmetry for odd values of n. Section 2.2
generalizes this definition to weighted bit-voters.

2.1. m-out-of-n Bit-Voters

An m-out-of-n hardware bit-voter can be constructed as
a 2-level AND-OR (equivalently NAND-NAND) logic circuit
with g = n!/[m!(n—m)!] m-input AND gates and 1 g-input
OR gate (g+ 1 NAND gates) for small values of the parameters
m and n. Somewhat less obvious is a 2-level OR-AND realiza-
tion requiring g’ = n/[(m—1)! (n—m+1)1] (n—m+1)-
input OR gates and 1 g’-input AND gate. In the first realiza-
tion, all possible subsets of m inputs are ANDed together and
the voter output is 1 if at least one of the AND results is 1.
In the second realization, all possible subsets of n—m+1 in-
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puts are ORed together and the voter output is 0 if at least one
of the OR results is 0.

Theorem 1: The 2-level AND-OR realization of an m-out-of-n
bit-voter is ‘simpler’ than its 2-level OR-AND realization iff
m> (n+1)/2. The complexities are equal for odd values of
nifm=(n+1)/2. Od

Example 1: Consider a 3-out-of-5 bit-voter which is the same
as a simple 5-input majority bit-voter. Both the AND-OR and
the OR-AND designs require 11 gates (10 3-input gates at
level-1 and 1 I0-input gate at level-2, as shown in figure 2),
with a total of 40 gate inputs. O
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Figure 2. Two Realizations for a 2-Level, 3-out-of-5 Bit-Voter
(the digit / on a line represents the input x)
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Example 2: Consider a 2-out-of-5 bit-voter. Such a voter is
suitable for use in a system with fail-safe modules such that the
probability of producing an incorrect 1 output is very small
compared to the probability of an incorrect 0 output. The AND-
OR design requires 11 gates (10 2-input ANDs and 1 J0-input
OR, as shown in figure 3a), with a total of 30 gate inputs. The
OR-AND design requires 6 gates (5 4-input ORs and 1 5-input
AND, as shown in figure 3b), with a total of 25 gate inputs.
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Figure 3. Two Realizations for a 2-Level, 2-out-of-5 Bit-Voter
(the digit / on a line represents the input X)
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For large values of n, it is impractical to realize bit voters
as 2-level logic circuits. Assuming the use of Jf-input gates and
ignoring the possibility of gate sharing for now, the total number
of gates in the 2-phase AND-OR and OR-AND realizations
changes from g+1 and g’ +1 to:

G = gliub((m—1)/(f~1)) + liub((g—1)/(f—1))
G = g’liub((n—m)/(f—l))+liub((g’—l)/(f—l)),

respectively. These expressions are obtained by simply
substituting, for each gate, an equivalent tree of Jf-input gates
of the same type. The number of gate inputs in the two designs
increases from g(m+1) and g’ (n—m+2) to approximately
Gf and G'f. Finally, the delays increase from 2 logic levels to
liub(logfm) + liub (logsg) and liub (loge(n—m+1)) +
liub(logsg ") logic levels, respectively. It is quite straightfor-
ward to make these multilevel designs pipelined by including
2 to 4 logic-gate levels per pipeline stage [29].

With gate sharing, an exact general analysis for the gate
count becomes difficult. However bounds for the number of
gates can be obtained that are close to actual values in most prac-
tical cases. The following approximate analysis establishes one
such bound for the AND-OR design assuming unlimited fan-
out (the OR-AND case is similar). We can use n!/ fli(n—=H1N
J-input gates in logic level-1 to generate all possible logical pro-
ducts of f variables. Each m-variable product can then be com-
puted by a tree of liub( (liub(m/f) —1)/(f—1)) additional
gates. Since there are g such products which must then be ORed
together, the total number of required gates is:

G” = nl/lff (n=H1] + g-liub((liub(m/f) —1)/(f—1))
+ liub((g—1)/(f—1))

Example 3: Consider the design of a 4-out-of-8 bit-voter using
2-input gates (n=8, m=4, f=2). We have g=70, G=70x3
+69=279, and G” =28+ 70x 1 + 69 =167. Thus for this ex-
ample, hardware savings of at least 40% is achieved with gate
sharing. O

Example 4: Reconsider the design of the 3-out-of-5 bit-voter
of example 1 using 2-input gates (n=5, m=3, f=2). Then
£=10, G=10x2+9=29, G”" =10+ 10x1+9=29, Thus, no
hardware savings is indicated by the upper bound G” . However,
the design shown in figure 4 suggests that only 4 of the 10 level-1
gates are necessary and a 20% savings is possible. Generally,
the upper bound G” is not tight when n is small or m is close
to n. O

Example 5: Reconsider the design of the 2-out-of-5 bit-voter
of example 2 using 2-input gates (n=5, m=2, f=2). Then
8=10, G=G’' =G"” =19. The value of G” in this example cor-
rectly indicates that no gate sharing is possible for the AND-
OR design. Figure 5 shows that the OR-AND design might be
preferable due to the possibility of gate sharing. O

IEEE TRANSACTIONS ON RELIABILITY, VOL. 40, NO. 3, 1991 AUGUST

i

|

(AR

n

Akl

w

Figure 4. Limited Fan-In Realization for a 3-out-of-5 Bit-Voter
with f = 2 and Gate Sharing (the digit i on a line represent the
input x)
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Figure 5. Limited Fan-In Realizations for the Circuits of Figure
3withf =2

2.2. Weighted Bit-Voters

If each of the n bit-inputs x;, i=1,2,..., n, has an
associated vote ; such that the output 1 is produced iff the sum
of votes associated with the inputs having the value 1 is no less
than a threshold ¢, then a generalized t-out-of-Lv; voter is ob-
tained. Except where noted otherwise, the remainder of sec-
tion 2 considers only such weighted bit-voters; designs for non-
weighted voters can be obtained as their special case.

This section 2.2 discusses gate-level direct logic realiza-
tions for weighted bit-voters. A multiplexer-based approach and
an ‘arithmetic’ approach are discussed in sections 2.3 and 2.4.
Designs based on decomposition (divide and conquer) and selec-
tion are treated in sections 2.5 and 2.6.

When the input votes are small integers, it is tempting
simply to replicate (fan-out) each input by its corresponding
weight and use an m-out-of-n bit voter with m=¢ and n= Zv;.

