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Hardware number radix converters may be required at the input and output interfaces of high-speed arithmetic
processors implemented in VLSI. Systolic hardware realisation of the radix conversion process along with hardware
implementation details are discussed in this paper. The main results are that it is always possible to accept one input
digit in a continuous stream of k-digit operands on every clock tick and that the total conversion delay (from the
acceptance of the first digit of an operand to the emergence of the first digit in the corresponding K'-digit result) is
k+K’/b clock ticks, where b is a design tradeoff parameter affecting the cell complexity, intercell communication,

and possibly the clock period in the systolic converter.
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1. INTRODUCTION

Radix conversion algorithms are well known (see, e.g.
section 4.4 in ref. 7) and can be easily implemented in
software, hardware, or firmware. When the digits of the
input operand are generated serially, with the most
significant digit appearing first, the preferred radix
conversion method is based on repeated multiplications
and additions using arithmetic operations in the new
radix.

To convert a given unsigned k-digit radix-r number
X1 Xp_g .- X1 X, representing the value X into a radix-r’
number X, the following recursive formula (known as
Horner’s rule) is used:

X =(.0+x,_Dr+x, Jr+..)r+x)r+x, (1)

This implies initialising X’ to 0 and performing the
following recursion step for i=k—1,k—2,...,1,0:

X =rX +x, )

If X" is to be represented with &’ digits, an overflow
may result for some input operands. Overflow detection
is also easy to implement since overflow occurs iff
X = r'*. In fact, overflow detection can be incorporated
into the computations implied by (2) if the computation
is done modulo ¥ and an overflow flag is set whenever
the correct X’ value exceeds r'*.

In the remainder of this paper, we will present a
systolic version of this algorithm which is suitable for
direct VLSI implementation.®® Motivation for this work
comes from widespread application of special-purpose
VLSI processors in areas such as signal processing.5- 1
Clearly the high speed of such processors will be of little
value if not matched by the 1/O conversion rate. So, with
high input or output data volumes, we may need on-the-
fly I/O converters that can keep up with the required
processing throughput. Even when the I/O data volume
is such that conventional hardware can provide the
desired conversion rate, the inclusion of a special
hardware ‘feature’ may prove to be cost-effective.

At present, the use of such special-purpose hardware
aids would be limited to decimal-binary and binary-
decimal conversions, as non-decimal radices that are not
powers of 2 have no significant application. However,
the design principles presented are quite general and can
be applied to other radices if such radices prove to be

useful in future (e.g. through advances in the practical
application of multiple-valued logic® '®). At any rate, the
design presented in this paper can be viewed as an
addition to the repertory of tools and techniques for
arithmetic system designers. Like any other tool or
technique, practical use of this design is governed by
performance requirements and application-specific cost/
benefit analyses.

2. A SYSTOLIC RADIX CONVERSION
ALGORITHM

Direct hardware realisation of the above algorithm
results in excessively slow and/or costly hardware. This
is because each execution of (2) requires one multi-
plication of a k’-digit radix-r" number by r and one
addition of a radix-r digit to the result. Both of these
operations involve carry propagation. Thus, a low-cost
ripple-carry implementation requires O(k’) time units for
each step and O(kk”) time units for the whole conversion.
Assuming that k" has been selected to accommodate all
possible inputs with no overflow, the overall time is
O(k?). Even with costly carry lookahead hardware, the
radix conversion time is still not linear in the number of
digits k. We are thus led to the following systolic version
of the above conversion procedure.

Algorithm 1 (systolic number radix conversion). To
convert a given k-digit radix-r number x,_, x,_, ... x, X,
into a k’-digit radix-r number x._, x;._, ... X] X, initialise
ally; j=1,2,...,k'),all x;(j=0,1,...,k’'—1),and T to
zero and compute sequentially for i=k—1,k—2,...,
1,0:

o= X; (*radix conversion phase*)

forj=0,1,....,k'=2,k'—1 do in parallel
Uy =rxy+1y; U= r(x;'*'t;),j >0;
t;;u = lu;/r’k
Xp=u—r't,,

endfor;

T=T+1,.

Then repeat the following steps sequentially until
h=th=..=t._,=0:

t,=0; (*transfer propagation phase*)
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forj=0,1,...,k’—2,k'—1 do in parallel
U= Xx;+1;
L= luj/r,J;
x;=u—r't,,

endfor;

T=T+1,.

If at the end T+ 0, apply an overflow handling
procedure. Otherwise, x;._, X;_,... X; X, is the correct
result. ®

That Algorithm 1 is correct should be obvious if one
observes that the radix conversion phase implements the
multiplication of the partial result by r, followed by the
addition of the next operand digit, in parallel using a
transfer-save scheme which can be viewed as a general-
isation of the carry-save principle. At any given time, the
partial result is composed of an interim ‘digit’ vector
Xproy Xpoeg .- X1 Xo and a ‘transfer’ vector ¢, ...t 1,
together representing the value

X= X xir'+ X nr'=0r+ I

i=0..k'-1 t=1..k j=0..k'-1

(x;+1)r?

