High-Performance Parallel Pipelined Voting Networks

Behrooz Parhami

Dept. of Electrical & Co
University of

uter Engineering
alifornia

Santa Barbara, CA 93106, USA

Abstract

Synthesis methods for high-performance generalized bit-
voting and word-voting networks are described and the
resultant designs are evaluated with respect to speed and
cost. Both ordinary and generalized m-out-of-n voting,
with arbitrary votes assigned to the inputs, are considered.

0. Introduction

Voting is an important operation in the realization of
ultrareliable systems that are based on the multi-channel
computation paradigm. Voting is required whether the
multiple computation channels consist of redundant
hardware units, diverse program modules executed on the
same basic hardware, identical hardware and software with
diverse data, or any other combination of hardware/
program/data redundancy and/or diversity. Depending on
the data volume and the frequency of voting, hardware or
software voting schemes may be appropriate.

Hardware voters that have been described in the literature
are essentially “bit-voters” that compute a majority
function on » input bits. Hardware voting on words and
higher-level data objects has traditionally been handled by
using independent parallel bit-voters (potentially yielding
incorrect results) or feeding the data sequentially through a
single unit (suffering from low performance).

Hardware voters can be characterized by two performance
indicators. The voting delay or latency is particularly
important in real-time systems with hard deadlines and in
high-performance systems. When data to be voted on is
generated at a high rate, the voter must be able to keep up
with the processing speed. In some such cases, the actual
voting delay may not be critical but the voter throughput
must match or exceed its input data rate.

Regardless of the level of voting (bits or words), we view
a voting network as dealing with n input data objects x;
having the associated votes v;,i=1,2,...,n, (ie., n
input data-vote pairs (x; , v;)) and producing the output
data-vote pair (y ,w). The input votes v; may be
explicitly represented (variable votes), stored in modifiable
storage (adjustable votes), or wired into the voting
network (either fixed-uniform or fixed-nonuniform). The
output vote w may be implicit or explicit.

TH0363-2/91/0000/0491$01.00 © 1991 IEEE

1. Bit-Level Voting Networks

An m-out-of-n bit-voter is a circuit with n bit-inputs x;,
i=1,2,...,n, and a single bit-output y, such that y =1
iff at least m of the n input bits have the value 1. Input
votes are assumed equal and the output vote is implicit.
Note that our definition is asymmetric with respect to 0
and 1 values in that an output of 0 does not imply and is
not implied by the presence of at least m zeros at the
inputs. Simpi’e majority bit-voting corresponds to the
special case of m =Ln/2] + 1 = [(n + 1)/2]. This special
case has 0/1 symmetry for odd values of n.

An m-out-of-n bit-voter may be constructed as a two-level
AND-OR or OR-AND logic circuit. It can be shown that
the two-level AND-OR realization is “simpler” than the
two-level OR-AND realization (both by gate count and
gate-input count measures) iff m > (n + 1)/2. For large
values of n, it is impractical to realize bit voters as two-
level logic circuits. However, multi-level logic circuits
can be developed based on these designs. We call such
designs “gate-level” realizations.

Weighted bit-voters are more general r-out-of-Yv; voters,
where v;,i=1,2,...,n, are the input votes and 7 is the .
threshold. The input weights v; may be fixed, adjustable,
or variable. When the input votes are small integers, it is
tempting to simply replicate (fan-out) each input by its
comresponding weight and use an m-out-of-n bit voter with
m =t and n = Xv;. However, this method seldom results
in an optimal voting network. In the following
subsections, we offer several direct synthesis methods.

1.1. Arithmetic-Based Bit-Voters

In the “arithmetic” approach, the sign of — + X(x;v;) is
computed. The products x;v; can be computed by AND
gates and then added by standard carry-save technique to
yield the final result. If the v;s are fixed, the hardware
realization can be optimized in each case by compressing
the constant Os in the binary numbers to be added.

Consider as an example a voter with 6 bit-inputs having
fixed associated votes of 2, 2, 2, 1, 1, 1 and the threshold
of 5. The arithmetic expression to be evaluated is:

S+2x1 +2x0 +2x3 + x4 + x5 + X6

The multiple-operand binary addition (1011), + (xjx4); +
(x2x5)7 + (x3x6), can be performed by 4 full adders

half a&dcrs organized in a 4-level circuit. The leftmost 1
can be ignored since it only causes a complementation
that cancels the complementation needed for obtaining the
resultant output from the sign bit.

Instead of using full adders and half adders, one can use
larger building blocks known as parallel counters, and
parallel compressors, which convert a number of input
bits to a smaller number of output bits while maintaining
the arithmetic value being represented.