Example 6: Consider 3 inputs with the associated votes 2, 2,
1 and the voting threshold of 3. Then, a 3-out-of-5 bit-voter
can be used, with 2 of its input lines connected to each of the
inputs carrying a vote of 2. The input votes are not optimally
assigned in that equal votes (a simple 2-out-of-3 voter) would
accomplish the same thing. d

More — on the outside.
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Example 7: Consider 6 inputs with the associated votes 2, 2,
2,1, 1, 1 and the voting threshold of 5. Then, a 5-out-of-9 bit-
voter can be used, with 2 of its input lines connected to each
of the inputs carrying a vote of 2. Unlike example 6, here the
assignment of votes is optimal in that at least two different in-
put vote values are needed to achieve the desired effect. [

However, this input-replication method seldom results in
an optimal voting network, even when the votes are assigned
in an optimal way as in example 7. Intuitively, the reason is
that the asymmetry of votes must actually simplify the voting
process whereas the input-replication approach complicates it.
The direct logic approach simply enumerates all minimal subsets
of 1 inputs that should result in a 1 output. Reconsider exam-
ple 7 with this approach.

Example 8: With 6 inputs having the associated votes 2, 2, 2,
1, 1, 1 and the voting threshold of 5, the minimal input subsets
correspond to the product terms in the following sum-of-
products expression for the output function —

12341244125+ 126+ 134+ 135+ 136 +234 +235+ 236

+ 1456 + 2456 + 3456

where each digit i represents the input x;. The required 13
AND gates and 1 OR gate with a total of 55 input lines is con-
siderably less than that required for a 5-out-of-9 simple bit-voter.
With a fan-in limit of f=4, a 3-level 17-gate circuit realizes
the desired function. O

2.3. Design with Multiplexers

A variation of the direct logic approach discussed in sec-
tion 2.2 involves the use of multiplexers. Interest in this ap-
proach is triggered by the availability of multiplexers as off-
the-shelf components and by their universality. The design
strategy is to start with the highest-vote inputs and take them
as control inputs to a multiplexer and then repeat the process
for each multiplexer input function until we reach simple
residual functions that can be efficiently implemented (the ex-
treme case being 7-gate functions such as AND and OR). The
reason for proceeding in descending order of votes is that when
high-vote inputs are fixed at 1 or 0, relatively simpler residual
logic functions of the remaining input variables tend to result.

The multiplexer-based approach is essentially a special case
of the decomposition (divide and conquer) strategy (section 2.5)
whereby an n-input r-out-of-Lv; bit-voter is built from a
multiplexer and two or more smaller voters. In particular if a
2-input multiplexer is used in decomposition stage-1, then 2
(n—1)-input bit-voters, 1 -out-of- (Xv;—v,,) and the other
(2 — Viay) -out-of- (Ev; — vy ), are required where vy, is the
largest input vote. In the special case of equal votes, an m-out-
of-n bit-voter is constructed from an m-out-of-(n—1) voter,
an (m—1)-out-of-(n—1) voter, and a 2-input multiplexer.

Even though the worst-case complexity of such
multiplexer-based voter designs appears to be exponential in
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n, pruning and circuit-sharing is possible in practice. Thus the
complexity can be acceptable for particular values of n and m
with specific vote assignments. Numerous worked-out examples
suggest that the size of the multiplexers used can be just as im-
portant as the ordering of the decomposition variables in ob-
taining efficient designs. Clearly there is ample room for fur-
ther research in this area.

"Example 9: With 6 inputs having the associated votes 2, 2, 2,

1, 1, 1 and the voting threshold of 5, we can use 2-input
multiplexers in the following way. Take x, as the first control
variable. The residual functions corresponding to x; =0 and
x1=1 are:

XpX3X4 + XoX3Xs + XpX3Xg + XoXaXsXe + X3X4XsXg
XpX3 + XpXq + XpXs + XpXe + X3Xq + X3Xs + X3Xe + XgXsKe,

respectively. Continuing in this manner, we arrive at the
expansion:

[x” 1 [g(esxgxsxg) + xh} + xi[x’sh + xp(x3+x4+x5+x6)]]

h

X3X4 +X3X5 +X3%6 +X4X5Xs has the multiplexer realization:

>
I

[x"3(xax5x6) + x3(x4+x5+x6)]

Thus a total of 4 multiplexers corresponding to the square
brackets in the above expressions and 4 gates corresponding
to the parentheses in the above expressions are needed. The re-
quired circuit is shown in figure 6a. The last 2 levels of
multiplexers in figure 6a can be replaced by 1 4-input multiplex-
er. With 8-input multiplexers, the relevant expression becomes:

[x 1" px3hy +x7 1xx 3hy +x7 1 xoxshy + x40 9x 3hy
+ XX x50y +x100% " 3y X1 35%3]
hi = (xgxsx6), hy = (x4+x5+%6).

Thus, 1 8-input multiplexer and 2 gates are sufficient in this
case, as depicted in figure 6b. O

Realizations for the Voter of

Figure 6. Multiplexer-Based

Example 9
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2.4. Arithmetic-Based Design

In the ‘arithmetic’ approach for implementing a threshold
voter, the sign of the arithmetic expression —r+X(x;) is
computed. Since a non-negative result implies an output of 1,
the output is the complement of the computed sign. The pro-
ducts x;v; can be computed by AND gates and then added by
standard carry-save technique to yield the final result. If the
v;’s are constants, the hardware realization can be optimized
in each case by compressing the constant 0’s in the binary
numbers to be added. Standard arithmetic pipelining techniques
[29] apply to the resulting design.

Example 10: With 6 inputs having fixed associated votes of 2,
2,2, 1,1, 1 and the voting threshold of 5, the arithmetic ex-
pression to be evaluated is:

—5+2xl+2xz+2x3+x4+x5+x6.

The reduction steps in our multiple-operand addition using full-
adder and half-adder cells are shown in figure 7 (1011 is the
4-bit 2’s-complement representation of the constant —5). Each
vertical box encloses the inputs to a full or half adder and the
associated horizontal box encloses the outputs. Referring to
figure 7, a 2-bit adder can be used to reduce the remaining y
and z bits in the middle 2 columns, with the carry-out of this
adder providing the final output. The leftmost 1 can be ignored
since it causes only a complementation that cancels the com-
plementation needed for obtaining the resultant output from the
sign bit. This implementation requires 4 I-bit full adders and
2 half adders in a 4-level circuit; actually, further optimization
is possible. O

Instead of using full adders and half adders, one can use
larger building blocks known as parallel counters [8, 26] and
parallel compressors [10], which convert a group of input bits
to fewer output bits while maintaining the arithmetic value be-
ing represented. In fact, when input votes are all equal, a parallel
counter followed by a comparator or a single ‘accumulative
parallel counter’ can directly compute the output. Cost and delay
analyses for such reductions can be found in [8, 10, 26] and
related work in the field of computer arithmetic.

