Optimal Aspect Ratio and Number of Separable Row/Column Buses
for Mesh-Connected Parallel Computers

Mauricio J. Serrano and Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

ABSTRACT

A two-dimensional mesh of PEs with separable row and
column buses (broadcast mechanisms that can be logically
divided into a number of local row/column buses through the
use of PE-controlled switches) has been shown to be quite
effective for semigroup, prefix, and a wide class of other
parallel computations. We show how semigroup and prefix
computations can be performed with the same asymptotic time
complexity on meshes having separable buses for a subset of
rows and columns. We find that with our basic arrangement,
square grids are not optimal but that a hierarchical method of
synthesizing large meshes builds optimal square meshes from
rectangular submeshes. The time-complexity results are
shown to correspond to those previously published when
certain parameters of our design are fixed at special values.

I. BACKGROUND

A two-dimensional mesh-connected computer consists of
N processors or processing elements (PEs) arranged in a
grid, where horizontally and vertically adjacent processors
are connected via local communication links. The main
disadvantage of a standard mesh is that the number of steps
required by any non-trivial algorithm is lower-bounded by
its diameter, 22(N'?). Consequently, many authors have
proposed meshes augmented with broadcast buses as global
communication mechanisms. Due to lack of space, the
following discussion contains reference citations only for
the most essential and directly relevant work.

Bokhari showed that by using a bus connected to all PEs,
the maximum of N numbers, assigned one per PE, can be
found in O(N'/3) time. Stout showed that using a global
bus, the time to Eperform semigroup computations can be
reduced to O(N'?) and that problems with higher degrees of
global communication, exemplified by sorting, have a
lower bound of Q(N'/2), with or without broadcasting. He
also showed that with broadcasting, the median of N
values can be found in O(leog N) time.

The problem with a single global bus is that it becomes a
bottleneck whenever multiple values have to be transferred
and this places a limit on the attainable speedup. Hence
the need for multiple broadcasting. Prasanna-Kumar and
Raghavendra [5] considered a mesh of N'2xN2 PEs with
broadcast buses in each row and column and developed
parallel algorithms for many problems in linear algebra,
image processing, computational geometry, and numerical
computations. Using this mesh, semigroup computations
take O(N*/), median finding takes O(N"%log%°N), and
convex polygon and nearest neighbor take O(N*'°) time.

0-8186-2672-0/92 $03.00 © 1992 IEEE

343

Chen et al [2] showed that square versions of meshes with
row/column buses are not optimal for semigroup and
prefix computations and that by using a rectangular
N3BxN3® mesh, time complexity of these computations
reduces to O(N'/). They also claim to have developed
algorithms for the median row and the median_problem
with time complexities of OW'”*) and O(N'®log N),
respectively, using this rectangular mesh. Similar results
were obtained by Peleg and Bar-Noy [4] who also provide a
formal proof that semigroup computation on a rectangular
mesh with buses takes at least Q(N'7®) steps and extend the
results to d-dimensional meshes.

Figure 1. Different broadcasting schemes for a mesh:
(a) Row & column buses, (b) Hypermesh, (c) Multiple
global buses, and (d) Separable row/column buses.

Raghavendra pr%g\s,ed the hypermesh architecture which
consists of an NYxN'2 mesh with a hierarchy of broadcast
buses in each row and each column such that there are K
PEs on each bus. In the first level, there are N'2/K buses
in each row or column, with a group of K PEs connected
to each bus. One PE from each group is connected to a
second-level bus in a similar manner. This process is
repeated until there is only one group of K PEs on the
final bus. With this architecture, semigroup, median row,

and shortest distance computations need O(log N) time.
Carlson [1] proposed a mesh modified with a hierarchy of
L global buses. This mesh can compute all terms of a
linear recurrence system (a problem which is equivalent to
a prefix computation) in O(N/®*1) time. Like pyramid,
these structures are both difficult to implement in VLSL
Finally, Maeba et al [3] consider a mesh with separable
row and column buses; i.e., row/column buses that can be
sectioned through PE-controlled switches. Unlike the
hierarchy of global or row/column buses, this architecture
is easy to implement in VLSL. Using this scheme with
switches inserted after every other processor on each row or
column bus, time complexity of O(log N) for semigroup
computation and O(N'/log¥?N) for median selection
problem is claimed. However, for large N, this result is of
theoretical interest only since it is achieved with an
unrealistically large number of switches on each bus.
Even if practically realizable, such a large number of
switches would add to the bus complexity and delay.