1.2. Selection-Based Bit-Voters

The design of an m-out-of-n bit-voter is equivalent to
selecting the mth largest bit value from among n input
bits. The design of sorting and selection networks built
from 2-sorter (comparator) cells has received much
attention. For our problem, we can either use an n-sorter
(descending order) and look at its mth output or take
advantage of the generally simpler selection networks.
Knuth [2] defines three types of selection networks that
accomplish the following, when provided with n inputs:

1. The m largest inputs appear on m given output lines
in no particular order.

. The mth largest value appears on a given output line.

3. The m largest input values appear on m given output
lines in sorted order.

Each network requires at least as many 2-sorters as the
preceding one. Denoting the number of 2-sorter or
comparator cells by U(m, n), V(m, n), and W(m, n) for
type-1, type-2, and type-3 selectors above, we have:

U(@m,n) £ V(im,n) < W(m, n)

Because we are dealing with bits, a two-sorter simply
consists of a pair of 2-input gates: An OR gate to
produce the larger and an AND gate to produce the smaller
of the two input values. Clearly type-3 selectors do more
than what is required here. Type-2 sclectors do exactly
what we want. However, for most practical values of m
and n, particularly where m is neither too small nor too
close to n, a type-1 selector augmented by an AND circuit
(that indicates whether all of the m largest values are 1s)
is both faster and more economical.

1.3. Decomposition-Based Bit-Voters
Hierarchical decomposition (divide-and-conquer strategy)
can be used to facilitate the design of threshold bit-voters,
although in general it does not guarantee an optimal
network. The basic idea is to divide the inputs into
disjoint subsets, enumerate the various combinations
through which different subsets can contribute votes in
such a way that the voting threshold is matched or
exceeded, provide smaller bit-voters to realize these
contributions, and finally, use a logic network for
combining the results. The decomposition continues
until voters with known designs are obtained.

1

492

When all input votes are equal, decompositions with
almost equal-size subsets tend to work best. When the
votes are unequal, the inputs can be divided into subsets
each containing equal-vote inputs. Further decomposition
will then proceed as before. This tends to simplify the
design, although again there is no guarantee that it will
yield the best network. There are two ways to proceed
with the decomposition: (1) Picking a partitioning scheme
and then designing the required combining network, and
(2) Selecting a combining network first. In the remainder
of this subsection, we outline a decomposition strategy
with multiplexers as combining elements.

The design strategy is to start with the highest-vote inputs
and take them as control inputs to a multiplexer and then
repeat the process for each multiplexer input function
until we reach simple residual functions that can be
efficiently implemented (the extreme case being single-
gate functions such as AND and OR). The reason for
proceeding in descending order of votes is that when high-
vote inputs are fixed at 1 or 0, relatively simpler residual
logic functions of the remaining variables tend to result.

With this approach, an n-input {-out-of-Xv; bit-voter is
built from a multiplexer and two or more smaller voters.
In particular if a 2-input multiplexer is used in the first
decomposition stage, two (n—1)-input voters, one t-out-of-
(Evi~Vmax) and the other (-—Vmax)-out-of-(Xvi-Vmay), are
required where vjnqy is the largest input vote. In the
special case of equal votes, an m-out-of-n bit-voter is
constructed from an m-out-of-(n-1) voter, an (m-1)-out-
of-(n—1) voter, and a 2-input multiplexer.

Even though the worst-case complexity of such
multiplexer-based voter designs appears to be exponential
in n, pruning and circuit-sharing is possible in practice.
Thus the complexity may be acceptable for particular
values of n and m with specific vote assignments.
Numerous worked-out examples suggest that the size of
the multiplexers used may be just as important as the
ordering of the decomposition variables in obtaining
efficient designs. Clearly there is ample room for further
research in this area.

1.4. Comparison of Approaches

Figure 1 shows the cost of simple majority voter designs
based on the gate-level approach, the arithmetic-based
approach, selection networks, and 2-input multiplexer
decomposition, assuming maximum allowable gate fan-in
of 4. Figure 1 indicates that the gate-level or the
multiplexer-based approach is best for small values of n
whereas selection networks offer the most economical
solution for larger values of n. The crossover points will
of course change if the assumptions (such as gate fan-in
and fan-out limitations) are altered.