Ltevel 1

Level 2

Levels 3 & 4

Figure 7. Graphical Depiction of the Reduction Steps in an
Arithmetic-Based Realization of the Voter of Example 10.
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2.5. Designs Based on Decomposition

Hierarchical decomposition (divide and conquer) can be
used to facilitate the design of threshold bit-voters, although
in general it does not guarantee an optimal network. There are
two ways to proceed with the decomposition approach:

1. Pick a combining network and then design the parti-
tioning scheme.

2. Pick a partitioning scheme and then design the needed
combining network.

The multiplexer-based design technique of section 2.3 is an ex-
ample of the first approch. This section 2.5 presents some ideas
related to the second approach.

The basic idea is to —

« Divide the inputs into disjoint subsets

Enumerate the various combinations in which different subsets
can contribute votes in such a way that the voting threshold
is matched or exceeded

» Provide smaller bit-voters to realize these contributions

* Design a logic network for combining the results.

If necessary, decomposition can be applied to the smaller bit-
voters as well. This proceeds recursively until voters with known
designs are obtained. As an extreme case, the decomposition
continues until n-out-of-n or 1-out-of-n bit-voters, corresponding
to AND and OR gates respectively, are reached.

Example 11: Consider the design of a 3-out-of-5 bit-voter (with
equal input votes). Divide the inputs into subsets S,
{x1,%2,%3} and S; = {x4,x5}. The combinations that match or
exceed the threshold of 3 are:

3-0f-3in §; + (2-of-3 in §; and 1-0of-2 in §,)
+ (1-of-3 in §; and 2-0of-2 in ;).
This formulation yields the logic expression —
xpxoxs + (X +xoxs +x3x7) (xg+x5)
+ (x1+ 23 +X3)x4%5

which directly translates into a 4-level circuit using 10 gates
with 25 input lines. The number of gates and gate inputs can
be reduced to 9 and 23, respectively, and the number of gate
levels reduced to 3 if we implement the 2-out-of-3 voter in OR-
AND form and then combine the two cascaded AND gates that
result. O

When all input votes are equal, decompositions with almost
equal-size subsets tend to work best. When the votes are un-
equal, the inputs can be divided into subsets each containing
equal-vote inputs. Further decomposition then proceeds as
before. This tends to simplify the design, although again there
is no guarantee that it yields the best network.

5
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Example 12: With 6 inputs having the associated votes of 2,
2,2,1,1, 1, and the voting threshold of 5, the 2 input subsets
are §; = {x1,x.%,} and S, = {x4,x5,%}. The combinations
that match or exceed the threshold of 3 are:

3-0f-3 in §;+ (2-0f-3 in S, and 1-of-3 in S,)
+ (1-of-3 in S§; and 3-0of-3 in S5).
This formulation yields the logic expression:
xox3+ (X% +x0%3 +X3%1) (X4 +X5+%6)
+ (X2 +X3)XaXsXg

which directly translates into a 4-level circuit using 10 gates
with 27 input lines (maximum fan-in of 4). Expanding the above
expression results in the logic expression of example 8. Again,
using an OR-AND realization of the 2-out-of-3 voter and merg-
ing cascaded ANDs, can reduce the complexity to 9 gates with
26 inputs and the delay to 3 gate levels. a

2.6. Design with Selection Networks

The design of an m-out-of-n bit-voter is equivalent to selec-
ting the m™ largest bit value from among n input bits. The
design of sorting and selection networks built from 2-sorter
(comparator) cells has received much attention [7, 15]. For our
problem, we can either use an n-sorter (descending order) and
look at its m™ output or take advantage of the generally simpler
selection networks. Knuth [15] defines three types of selection
networks that accomplish the following, when provided with
n input values:

1. Select the m largest values and move them to m output
lines in no particular order.

2. Select the m™ largest value and move it to a specified
output line.

3. Select the m largest values and move them to m output
lines in sorted order.

Each network requires at least as many 2-sorters as the preceding
one. Denote the number of 2-sorter or comparator cells by
U(m,n), V(m,n), W(m,n) for type-1, type-2, type-3 selectors
above. Then —

U(m,n) < V(m,n) < W(m,n).

Because we are dealing with bits, a 2-sorter simply consists of
a pair of 2-input gates: An OR gate to produce the larger and
an AND gate to produce the smaller of the 2 input values. Table
1 shows the number of 2-sorters required for the three types
of selectors by listing the triples U,V, W for small values of m
and n [15].

Clearly type-3 selectors do more than is required here.
Type-2 selectors do exactly what we want. However, for most
practical values of m and n, particularly where m is neither too
small nor too close to n, a type-1 selector augmented by an AND
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or OR circuit (that indicates whether all of the m largest values
are 1’s or whether the n —m+ 1 smallest values are not all 0’s)
is faster and more economical (see table 1).

TABLE 1
Minimum-Cost (m, n)-Selectors of Three Types
[For each m and n, the triple U,V,W denoting the costs of the
three selector types is listed)

n m=1 m=2 m=3 m=4 m=S5 m=6
2 1,1,1 01,1

302,2,2 2,33 023

4 3,33 455 3,55 0,35

5 444 677 61,8 4,7,9 0,49

6 555 899 810,10 810,12 59,12 0,512

Example 13: Consider the design of a 4-out-of-8 bit-voter. The
required type-1 selection network that selects the 4 largest bit
values and moves them to the upper half of the output lines is
given in figure 8, where each heavy vertical line represents a
comparator that moves the larger of the 2 input values to the
upper line and the smaller value to the lower line. The verifica-
tion that figure 8 indeed represents a type-1 (4,8)-selection net-
work is simple if we note that the network consists of 2 4-sorters
followed by 4 comparators each of which compares the it
largest output of the upper 4-sorter to the 7% smallest output
of the lower unit. The selector of figure 8 requires 14 com-
parators or 28 2-input gates with 4 gate levels of delay. A 4-input
AND gate connected to the upper 4 outputs completes the cir-
cuit. A 5-out-of-8 majority voter results if we connect an OR
gate to the lower 4 output lines in the circuit of figure 8. [

Two 4-Sortars.