II. FEWER SEPARABLE BUSES

We propose a modification to Maeba et al’s architecture
that can be implemented even more efficiently using VLSI
technology. Our approach also uses a standard mesh
augmented with row and column buses which can be
configured into local buses by PE-controlled switches.
Unlike previous approaches, however, our scheme does not
need that all PEs be connected to row and columns buses.
but rather postulates one row {column) bus for every %
rows (columns) of PEs where & < 1/2. This reduces the
number of global buses required, and thus the associated
area cost, by a factor of N£. As shown in Figure 2,

blocks of PEs are interconnected using only local links as
in a simple mesh. One PE in each block, designated as
the block leader, is connected to separable row and column
buses to be described shortly.

Block Leader

Submesh
or Block

Figure 2. Proposed scheme of mesh interconnection
with separable row/column buses inserted between
submeshes or PE Blocks.
Our scheme allows the design of highly efficient parallel
algorithms for problems with limited global communica-
tion. Examples include semigroup computations, prefix
computations, and median finding. Algorithms proceed in
time by first using the local links in each block and then

344

using the structure of broadcast buses, with growing
sections, until full row or column broadcasts are reached.

With regard to VLSI implementation, this structure has
several advantages over previous approaches:

a) Local links are easier to build than broadcast buses.

b) Broadcast buses are easier to implement efficiently if
they are to interconnect a relatively small set of PEs.

©) Scalability is improved when the number of buses is
reduced (due to fewer inter-chip connections required).

The remainder of this paper is organized as follows. In
Section III, we provide semigroup and prefix computation
algorithms for our mesh. We find that for our basic
organization, a rectangular rather than square arrangement
of PEs is the best form for these algorithms. With two-
level sectioning of separable row and column buses, we
achieve the same O(N'/®) time complexity found by Chen
et al [2], despite a significant reduction in the number of
buses. We then generalize the method to a hierarchy of L
row and column buses achieving a time complexity of
O(NY42)y which is better than the O(V*&*?) complexity
of Carlson [1] for a mesh with a hierarchy of L global
buses. In Section IV, we show that our architecture is
scalable by indicating how meshes of higher degrees
(including certain square meshes) can be built from
optimal-shaped rectangular meshes.

III. SEMIGROUP AND PREFIX
COMPUTATIONS

A semigroup computation can be formally defined by a
pair (®, S) , where @ is an associative binary operator and
S ={ay ay,...,ay_} is a set of data items. The
problem is to compuie_g, @ a, ®...®ay ;. Chenetal
[2] have proposed an N¥#xN>® rectangular mesh with fully
connected row and column buses which can perform a
semigroup computation in O(N'/®) time; down from
O(N'%) resulting from a square mesh. Intuitively, the
better performance of rectangular meshes compared to
square ones results from the larger number of buses, and
thus increased communication bandwidth, associated with
the same number N of PEs. We will arrive at the same
O(N"®) computation time with our simplified architecture.

A. The Basic Semigroup Algorithm

In this subsection, we will show the semigroup algorithm
for a specific instance of our general mesh architecture;
viz, an N*®xN*® mesh composed of N/*xN'/® PE blocks.
Two levels are assumed for the sectioning of separable row
and column buses. A row-group is defined as N'/®
horizontally contiguous blocks while a row-band consists
of N horizontally contiguous row groups. A row-band
is associated with one separable row bus (first hierarchy
level) and a row-group is associated with each one of the
separable bus sections (second hierarchy level). Similarly
a column-group consists of N1 blocks contiguous in a
column and a column-band is formed by N*® column-
groups. There are a total of N'* column buses and N'/
row buses (Figure 3). Initially each PE holds a data item.

Step 1 [Block Reduction]: Perform the semigroup
computaticn for each block, using local links. This step
takes O(N'®) time. The result for each block is held in the
upper left PE of the block, called the block leader. This
step reduces the problem size from N to N**,

Step 2a [Row-Group Reduction]: Copy the intermediate
results in each row-group to the row-group leader which
performs the semigroup computation. This is done t;sy
using the corresponding row bus sections and takes O(N'

time. The problem size is now reduced to N**N'® = N°F,

Step 2b [Row-Band Reduction]: Copy intermediate results
from row-group leaders to row-band leaders which perform
the semigroup computation. This is done by using entirg
row buses and takes O(N'/®) time. Now we have N1/2
values in the leftmost column, one per row-band leader.

Step 3a [Column-Group Reduction]: Copy intermediate
results from the leftmost column-groups to the leftmost
column-group leaders which perform the semigroup
computation. This is done by using column bus sections
and takes O(N'®) time. The problem size is now N>®,

Step 3b [Replication of Values]: Broadcast intermediate
results of each leftmost column-§roup leader to all PEs
connected to a row bus, using N*® of the N2 row buses.
This step takes constant time.