Although the arithmetic-based approach appears to be
inferior to the one based on selection, it can become quite
competitive if the resulting arithmetic circuit is fully
optimized to eliminate all redundant circuits (only a small
amount of optimization has been done to obtain the data
for Figure 1). Note that Figure 1 relates only to simple
majority voters. The strength of the arithmetic-based

approach shows up in the case of unequal input votes
where the selection-based approach is not directly
applicable. Similarly, the multiplexer-based approach is
not particularly efficient for simple majority voting but
may yield good designs for specific values of the
parameters in weighted ¢-out-of-Xv; voting.

If the voter designs are used with pipelining, the
differences in latencies (number of gate levels) are not
significant as far as throughput is concemed. However,
the number of gate levels does affect the cost due to the
requirement for latches between pipeline stages. A general
analysis is impractical because the number of logic
signals going from one pipeline stage to the next cannot
be expressed as a simple function of the relevant
parameters. For these reasons, it is advisable to proceed
with and check out several designs for any given set of
application parameters before a final selection is made.

2. Word-Level Voting Networks

An m-out-of-n word-voter can be defined as a circuit with
n word-inputs xj,i=1,2,...,n, and a single word-
output y, where either at least m of the inputs have the
value y or else a separate "lack of quorum” signal is
raised. An alternative that we will pursue in the
following paragraphs is to produce an output vote w along
with a value y having maximum vote, so that comparing
w to m yields the desired quorum information and
indicates the validity of y if threshold voting is desired.
When two or more values have equal votes, any one of
them is an acceptable output. Again, a simple majori
word-voter corresponds to the case of m =F(n + 1)/2?:
We proceed directly to the general case where a vote v; is
associated with the input x;.

A straightforward approach for t-out-of-Yv; voting on a
set of n k-bit words is to use independent t-out-of-Xv;
bit-voting for each of the k bit positions. However, there
are at least two problems with this approach. First, for ¢
< (Zvi)f2, independent bit-voting may produce incorrect
outputs. A second, less obvious, problem is that the
independent bit-voters may indicate a quorum when no
quorum actually exists. Analytical results obtained with
reasonable assumptions about errors show that problems
may arise even with fairly short word lengths (16 bits).
2.1. Three-Phase Word-Voters

Assume that k-bit data values and their associated b-bit
votes are provided in parallel on k + b lines per input.
The requirements for digit-serial computation, which is
more practical due to the need for fewer interconnections
and less complex circuits, have been investigated but will
not be discussed here due to space limitation. Word-
voting networks can be constructed on the basis of the
following algorithm in which each phase corresponds to a
subnetwork of the voting network.

Algorithm: Three-Phase Word Voting

Phase 1. Sort the input pairs {x; ,v;) according to x;s.

Phase 2. Combine all pairs with equal data values into a
single pair by summing their votes.

Phase 3. Select the pair with the largest vote. B

1

493

The design of sorting networks (Phase 1) has been studied
extensively [1], [2]. Sorting networks can be constructed
from simple 2-input, 2-output comparator cells according
to several schemes. Each comparator either passes the
two inputs directly to the two outputs or switches the
input values to make their order consistent with the
desired sorted output order. The only modification required
for our application is to add logic to the cells for &assing
or switching the associated votes in tandem with the data
values. Although the design of optimal sorting networks
is still an open problem (we mean truely optimal and not
asymptotically optimal), for small values of » likely to be
of practical interest in our voting schemes, optimal or
near-optimal n-sorters are known.

The combining subnetwork (Phase 2) essentially performs
a partitioned semigroup computation. The operation of
addition must be performed in partitions that are delimited
by pairs of unequal data values. This can be done by
means of a circuit in which n overlapping binary trees are
embedded such that the tree rooted on Line i accumulates
data from line i and all subsequent lines that carry equal
values (all the way to line n in the worst case). Just as
sorting networks can be synthesized from 2-sorters, one
can construct the required n-combiner from 2-combiners.
It is easy to show that the cell count C(n) and the delay
D(n) for an n-combiner are as follows, where 1g = log,:

- Lig n!
Ce(n) = (n-1 -2 co o+ (n-2

) = f;"ng):J('i(I-E S’j:’?)fn - 1; inn Ign)
Dn) = 2[1gn]-1

The max-selector subnetwork (Phase 3) is essentially an
[nf2 -leaf binary tree of 2-selector cells. The cell count
and delay of an n-max-selector are thus:

Cm(n) =n—1 and D,(n)=1gnl

The complexity and delay of the 3-phase voting network
is easily obtained by adding the respective parameters of
the three phases with suitable weights to account for the
unequal costs and delays of the three cell types.