The Four
Largest
Input
Values

1

N
P
U
v
s

Figure 8. Network of Comparators to Select the 4 Largest of
8 Values. One Additional 4-Input Logic Gate Can Convert This
Network into a 4-out-of 8 or 5-out-of-8 Bit-Voter

2.7. Comparison of Various Designs

Because of the many parametes involved, a general com-
parison of the design strategies discussed in section 2 is quite
difficult. Thus, the designs are compared only for simple ma-
jority bit-voters (m=gilb(n/2) + 1, equal input votes). Figure
9 shows the cost of simple majority voters designed based on
2-level logic expressions (‘gate-level’), the arithmetic-based ap-
proach, selection networks, and 2-input multiplexer decomposi-
tion, assuming maximum allowable gate fan-in of 4. Figure 9
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Figure 9. Cost of Simple Majority Bit-Voters with Different
Designs as a Function of Input Size n

indicates that the gate-level or multiplexer-based approach is
best for small values of n whereas selection networks offer the
most economical solution for larger values of n. The crossover
points change if the assumptions (such as gate fan-in and fan-
out limitations) are altered.

Although the arithmetic-based approach appears to be in-
ferior to the one based on selection, it can become quite com-
petitive if the resulting arithmetic circuit is fully optimized to
eliminate all redundant elements (only a small amount of op-
timization has been done to obtain the data for figure 9). Figure
9 relates only to simple majority voters. The strength of the
arithmetic-based approach shows up in the case of unequal in-
put votes where the selection-based approach does not directly
apply (eg, example 10). Similarly, the pure multiplexer-based
approach is not particularly efficient for simple majority voting
but can yield good designs for specific values of the parameters
in weighted r-out-of-Lv; voting. A combination of the ap-
proaches might provide the best solution in a particular case.

Since the objective is to use our designs with pipelining,
the differences in latencies (number of gate levels) are not im-
portant as far as throughput is concerned. However, the number
of gate levels does affect the cost due to the requirement for
latches between pipeline stages. A general analysis is imprac-
tical because the number of logic signals going from one pipeline
stage to the next cannot be expressed as a simple function of
the relevant parameters. Also, these analyses have convenient-
ly ignored the cost associated with interconnections. For these
reasons, it is advisable to proceed with and check out several
designs for any set of application parameters before a final selec-
tion is made. Clearly, more work remains to be done in quanti-
fying the tradeoffs, identifying promising combinations of these
approaches, and possibly devising new design methods.

3. WORD-VOTING NETWORKS

An m-out-of-n word-voter is a circuit with n word-inputs x;,
i=1,2,..,n, and 1 word-output y, where either at least m of the
inputs have the value y or else a separate ‘lack of quorum’ signal
is raised. An alternative (pursued in the following pages)

—
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is to produce an output vote w along with a value y having max-
imal vote, so that comparing w to m yields the desired quorum
information and indicates the validity of y as the output. When
two or more values have equal votes, any one of them is an
acceptable output. The ‘lack of quorum’ signal could be envisag-
ed for bit-voters as well where it would be needed only if m
= n/2+1. Again, a simple majority word-voter corresponds
to the special case of m = gilb(n/2) +1 = liub((n+1)/2).

We proceed directly to the general case where a vote v,
is associated with the input x; and obtain simple unweighted
word-voters as a special case of the general design. Thus the
word-voter receives {x;, v;> pairs as inputs and produces the
single {y, w) pair as output. Another interesting special case
is when the input votes v; are in {0,1}, with v;=0 correspon-
ding to a ‘disabled’ computation unit (perhaps due to a previous-
ly detected disagreement). Although we conside 1 output pair,
the technique can be extended to g output pairs in order to pro-
vide tolerance to internal voter faults through multi-channel
computation. In the remainder of section 3, the voter is assum-
ed to be perfect.

3.1. Using Bit-Voters

A straightforward approach for r-out-of-Lv; voting on a
set of n k-bit words is to use independent #-out-of-Zv; bit-voting
for each of the k bit positions. This can be done sequentially
using 1 bit-voter or in parallel by k voters. There are two dif-
ficulties with this approach.

1. For m < n/2, the independent bit-voters can produce
incorrect outputs.

Example 14: Consider 2-out-of-4 voting with 2-bit inputs
01, 10, 10, 11. Independent 2-out-of-4 bit-voting for the
2 bit positions produces 11 as the output whereas the correct
output is 10. The problem does not result from the 0/1
asymmetry of bit-voters as defined here. No matter how
bit-voters are defined, the one dealing with the right-hand
bit position in this example has no basis for selecting 0
or 1 as its output. a

2. The independent bit-voters can indicate a quorum when
no quorum exists.

Example 15: Consider 3-out-of-4 voting with 2-bit inputs 00,
10, 10, 11. The 2 independent 3-out-of-4 bit-voters produce
the output 10 even though 10 does not have the required quorum
of 3.

It should be clear from the above discussion and examples
that implementing a k-bit word-voter by k& independent bit-voters
is unacceptable for m < n/2 but works for m > n/2 provided
that a quorum actually does exist. Thus, in this case, an er-
roneous result is obtained for m > n/2 iff a quorum does not
exist. This event has the probability:

E = binf(m—1; (1—p)*.n)
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Notation

p probability that any given data bit is in error (assum-
ing s-independence of errors in different bit positions)

binf(.;..) binomial Cdf (see ‘‘Information for Readers &
Authors’’ at the rear of this issue).

Note that (1—p)* is the correctness probability for a k-bit
word and that an error occurs if fewer than m of the n words
are correct.

Given the bit-error probability p and a maximum tolerable
voting-error probability E,,, the above equation can be used
to find the maximum allowable word length k,, for each m
and n, if independent bit-voting is to work.

Example 16: Consider 3-out-of-4 voting (m=3, n=4). The
equation for E reduces to:

E=[-0-p)"? +2(1-p)+3(1-p)*

Since the second term on the r.h.s. is less than 6, the above
error probability is less than E,, if —

[1— (1=p)" < Epan/6

log (1 =VE,4:/6)
log1-p)

As a numerical example, for Ey,,=10"7 and p=10">, the
sufficient condition is k < 13. Thus, problems may arise even
for fairly short word lengths. O

A remedy for the problem illustrated by examples 15 and
16 (but not for that of example 14) in the case of bit-sequential
voting is to equip the bit-voter with n disagreement flip-flops
that are set to 1 at the beginning of each word-voting cycle and
are reset to 0 whenever the corresponding input differs from
the bit-voter output. Then the voter result is valid iff after con-
sidering all the k bit positions, at least m flip-flops remain set.
This condition can be verified by the bit-voter itself as step
(k+1) of the bit-sequential voting process.

3.2. Three-Phase Word-Voters

Assume that k-bit input data values and their associated
b-bit votes are provided in parallel on k + b lines per input. The
requirements for digit-serial computation, which is more prac-
tical due the need for fewer interconnections and less complex
circuits, is discussed in section 3.4. Cellular voting networks
can be constructed on the basis of the following algorithm in
which each phase corresponds to a subnetwork of the voting
network.