SteP 3¢ [Column-to-Row Trangposition]: Partition the
N*® intermediate results into N groups each having N'/®
elements, so that each group can use a column bus. Copy
the N'/% items in each group to the topmost PE (Row 0)
which performs the semigroup computation. At the end of
this O(N'#)-time step, we have N'* jtems in Row 0.

Steps 4a/b [Zeroth-Row Reduction]: Steps 2a and 2b can
be applied once again here to reduce the N'/* intermediate
values to N'”® and then to N° = 1 final result in the upper-

leftmost PE. These two steps take O(N'/®) time each.
Row-Band

Row-Groug

N
N
N
Group E
N
5| N8 pEs
N
or N1 2 Row
Column- Buses
Band

Column Buses
Figure 3. Terminology for the semigroup algorithm.

An alternative approach to Step 4 is to perform the
semigroup computation for the remainin% N'# yalues by
using the simulation tree technique with N*xN'4 row and
column buses (see, e.g., [2]). This step would then take

345

O(log N) time. However, since this does not change the
overall time complexity of O(N'®) for our algorithm, we
have chosen to use a conceptually simpler approach.

Compared to the mesh ?roposed by Chen et al [2] which
uses a total of N°/® + N°® = O(N*/®) buses, our approach
needs N2 + N4 = O(N'2) buses. The number of bus
switches needed in our approach is N8xN12 + N8N =
O(NS’S), but since switches are easier to build than buses,
our mesh is simpler overall.

B. Prefix Computations

Semigroup computations can be viewed as special cases of
prefix computation defined as the simultaneous
computation of S;=a,®a, & ...® qg; forall i in the
range0<i SN-1. Let§;;=0,9a,,®...@a,i<j
be the local prefix from a; to'a;. Clearly, §;=380;=50, ®
S i1,y ®@...08, ;where0 <ij <iy<... <i 2.
The afgorithm fofpréfix computation is very similar to
the one described in Subsection A, but we proceed from
left to right instead of right to left. Also, intermediate
results have to be kth in each node, because the algorithm
has two phases: local-to-global and global-to-local.

To write the required algorithm, we need to specify an
ordering for the PEs and their corresponding values. We
assume that within a block, PEs are numbered in row-
major order, starting from 0. PE blocks are also numbered
in row-major order, starting from 0. The input data items
Gy, 4y, - - - » @y_, are stored in the mesh in increasing order
o% block numbers and in an increasing order of PE
numbers when they are within the same block. The
algorithm is to generate S; in the PE initially holding a;.
Step 1 [Local prefixes for each block]: Compute S, . in
parallel for each block, where g;is held in the block afid i,
is the minimum k such that g, is held in the block.

Step 2 [Row Reduction]: Generate row-group prefixes by
broadcasting data using row bus sections. Then generate
row-band prefixes by broadcasting data using entire row
buses. At the end of this step the rightmost column
contains the row-band prefixes. Note that we proceed from
left to right.

Step 3 [Column Reduction]: Generate the column-group
prefixes by broadcasting data using column bus sections
(actually we are using onl/x the rightmost column bus).
Broadcast the resulting N*® prefixes within rows and do
column-to-row transposition as in Steps 3b and 3c of the
semigroup algorithm.

Step 4 [Zeroth-Row Reduction): Do a prefix computation
for the items in Row 0.

Steps 5-8 [Backward Phase]: These constitute Phase 2 of
the algorithm. Instead of going from local to global, we
go from global to local, keeping in mind that intermediate
results have been stored in the PEs. Steps 1 through 4 are
performed backwards to obtain the prefix in each PE.

Since any step in this algorithm takes O(N'/®) time, the
overall time complexity is O(N'”®), as expected.

C. Extension to an Arbitrary Size Mesh

In this section, we will extend the semigroup computation
algorithm of Subsection A to an arbitrary size mesh with
an arbitrary number of sectioning levels for both row and
column buses. The extension applies to prefix algorithm
as well. The parameters are defined as follows:

N'™XN°¢ N'-row, N¢-column mesh (r+c=1,r2¢)
N*N* PE block with only local links (k < 1/2)
R Sectioning levels for row buses

C Sectioning levels for column buses

With the above notation, there are N'/N* = N** row and
N¢/N* = N°* column buses.