3

where ¢, is assumed to be zero. The last summation in (3)
can be interpreted as corresponding to a positional radix-
r’ redundant number system™ with the expanded digit set
{0,1,...,r+7—1},7 being the largest possible value for
the transfer digit ¢,. To multiply this partial result by r,
we compute the ‘position products’ r(x;+¢;), and
decompose them into new transfers £5}" and new interim
result digits x;"*" satisfying:

Px)+ 1) = PS4 X @

The transfer propagation phase is required for getting rid
of nonzero transfers in order to obtain the correct
(k' + 1)-component radix-r’ result 7Tx,._, Xy _y... X1 Xg,
where T represents the accumulation of outgoing
transfers. If 7= 0, then the correct k’-digit converted
result is at hand. The case T = 0 represents an overflow.

Example 1. The 4-digit vector 5 3 8 4 represents the
decimal number 5384; i.e. r = 10, k£ = 4. Algorithm 1
finds a 6-digit radix-8 representation of this number (i.e.
r' =8, k' = 6) as follows:

j: 6543 2 1 0

t,: 0000 0 O 5= x;< Start conversion
x» 000 0 0 O

u: 000 0 O 5

t: 0000 0 0 3=x,

x3x 000 0 O 5

u: 000 0 053

t: 0000 0 6 8=x

x: 000 0 0 5

u: 000 0 60 58

4: 0000 7 7 4=x,

x;: 000 0 4 2

u: 00070 110 24

4,: 000813 3 0

x;: 000 6 6 0 < Start propagation
u: 00819 9 0

t: 0012 1 00

X 000 3 1 0

u: 012 4 10

t,: 0000 0 0 O < Done (all zeros)
x: 012 4 10 < Result

The final value of T, which is obtained by simply adding
the values in the ¢, column, is zero. Thus, no overflow
exists and the 6-digit result 01241 0 is correct. ®

Note that Algorithm 1 directly defines a systolic
hardware realisation of the conversion process. Such a
systolic number radix converter is shown in Fig. 1. The
first k clock ticks are devoted to the radix conversion
phase, where on each clock tick the cell C, receives
x, (i=k—1,k=2,...,1,0) as the incoming transfer, the
cell C,(j=0,1,...,k'—1) computes u,, t,,,, x;, and finally
the cell C,. accumulates ¢, by adding it to the current
value of T. Then, the transfer propagation phase starts
which requires no more than &’ clock ticks. In fact, if one
uses exactly &’ ticks, the test 1, =, = ... = f,._, = 0 can
be avoided and this is indeed necessary for the design to
be systolic. The total conversion time is thus K+ k&’ clock
ticks.

There is a major flaw in the above suggested
implementation which may not be apparent at this point.
Ignoring this flaw for the moment, it is easy to see that
the systolic number radix converter of Fig. 1 receives the
digits x,_,, X, _5,...,%,;, and x, of the input operand
serially (most significant digit first) and produces the
digits of the converted result in parallel after k£ + k" clock
ticks. To allow pipelining of multiple conversions, we can
provide a second row of cells C; to which the values of x;
and ¢, are transferred upon the completion of the radix
conversion phase. Then, provided that k¥’ < k (implying
that r = r), the transfer propagation phase can be
completed by the second row of cells while the first row
processes the next input operand. Finally, if serial rather
than parallel output is desired, a third row of cells C; can
be employed to hold the converted number while the
digits are shifted out serially (Fig. 2). With this
arrangement, one k-digit input operand can be converted
every k clock ticks if k" < k or every max (k,k") clock
ticks in general. Obviously, C;,C], and C;/ can be
regarded as a single cell with a larger number of registers
and connections rather than as three separate cells.

Conversion of the design shown in Fig. 2 to a design
that accepts the input operand and generates the radix
conversion result from right to left (least significant digit
first) is straightforward. To do this, the bottom row of
cells is omitted and instead two top rows are added for
input buffering and shifting. As one operand is shifted
into the top-row buffer cells, the previous operand in the
second row starts its serial movement (most significant
digit first) into the third row for conversion. The total
conversion delay is still k+ k" because the generation of
result digits can start immediately after the conversion
process without a need to wait for transfer propagation.
We have chosen to present our results in terms of a left-
to-right processing order because it matches the structure
of the algorithm and is thus easier to understand.