Algorithm 1: 3-Phase Voting

1. Sort the input pairs (x;,;) according to the data fields
X;.

2. Combine all pairs with equal data values by summing
their votes.
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3. From among the remaining pairs, select one with the
largest vote. 0

Example 17: A 5-voter receiving the input pairs <5,1), 4,2y,
(5,3), (7,29, {4,1) should produce the output pair {(5,4) since
the sum of votes for the data value x=35 (viz, v=1+3=4) is
larger than those of the input values 4 and 7. Figure 10 shows
the 3 subnetworks and how they cooperate to obtain the voting

result for the input data of this example. |
Phase 1 Phase 2 Phase 3
5, 1)~ F——(7,2) ——» —(1,2) —¥]
4,2) —» F—— 5. 1) —¥ (5, 4) ——4
Sorl Cem- Select
(5.3) —® by }——1(5,3) ——»{bine [-——(5,0) —»Max. [ (5,4)
Dala Votes Vote
(7,2) —] —4,2) —» (4, 3) ——W
(4, 1) —» — (4, 1) — b (4, 0) ——
L
SORTER COMBINER SELECTOR

Figure 10. The Stucture of a Three-Phase Cellular Voting
Network

The design of sorting networks has been studied extensive-
ly. Knuth [15] provides an excellent exposition of two decades
of work in this area starting from its inception in 1954. Two
other books [2,7] contain references to more recent work on
sorting networks. Sorting networks can be constructed from sim-
ple 2-input, 2-output comparator cells according to several
schemes. Each comparator either passes the 2 inputs directly
to the 2 outputs or switches the input values to make their order
consistent with the desired output order. The only modifica-
tion required for our application is to add logic to the cells for
passing or switching the votes in tandem with the data values
(figure 11).

Xo

Yo

Xy

vy

Figure 11. Internal Structure of an Augmented 2-Sorter Cell

Even though the design of optimal sorting networks is still
an open problem (viz, truly optimal rather than asymptotically
optimal), for small values of  likely to be of practical interest
in voting schemes, optimal or near-optimal n-sorters are known.
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Figure 12 shows several cost-optimal sorting networks. The in-
terested reader can verify that these are in fact sorting networks
by using the 0-1 principle: If an n-input network correctly sorts
all 2" possible combinations of 0’s and 1’s, then it is a sorting
network. The 5-input network in figure 12 can be understood
by viewing it as composed from a 2-sorter and a 3-sorter, follow-
ed by a (2,3)-merger as outlined by the dotted boxes. The struc-
tures of the 7-sorter and 9-sorter of figure 12 are more com-
plicated. Table 2 presents data on the fastest and lowest-cost
sorting networks known for small values of n [15].

Stages of delay 12345678

1234 , 12345¢6
5

1
200 (23) Morgr I | |
e e S
T 'IJI A
1 11 1 |

Figure 12. Cost-Optimal Sorting Networks forn = 5, 7, and 9

The combining subnetwork required for phase-2 of the
algorithm essentially performs a partitioned semigroup com-
putation. The operation of addition must performed in parti-
tions that are delimited by pairs of unequal values. This can
be done by a circuit in which n overlapping binary trees are
embedded such that the tree rooted on line i accumulates data
from line i and all subsequent lines that carry equal values (all
the way to line n in the worst case). Just as sorting networks
can be synthesized from 2-sorters, the n-combiner is constructed
from 2-combiners. Figure 13 shows the combiner cell needed
and figure 14 depicts the designs for 5-, 7-, and 9-combiners.
It is easy to show that the cell count C,(n) and the delay D,(n)
for an n-combiner are (Ig denotes log,):

TABLE 2
Minimal-Cost and Minimal-Delay n-Sorters
[In general, minimum cost and minimum
delay cannot be attained simultaneously]

n Crin(n) Drin(n)
2 1 1
3 3 3
4 5 3
5 9 5
6 12 5
7 16 6
8 19 6
9 25 7
10 29 7
1 35 8
12 39 8
13 46 9
14 51 9
15 56 9
16 60 9
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C(n) = (n—1)+(n—=2)+ (n—4) +... + (n—28b0em)

n (gilb(lg n) +1) — (280Uem+1_1)

= n gilb(lg n) — (28EM+1_,_1)
<nlgn
D.(n) = 2 liub(lg n) —1
Xy Yo
Mux’'s
vo jr_1 ‘g/ — Yo
Adder
x4
V4
Figure 13. Internal Structure of a 2-Combiner Cell

Stages of delay,
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Figure 14. Combining Networks for n =5, 7, 9

The max-selector subnetwork for phase-3 is essentially an
liub(n/2)-leaf binary tree of 2-selector cells whose design is
depicted in figure 15. The cell count and delay of an n-input
max-selector network are:

C,(n) = n—1

D,,(n) = liub(lg n)

]

Yo

Vg < V.
COmMParator [-Jumm b
1 >

Figure 15.

Internal Structure of a 2-Selector Cell

Figure 16 shows the designs of 5-, 7-, and 9-input max-
selectors. If the max-selector subnetwork is replaced by a sorting

LB
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subnetwork that sorts by vote values, then the total votes of all
distinct input values is available at the output. This might be
a useful feature if one wants to synthesize large voting networks
from smaller ones. Thus, for example, 2 n-voters and 1 2m-
voter (m<n) can be used to synthesize a 2n-voter by connec-
ting the first m outputs of each n-voter to the inputs of the 2m-
voter. The resulting 2n-voter is not perfect, ie, it can produce
an incorrect output with a very small probability (that can be
easily quantified). With this modification, the example shown
in figure 10 produces, respectively from top to bottom, the out-
put pairs (5,4), (4,3), (7,2), {(5,0), <4,0).

Stages of delay 123
123

=, Eool
= T oot

Figure 16. Max-Selector Networks forn = 5, 7, and 9

A more useful practical modification is to produce the
maximal-vote result on a set of g output lines. This allows the
voter to feed directly the next stage of a multiple-channel com-
putation. Also if voter inputs are stored in the computation units
for a period of time equal to voting delay or if original values
on input lines are carried along with the transformed values in
the 3-phase voter, a set of comparisons performed in a single
extra stage can identify the diagreeing unit(s). The above can
be accomplished by adding a phase-4 consisting of g—1
‘distributor’ cells. The number of circuit levels added is 1 with
umlimited fan-out and liub(logsq) if fan-out is limited to at
most f. It is also possible to combine phases 3 & 4 by using
the networks in figure 14 in which each cell places the input
with the larger vote on both outputs. The resulting circuit has
the same delay as the 4-phase circuit but is more complex.