2.2. Two-Phase Word-Voters

Having obtained a design for word-voting networks, it is
natural to ask whether the design can be simplified. In
this subsection we show that the first two phases of the
three-phase voter can be combined by merging the
functions of 2-sorter and 2-combiner cells into a slightly
more complex 2-voter cell that acts as a 2-sorter when
input data values are unequal and as a 2-combiner when
they are equal. This will reduce the total number of cells
but since the cells are now more complex, an obvious
tradeoff is available (see Subsection 2.3). The merging of
Phase 1 and Phase 2 is made possible by the following.

Theorem: If in any sorting network, the 2-sorter cells
are replaced by 2-voters, the outputs will be identical to
those produced by a 2-phase sorter/combiner network. Il

The complexity and delay of the 2-phase voting network
is easily obtained by adding the respective parameters of
the two phases (see Subsection 2.3).

2.3. Comparison of Approaches

we now proceed to quantify the relative advantages of
three-phase versus two-phase word-voter designs.
Although we do not claim that either design is universally
optimal, the following informal argument suggests that
two-phase cellular voters are very close to optimal in
terms of the number of cells. Any word-voting network
as defined here can be used as a sorter of the v; values on
the input lines if distinct values are provided for the x;
inputs (so that no combining is possible). Thus a voting
network is at least as complex as a sorter in terms of the
number of cells required. Our two-phase voter design only
contains n—1 simple 2-selector cells beyond those required
for the sort/combine part. Thus, simplification, if
possible, will likely occur in the internal design rather
than the multiplicity or interconnection structure of cells.

In what follows, we will ignore the complexity and delay
associated with the selection phase which is common to
three-phase and two-phase designs. Thus the figures
presented will provide an indication of the difference rather
than the ratio of complexities and delays. This will be
sufficient for judging when the three-phase or two-phase
design should be preferred over the other. We will take the
complexity and delay of a 2-sorter as our units and denote
by 7' and 7" (respectively & and &) the relative
complexities (respectively delays) of the 2-combiner and
the 2-voter cells. We further denote by Cs(n) and Dg(n)
the number of 2-sorter cells and the number of cell levels
needed in an n-sorter network. Then the complexities C”
and C” and delays D’ and D" of three-phase and two-phase
designs can be written as:

Cn)

Cs(n) +7'(n
C"(n) = y"Cs(n)
D'(n) = Dgn)+ 8'Dc(n) =Ds(n) + 8'2l1gnl-1)
D"(n) = 6"Dg(n)

Cs(n) + Y'CCE'I% plodllgnkl g 1)

Figure 2 depicts y” as a function of ¥y’ for different
values of n such that C’(n) — C"(n) = 0. In the area above
each of the lines shown in Figure 2, the three-phase
design is better for the corresponding value of n, while the
two-phase design is advantageous below the lines. One
may observe that as n increases, the lines generally move
downward (eventually tendig to 7" = 1 for very large n).

The value of D(n) — D"(n) is positive for n < 16 provided
that 8" < 16/9 + 7(86 ' - 1)/9. Since it is highly
unlikely that 6 ” 2 16/9 = 1.78, it is safe to say that the
2-phase design always has the edge in terms of delay.
However if 0 '< 6", the 3-phase design will support a
higher throughput, given the fact that a 2-selector is
simpler than a 2-sorter, a 2-combiner, or a 2-voter.
3. Future Research

Research is now in progress on refining the concepts
presented in this paper and on more detailed quantitative
comparison of the various bit-voter and word-voter
designs. A unified view of various voting schemes
(hardware and software) is also being developed in order to
systematize research in this area.

494

References

Due to lack of space, only the main references are listed here.
An extensive list may be found in Reference [3].

[1] Cormen, T.H., C.E. Leiserson, and R.L. Rivest,
Introduction to Algorithms, McGraw-Hill, 1990,
Chapter 28, pp. 634-653.

[2] Knuth, D.E., The Art of Computer Programming -- Vol.
3: Sorting and Searching, Addison-Wesley, 1973,
Section 5.3.4, pp. 220-246.

[3] Parhami, B., “Voting Networks”, Being revised for
publication in JEEE Transactions on Reliability.

Number of Gates
120

Gate-Level

80

40

0 12 16

Figure 1. Cost (4-input gate count) of simple majority
bit-voters of different designs as a function of input size n.

”

Y

2.4

16
13,14,15

2.2

2.0

1.8
10

Figure 2. Given efficient realizations for the three cell
types involved (i.e., 2-sorters, 2-combiners, and 2-voters),
one can determine ¥’ and y " from various technology-
dependent indicators of complexity and use this diagram to
determine if 3-phase or 2-phase voter.design is better.

16

14