The overflow indicator T has been defined in Algorithm
1 as the sum of ¢,. values. In practice, a binary overflow
indication is sufficient. Thus, T can be initialised to false
and T:=T+k, replaced by: if ¢,. + 0 then 7= true.
The corresponding hardware implementation consists of
a flip-flop in the leftmost cells C,. which is set by any
nonzero ¢,. value. With this convention, the result digits
can be taken from Cy. in the design of Fig. 2 (rather than
from C;._,) for a fully serial output where the first output
digit is a binary overflow indicator.
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Xp_---X] Xg
Radix - r number
(serial input)
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Figure 1. Hardware design of a serial-in parallel-out systolic number radix converter.
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Figure 2. Hardware design of a pipelined serial-in serial-out systolic number radix converter.

3. PRACTICAL HARDWARE
REALISATION

Even though Algorithm 1 ‘works’ in all cases, its
hardware realisation is impractical for r = r’. To see why,
let us investigate the range of values for 7,,, in Algorithm
1. We have ¢, = x, and for j > 0:

Lan= l.uj/"/J &)

Noting that in the radix conversion phase, where
larger transfer values are generated, u, = rx,+x; and
u, = r(x;+1,) for j > 0, we find:

4y S max ([H(xj+1)/r'), [(rxo + x)/r')) (6)

Substituting the worst-case values of r—1 and r'—1 for
x, and x; in (6), we get:

Ly S max ([r(F = 1+2)/r),[(rr' = 1)/r)) )

It is easy to see that if r = r’, the right hand side of (7) is
greater than ¢,. So, the magnitude of transfer digits is not
bounded and can grow with the number of digits in the
operand. This makes the design of the cells for the
systolic converter of Fig. 1 specific to a particular value
of k and also implies a large number of wires between
adjacent cells in any particular design. On the other

hand, if r < r’, then (7) can be used to calculate the range
of transfer digits. Let

0<t <t ®)

define the range of transfer digit values in the conversion
process. Then, substituting the worst-case value 7 for ¢, in

.inequality (7) and taking the equality ¢, = x,into account,

we get for 0 << k"

< max (r—L|r(r =1+0)/rL1(rr =1/ (9)

Considering that |(##=1)/r]=r—1, and that
lr(r =1+0)/r|=r—14|(rt+r —r)/r| = r—1, we must
have:

2 |r(r—=1+417)/r| (10)

From the point of view of hardware cost, it is
advantageous to select the minimal value satisfying (10)
for 7. To find this minimal value from (10), we first note

that
v =r(r = 1)/(r =) = r+r(r=1/(r=n)] (1)
is a solution of (10). This is easily verified by writing

rr—ND=@F-nNet'+d {0<d<r—r} (12
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and substituting in (10). To find ™", we replace t in (10)
by %' —¢ and look for the maximum value of ¢ which
satisfies the resulting inequality. Straightforward man-
ipulation and the use of the identity |z] = —[—z] yields:

& < [(re—3)/r (13)

The maximal value of ¢ = 0 satisfying (13) is generally
very small and can be found by inspection. Therefore

Tmin — ,z.sol - gmax (14)

where 7 is given by (11) and £™** is the largest ¢ value
satisfying (13).

Example 2. Consider r =8,k =6,r = 10, and k' = 4;
note that this is the inverse of the conversion in Example
1. Inequality (10) becomes:

72 8(10—14+1)/10] = 7+ [(41+1)/5] (15)

The solution t™" = 32 can be obtained directly from (15)
or by using (11) to find 7' = 36 and then solving the
following version of (13) for the maximum value of ¢:

e < [(Be—0)/10] = [4¢/5]
The above inequality yields ¢™** = 4 and
,rmin — Tsol _gmax — 32

We see that even though transfer digit values are
bounded for this example, their large magnitudes can
make the hardware implementation slow and/or
excessively costly. ®

We now present a method for reducing the hardware
complexity of the systolic converter through a tradeoff
betweert cell and interconnection complexities. We
introduce the method through an example and then state
it in general terms. The intuitive idea is that the larger the
value of r” in (11), the smaller the values of 5 and ™.

Example 3. Consider r=38, k=6, r =100, and
k’ = 2. Comparing these values of those of Example 2,
we see that the new radix r’ is the square of the corre-
sponding value in Example 2. If we convert a number
into radix ' = 100, then the result can be easily converted
into radix 10 by simply breaking each radix-100 digit D
into two radix-10 digits d and 4’ such that D = 10d+4d".
Inequality (10) becomes:

72 |8(100—1+17)/100) = 7+[(274-23)/25] (16)

Inequality (16) yields t™" = 8. We see that the range of
transfer digit values for this example is much smaller
than that obtained in Example 2. ®

Example 3 leads to the following general algorithm for
designing systolic number radix conversion circuits.