The complexity and delay of the 3-phase voting network
is easily obtained by adding the parameters of 3 phases with
suitable weights to account for the unequal costs and delays of
the 3 cell types. Figure 17 shows the structure a complete
S-voter, with the intermediate values also shown for the input
data of example 17. These 3-phase voting networks are fairly
complex. However, if standard pipelining techniques are used,
the throughput of such a cellular voter is dictated by the largest
cell delay and is independent of its size. Although from a prac-
tical point of view it does not make sense to talk about extremely
large voting networks, it is interesting to note that asymptotically
the complexity (both in cell count and in delay) of 3-phase voting
networks is dominated by the respective parameters of the
sorting phase since sorting cannot be done with fewer than O(n
Ig n) cells or with less than O(lg n) cell delays [1]. Practical
sorting networks actually have delays proportional to (Ig n)?
[7,15].
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Figure 17. Complete Structure of a 3-Stage 5-input Voter

3.3. 2-Phase Word-Voters

Having obtained a design for cellular voting networks, it
is reasonable to ask whether the design can be simplified. This
section shows that the first 2 phases of the 3-phase voter can
be combined by merging the functions of 2-sorter and
2-combiner cells. This reduces the total number of cells but in-
creases the cell complexity, leading to an obvious tradeoff due
to the fact that the number of cells in phases 1 & 2 are not equal.
To show this, we need the following lemma.

Lemma 1: In any sorting network, two input values x; and x;
ending up on adjacent output lines y; and y; ., must have been
compared to each other in some stage. O

Since after sorting, equal input values end up on adjacent
lines, by lemma 1 they must have been compared within the
sorting subnetwork. This allows us to integrate the combining
function with the sorting function, thus effectively merging
phases 1 & 2 of the 3-phase voter. Figure 18 shows a
2-sorter/combiner cell which acts as a 2-sorter when the input
values are unequal and as a 2-combiner when they are equal.
Since 2-sorter/combiner cells are building blocks for synthesiz-
ing voting networks, we call them ‘2-voters’.
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Figure 18. Internal Structure of a 2-Voter (2-Sorter/Combiner) Cell

Theorem 2: If in any sorting network, the 2-sorter cells are
replaced by 2-voters (cells that act as 2-sorters when the input
values are unequal and as 2-combiners when they are equal),
the outputs are identical to those obtained from a 2-phase
sorter/combiner network. d
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The complexity and delay of the 2-stage voting network
is easily obtained by adding the respective parameters of the
2 phases with suitable weights to account for the unequal costs
and delays of the 2 cell-types. Figure 19 shows a complete
2-phase 5-voter constructed from 2-voter cells along with ex-
ample values from the data of Example 17. Comparing this to
the 5-voter of figure 17, we see that 8 combiner cells and their
5 levels of delay have been eliminated, but each of the 9 cells
in phase 1 is rendered slightly more complex and slower. Some
quantitative comparisons are presented in section 3.5.

Steges of delay

1 2 3 4 5 ] 7 8
[V (7,2)
{4,2) (5,3) {5,4) L
5,3 (1,2) {5, 1) {5,0) {4, 3) l (5, 4)
(7,2) (5, 3) {4,2) (4,3)
@1 l I “,0 T
5-Sorter/Combl Lt o §52S@1QCION it

Figure 19. Complete Structure of a Two-Stage, 5-Input Voter

A reasonable question at this point is whether the merging
of phases can be carried one step further to obtain a /-phase
voting network consisting of 1 cell-type. The following result
shows that no network consisting of 1 type of 2-input, 2-output
cells can correctly compute the voted output as defined in this
paper.

Theorem 3: No voting network can be constructed from 1 cell-
type with 2 data/vote inputs and 2 data/vote outputs. |

One might think that if data and vote formats were iden-
tical, a 2-voter could be made to behave as a 2-max-selector
by simply flipping the data/vote pairs at input and output.
However, even with this property, 1 cell type would still be
inadequate due to the spurious ‘‘combining’’ that might occur
in the case of tie votes.

3.4. Digit-Serial Operation

Sections 3.2 & 3.3 assumed that a cell receives all of the
digits of the data values x and the votes v in parallel. This might
be practical for small values of n and short word lengths but
not otherwise. Thus we are motivated to consider the design
of digit-serial voting networks in order to reduce the number
of interconnections required. Although digit-serial operation in-
creases the number of clock cycles per operand feed, some of
the loss is regained because the simpler digit-oriented cells can
be driven at a much higher clock rate.

The augmented 2-sorter cell of figure 11 can be easily
modified for digit-serial operation. The serial x inputs must be
supplied starting from the most significant digit and the output
of the digit comparator used to set a flip-flop that controls the
multiplexers. As for the vote inputs, they cannot be handled
in an on-line, serial fashion concurrently with the data digits
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because initially the cell cannot decide how to route the 2 vote
values until the outcome of the data comparison is known. One
way around this problem is to supply the vote values in parallel.
This approach is feasible only if the votes are small integers.
A more practical option is to provide the votes digit-serially
following the last data digits. In this case, input lines for data
and vote values can be shared. In fact as far as the sorting phase
is concerned, data and vote digits can be treated identically and
thus they need not be distinguishable.

The 2-combiner cell of figure 13 can be similarly modified
for digit-serial operation. Again, the vote outputs can be pro-
duced only after the comparison is completed. With parallel vote
inputs, the design is straightforward. The vote value can also
follow the corresponding data value in a digit-serial format pro-
vided that the least-significant digit appears first. However, this
format is incompatible with the requirement of the selection
phase where the relative magnitudes of vote values must be com-
pared. The use of a redundant number representation system
[3,19] that can support serial addition starting from the most
significant end of the vote values is a possible solution.

The only remaining problem is that votes must precede data
values in phase 3 whereas they follow the data in phase 2. If
each 2-selector cell is provided with 2 shift registers of length
k, then correct operation can be effected as follows. During the
first k clock cycles, the new data are shifted in while the old
data are shifted out. Then for the next b clock cycles, the votes
are accepted, compared, and output in the proper order. This
is followed by the output of the associated data from, and ac-
ceptance of the next data into, the shift registers. Thus, the
operational delay of the voting network is increased by k clock
cycles while its throughput is unaffected. One could of course
require that vote values precede data values. This would allow
simpler selector cells but would require the inclusion of shift
registers in the sorter/combiner cells which are more numerous
than selector cells, thus leading to higher cost.

3.5. Comparisons of Costs and Speeds

We now proceed to quantify the relative advantages of
3-phase versus 2-phase voter designs. Although I do not claim
that either design is optimal, the following informal argument
suggests that 2-phase cellular voters are very close to optimal
in terms of the number of cells. It can be shown [20] that the
vote-tallying function performed by the sort-combine phase is
asymptotically as complex as sorting and that weighted voting
cannot be accomplished without explicitly tallying all the votes,
even though only the maximal vote is of interest. My 2-phase
voter design only contains n— 1 simple 2-selector cells beyond
those required for the sort/combine part and the argument in
the proof of theorem 3 suggests that these might be necessary
in any design. Thus, simplification, if possible, occurs in the
internal design rather than the multiplicity or interconnection
structure of cells.

In what follows, we ignore the complexity and delay
associated with the selection phase which is common to 3-phase
and 2-phase designs. Thus the figures provide an indication of
the differences rather than the ratios of complexities and delays.

— -
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This is sufficient for judging when the 3-phase or 2-phase design
should be preferred over the other. We take the complexity and
delay of a 2-sorter as a unit-measure and denote by v’ and v”
(respectively &’ and 8”) the relative complexities (respectively
delays) of the 2-combiner and the 2-voter cells. C;(n) and
D, (n) are the number of 2-sorter cells and the number of cell
levels needed in an n-sorter. The complexities C’ and C” and
delays D’ and D" of 3-phase and 2-phase designs are:

C'(n) = Cs(n) + v Ce(n)
= C,(n) + 7' (ngilb(lg n)—2800eW+4p41)
C"(n) =v" G(n)
C'(n)=C" (n) = v’ (n gib(lg n) —28°ED* 14 n41)
- (y"-1) G(n)
D’ (n) = Dy(n) + &' D.(n)
= D,(n) + &’ (2 liub(lg n)—1)
D" (n) = 8" Dy(n)
D' (n) — D" (n) = & (2 liub(lg n) —1) = (8" =1)Dy(n)

Actual values for y’, y”, 8’, 8" are technology- and
implementation-dependent. However, by inspecting figures 11,
13, 18 and keeping in mind that these designs can be varied
depending on speed and cost constraints as well as parallel or
serial operation, the following are safe bounds on the values
of these parameters:

< y" <3

1 =

6 = 8" < 2.

The lower values of v’ and y” correspond to the case where
input values are presented sequentially and the addition and com-
parison hardware are shared. The lower values of 6’ and 6"
correspond to the high-speed parallel realizations shown in
figures 13 and 18.

Table 3 contains the values of C’(n)—C”(n) and
D’ (n)—D" (n) as functions of v', v”, 6", 6”. Figure 20
depicts y” as a function of y’ for values of n such that C’ (n) —
C” (n) =0. In the region above each of the lines in figure 20,
the 3-phase design is better for the corresponding value of n
while the 2-phase design is advantageous below the lines. Thus
given efficient realizations for the cells of figures 11, 13, 18,
one can easily determine vy’ and v ” using appropriate indicators
of complexity for the corresponding technology and then use
figure 20 to determine which of the two designs is less expen-
sive. As n increases, the lines in figure 20 generally move
downward (eventually tending to y” =1 for very large n), with
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some local fluctuations resulting from the discrete nature of the
problem.

TABLE 3
Differences of Complexity and Delay Parameters for 3-Phase
(C’, D') Versus 2-Phase (C”, D”) n-Voters.

I

n C'(n) — C"(n) D'(n) — D" (n)
2 T4y’ —y" 146" —8"

3 3(1+y" —v") 3(146"=8")

4 5(1+y =v") 3(146"—5")

5 9(1+v" =)~ 5(1+8"—8")

6 21+ =v") =" 5(1+8'—8")

7 16(1+7" —=7") =2y’ 6(1+8"—58")—8'
8 19(1+y =" =2y" 6(1+8" —5")—8'
9 25(1+y =v")—4y’ T(1+6"—8")
10 29(14+y"—y") =4y’ T(148"—5")
11 35(14+y" —v") — 6y’ 8(1+8" —8")—8’
12 39(1+y —v") — 6y’ 8(1+8"—8")—d
13 46(1+~" —v") =%’ 9(1+8'—5") 28"
14 51(149" —v") =10y’ 9(1+8' —5")—28"
15 56(1+y —y")—1ly’ 9(1+8" —5")~28'
16 60(1+7’ —v")—11y’ 9(1+8' —5")—26'

From table 3 the value of D’ (n) —D” (n) is positive for
n < 16 provided that:

8" < 16/9+7(8' —1)/9.

Evenif 8' is very close to 1, it is highly unlikely that 6" = 16/9
~ 1.78 for a particular implementation. Thus it is safe to con-
clude that the 2-phase design always has the edge in terms of
delay. However if 8’ < 8", the 3-phase design supports a
higher throughput, given the fact that a 2-selector cell is simpler
than a 2-sorter cell, a 2-combiner cell, or a 2-voter cell.

18
13,1415

’

Y

18

Figure 20. Complexity of 3-Phase Versus 2-Phase Word-Voters
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4. VARIATIONS & EXTENSIONS

This section examines issues related to the design of op-
timal voting networks in certain special practical cases,
motivates the extension of the ideas presented here to other types
of voting schemes, and offers several concluding observatidns.

Having derived a general technique for designing weighted
word-voting networks, one reasonably looks for simpler designs
in special cases where the full power of the general voting
scheme is not needed. One such case is simple majority voting
where all inputs have equal votes and the output should yield
the value carried by a majority of inputs. The only simplifica-
tion that seems possible in this case is that vote tallying can stop
once a majority is obtained. Assuming parallel inputs, this
translates into a savings of at most 1 bit in the b-bit adder
embedded in the 2-combiner or 2-voter cells. For serial inputs,
the savings are even less important. With m-out-of-n voting,
given that m<n and any of the values having at least m votes
is acceptable as output, the savings resulting from tallying votes
only up to m can be important. At the other extreme, when m
is close to n, one may choose to tally ‘negative’ rather than
‘positive’ votes associated with each value. Consensus or n-out-
of-n voting is of course trivial.

Approximate voting presents a whole set of new problems.
One may of course modify the design such that approximate
equality (to within €) is used as the criterion for the combining
operation. However, the output is then sensitive to the order
in which comparisons are performed [16]. There seems to be
no efficient hardware-implementable voting algorithm for this
case. However if the median-voting strategy is used (the voted
result is the median of input values), the complexity becomes
manageable. Median voting with equal input votes essentially
requires a selection network which is less complex than a sorting
network [15]. Median voting with unequal input votes is a new
concept that needs further investigation. Consensus or n-out-
of-n voting with approximate data only requires verifying that
the largest and smallest input values are within e of each other.
This can be accomplished quite easily in a bit-serial design.