Algorithm 2 (design of systolic number radix
converters). To design a systolic hardware circuit for
converting a k-digit radix-r number x,_, x,_, ... X, X, into
a k’-digit radix-r" number x,._, x,._, ... x; x, when either
r=r or r<r but (10) yields an unacceptably large
value for ™", consider converting the number into an
intermediate k”-digit radix-r” form xy._, xj-_,... X] xg,
with k7 = {k’/b) and r” = r®, for b = 2,3, etc. until the
range [0, 7] for the transfer digit values, obtained from
(10), becomes acceptable. Then convert each digit x;
of the intermediate form into a sequence of b digits
Xjpro_1 Xjpsp—2 - Xjps1 Xpp Of the final result. ®

One must note that the optimal value for bin Algorithm

2 is generally very small. This is because larger values for
b may yield a small reduction (if at all) in the range of
transfer digit values, while at the same time making the
logic in each cell of the systolic converter exceedingly
complex. The following examples accentuate this point.

Example 4. Referring to Example 3, we note that if we
had selected r” = 1000, we would have found ™" = 8.
Thus, there is no reduction in the range of transfer digit
values and the optimal design must be selected by
comparing the two implementations with b =1 and
b=2.®

Example 5. To design a hardware unit for conversion
from r = 10 to r’ = 8 (same as the parameters of Example
1), we find the following:

b=2=r"=64, ™ = 1]
b=3=r"=512, ™" =10
b=4=r" =409, ™"=10

Again, the diminishing return of higher values for b is
clearly evident. The best choice here is probably b = 2. ®

An intuitive explanation of why transfer digit values
are unbounded in the case of r > r" is as follows. In
converting an integer into a smaller radix, the number of
digits tends to grow. However, in the systolic hardware
realisation of Fig. 1, which was obtained directly from
Algorithm 1, only jresult and transfer digits are computed
after processing of j input digits. In other words, no
information has reached C, and the cells to its left. The
result digits are always adjusted to be within bounds.
Thus, the excess value of the number, which will
eventually determine the values of the jth and more
significant result digits, must be absorbed by the transfer
digits.

When a systolic radix converter is designed according
to Algorithm 2 with b > 1, two methods of operation can
be envisaged. If it is important to accept input operands
at the highest possible rate (one conversion per k clock
ticks), then b output digits must be generated in parallel
during each of [£’/b] successive clock ticks with k—[k’/b]
idle cycles between conversions during which no output
is generated. On the other hand if fully serial operation
is desired (no more than one output digit can be
absorbed per clock cycle), then there must be k'—k idle
cycles between conversions when no input is accepted.
This yields a conversion rate of one per max (k,k”) clock
ticks. The above discussion leads to the following results.

Result 1 (conversion throughput). It is possible to
design a digit-serial (most significant digit or least
significant digit first) systolic number radix converter
composed of k’ simple cells such that it accepts a
continuous stream of k-digit input operands at the rate
of one digit per clock tick and produces b digits of a
k’-digit conversion result (with k’/b < k) on successive
clock ticks after some initial delay. ®

Result 2 (conversion delay). It is possible to design a
digit-serial (most significant digit or least significant digit
first) systolic number radix converter composed of k’
simple cells (or k’/b somewhat more complex cells, where
b is a design parameter) such that the input-to-output
delay for converting a k-digit radix-r number to a k’-digit
radix-r’ number is k+ k" (or k+k’/b) clock ticks. ®
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4. CONCLUSION

We have considered the number radix conversion
problem and presented a method for designing systolic
hardware radix converters capable of processing arriving
operand digits in real time: one digit processed or
generated per clock tick, depending on whether we
convert to a larger or a smaller radix and on some
implementation details as discussed at the end of Section
3. The conversion delay was shown to be linear in both
the input and output operand lengths.

Although the linear delay k+k’ (or more generally
k+k’/b) may seem substantial, there are two redeeming
factors. Firstly, in many applications, throughput is of
primary importance and the input-to-output delay is at
best a secondary concern.? Secondly, in any digit-serial
implementation, the conversion delay is of the form
k+ A. Thus, speed can be gained over the proposed
systolic implementation only to the extent that A can
be made smaller than k’/b. Since every digit of the
conversion result is a function of all input digits, the best
that one can hope for is a A that is logarithmic in k. Even
assuming that such fully parallel circuits are realisable
for arbitrary k, the larger clock cycles required for their
operation will nullify much (if not all) of the gain. In fact,
as stated in the beginning of Section 2, straightforward
implementation of the conversion process using con-
ventional building blocks such as adders and multipliers
will result in a delay that is quadratic in k.

Even though it is clear from our previous discussion
that the systolic converter is composed of relatively
simple cells, an example quantifying the cell complexity
may be helpful. In the simplest form, each cell stores an
interim result digit, receives an incoming transfer, and
produces a new interim result digit plus an outgoing
transfer. Considering the octal-to-decimal conversion of
Example 2 and assuming the use of binary encoding for
all values, each cell will have 4 + 6 inputs (a decimal digit
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