I argued in section 3.1 that word-voting cannot always be
effected through independent bit-voting. This is because in-
dividual bits in a word are usually not computed separately and
thus are likely to contain correlated errors. However, the same
cannot be said about more complex data structures. A struc-
ture that is incorrect overall, can contain many correct com-
ponents and this can be used to advantage in constructing a
voting procedure that increases the likelihood of obtaining a cor-
rect result. Thus, it might make sense to use independent word-
voting to compute the voting result for a vector of words or
for a record. This approach takes care of data errors within the
structures but is incapable of handling structural errors such as
incorrect pointers or missing elements. Clearly, special
structure-voting schemes have to be devised with specific in-
stances for vector-voting, record-voting, set-voting, tree-voting,
and the like.

Example 18: Suppose that we want to perform 3-out-of-3 or
consensus voting on the sets S;= {1, 2, 3, 4}, S, = {2, 3, 4,
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5}, 83 = {3, 4, 5}. Clearly if the sets are considered as single
entities, no consensus exists since the three sets are all different.
However, consensus does exist that 3 and 4 are members of
the set and that 6, say, is not. Thus, the set {3, 4} might be
a reasonable voting result, depending on the application. In prac-
tice, it is unlikely that such complex voting decisions occur at
a very high rate and thus they can be delegated to software
routines. O

Finally, I have assumed that input votes are given, and have
dealt only with hardware design techniques, given the input vote
values. In practice, one must also deal with procedures for
assigning votes to the inputs in an ‘optimal’ manner. Optimali-
ty in this context can be defined in various ways depending on
reliability and safety concerns. The basis for vote assignment
can be histories associated with the various computation chan-
nels (eg, past disagreements with the voted result), static cor-
rectness probabilities (given or derived), or dynamic ‘depen-
dability’ designations carried along with the data [18]. I have
likewise not discussed criteria for selecting a particular voting
scheme (eg, 3-out-of-5 vs 4-out-of-5) and have considered the
voting scheme as given. This too must be dealt with through
suitable probabilistic analyses and is being investigated.

It is interesting to observe some relationships between
voting networks and other classes of networks that have been
studied. One may observe that if all the input votes v; are
equal, the vote-tallying function, performed by the sort-combine
phase, sorts the input data. On the other hand if all the data
values x; are equal, then the voting network becomes a
multiple-operand addition network. If in the special case of equal
input votes we additionally have x;€ {0,1}, then the voting
network behaves like a parallel counter [8, 26] in the sense that
its output indicates the multiplicity of the 1’s or 0’s at the in-
put. With v;€ {0,1}, we have what may be called a ‘partition-
ed parallel counter’ in the sense that counting occurs within par-
titions having identical data tags. Thus voting networks can be
viewed as generalized sorters, multiple-operand adders, and
parallel counters.

APPENDIX-Proofs

Proof of Theorem 1: The complexity of a logic circuit can be
judged in various ways. Two common measures are the logic-
gate count and gate-input count, both of which yield the same
result here. As for logic-gate count, there are g+ 1 gates in the
AND-OR design versus g’ + 1 gates in the OR-AND design.
Since g/g’ =(n—m+1)/m, wehave g<g’ iffm> (n+1)/2
and g=g’ iff m= (n+1)/2. If the number of gate inputs is
considered, there are g(m+1) for the AND-OR design vs
g’ (n—m+2) for the OR-AND alternative. Again since g/g’ =
(n—m+1)/m, the AND-OR design is simpler than the OR-
AND version iff (n—~m+1) (m+1) <m(n—m+2) which is
equivalent to the desired result. Q.E.D.

Proof of Lemma 1: Consider the output values y; and y;; in
anetwork that sorts in ascending order and receives n different
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values as inputs. With these assumptions, we can write
N<e <Yi<Yyig1<...<y, Let y;=x; and y;;;=x;. If the
values of y; and y; | (alternatively, x; and x;) are never com-
pared, then exchanging the values of the j and k™ input lines
leads to the exchange of y; and y; | at the output side. This is
true because the result of comparing x; =y;,; to any x;#x; is
the same as that of comparing x;=y; to x;. Thus x; ends up on
¥; and x; on y; ;. Clearly, the network does not sort properly
in this case and therefore it cannot be a sorting network.
Q.E.D.

Proof of Theorem 2: (By contradiction)—Without loss of
generality, consider a network that sorts in ascending order.
Clearly, the proposed modified network sorts properly and does
some combining, so the only potential problem is that combin-
ing might be incomplete in that for some input pattern, there
exists a pair of output lines y; and y;,, carrying {x,v) and
{(x,v’"), respectively, with v'#0 and all of the lines
Yis1r----Yir1—1 (if any) carrying (x,0); ie, there exist equal
data values whose corresponding votes have not been combin-
ed. Let S and S’ be the set of input lines that have contributed
to the formation of {x,v) and {x,v"), respectively. Since com-
bining takes place any time a pair of equal values are compared,
no member of S has been compared to any member of S’. If
we change the inputs in S to x+¢, such that x+¢ is less than
the next larger input value after x, at the output we have y;,=
{x+¢€,v) and y;,;=(x,v").Clearly, the sorting outcome is
flawed and the network could not have been a valid sorting
network. Q.E.D.

Proof of Theorem 3: Suppose that such a network exists.
Without loss of generality, assume that the voted output is
produced on the uppermost output line y;. Consider the last
(rightmost) cell that touches line 1. Assume that this cell
is non-redundant in that its removal invalidates the voting
network. Thus there exists an input pattern for which the
cell under consideration combines or interchanges its 2 input
pairs. Assume that combining takes place at this cell for
some input pattern, with the pairs {x,v;) and (x,v;) com-
bined to yield {(x,v;+v,) on line 1. It is easy to adjust the
input weights, if necessary, such that there exists some other
output line carrying a different value x’ with the vote
v;+v,—1, viz, 1 less than the maximum vote. Now multip-
ly each input vote by 3. This does not change the functioning
of the cells or the final output, except that the output votes
are tripled as well. The above-mentioned 2 lines now have
votes 3v;+3v, and 3v;+3v,—3, respectively. Now reduce
1 of the input votes contributing to 3v;+3v, by 2 and in-
crease 1 of the input votes contributing to 3v;+3v,—3 by
2. This does not change the functioning of the network except
that the upper output line now carries the vote 3v;+3v,—2
and the other line has a vote of 3v;+3v,—1. Thus the up-
per output line does not always carry the value with the
highest vote as assumed. Similar reasoning takes care of the
case where the last cell touching line 1 interchanges its inputs.

Q.E.D.
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