Step 1: Perform the semigroup computation for each
block, using local links. This step takes O(N¥) time. The
result of each block is held in the block leader, After this
step, the problem size is reduced to N/N*= N*-2*,

Step 2: The purpose of this step in the original algorithm
was to reduce the problem size using the row buses. For
two-level sectioning, two reductions are needed, each
reducing the problem size by N*. In general, for an R-
level hierarchth reduction steps are needed, for a total
reduction of N**, At the end of this step, the problem size
is reduced to N'~®+2* and the results are in the lefimost
column. The time complexity of the reduction is O(N%).
We deduce that the number of columns in the mesh is N° =
N®*DE and the number of column buses is N°* = N,

Step 3a: Perform reduction on the leftmost column,
reducing each time by N*. For C-level sectionin%}c -1
reductions are needed, for a total reduction of N¢~"%. The
problem size has now been reduced to N!-R+C+1¥,

Step 3b: Broadcast the intermediate results of each
leftmost column-group leader to all PEs connected to a
row bus. This step takes a constant time,

Step 3c: Partition the N1-®*C*D¥ intermediate results
into N®* groups with N'-@*+C+Dk elements in each, so that
each group can use a column bus. Copy the group values
to the topmost PE (Row 0) which performs the semigroup
computation. This step takes O(N'~*K*C*D%) time, In
order to minimize the time complexity, we require that &
=1-Q2R+C+ 1)k or k=1/2R + C + 2). With this
value for £, this steg takes O(N®) time, and at the end of
the step, there are N** results in row 0 of the mesh.

Step 4: Step 2 can be applied once again here to reduce
the intermediate values in the topmost row by N®*. At the
end, the final result can be found in the upper-leftmost PE.
This step takes O(N®) time.

We conclude that the optimal time complexity is
O(N L(2R+C+2)y and that the optimal mesh has N” =
NECDE N¢= N®*+DE columns and it is thus of
size NR*CHDIQR+Cr 2 NRHDIRYC+D) Gince R + C + 1>
R + 1, the optimal mesh is always rectangular.

Let us examine some special cases. ForR=C =1, we
obtain an N*”xN*> mesh with no bus switches and with
running time of O(N'”). This is a new and significant
result in itself. By choosing R = C = 2 as in our previous
algorithm, we end up with an NBxN3® mesh with a
running time of 0({\/l %y as expected. ForR=C =L, we
have a NCLHDICLeD NEADGLY mech with a runnin
time of O(NYL*?), The number of buses needed is N°

+ N™* = O(N"*), which in our case is O (NZ/CL+2)
Compare this result with those reported by Carlson [1]
using a hierarchy of L global buses connecting all PEs,
achieving a running time of O(NV/¢*2),

With an L-level hierarchy of buses, the number of
switches per row bus and column bus are approximately
NE-DIGL32) ang NL-DIGL*2) " respectively. These are

346

obtained bﬁ dividing the number of PEs in a row (column)
by N?GL*D) 1o account for the fact that one out of every
NYGLA2) pEg is a block leader and a switch is inserted after
every NVGL*2 plock leaders. The total number of
switches is derived by multiplying the number of row

(column) buses by the number of switches JRSE, fow
bus; viz NZ/OL¥2) 5 NE-DIAL2) y NLIGLY2) 5

(columr;l
NV 2 o (NGL-IGL2)

The running time with L-level sectioning is actually
O(L.NYGL*2y byt in the above discussion we ignored L
since in practice it is a small constant. From a theoretical
perspective, it is interesting to note that if L approaches
log N, the running time becomes O((log N)Y(NV/logN+2)yy =
O(log N) since N*"*®" = ¢, Thus, logarithmic time can be
achieved asymptotically when L becomes large.
We can also perform a simple optimization, by assigning
more than one data value to each processor. We can assign
N/P data items to each of P processors in a smaller mesh.
The running time on each processor is linear so it takes
O(N/P) time to perform the semigroup computation.
Once this is done, the mesh is used with a running time of
(P/GL*2)) The combined execution time is O(max(N/P,
PYEL*2)) " In order to minimize the time complexity, we
require N/P = O(PYCL*), or P = Q(NCLAD/CLY) which
gives us a complexity of O(P/L+2) = O(NVELA) If we
choose L = 2, this expression reduces to O(N'®), the result
found by Chen et al [2].

IV. BUILDING LARGER MESHES

In this section, we present a recursive procedure for
combining small meshes to obtain larger ones that can
perform semigroup computations with a lower
complexity. We will also show that our method can build
square meshes from rectangular submeshes. The process is
first illustrated using the N°*xN*® mesh of Subsection
ILA and then extended to arbitrary meshes.

A. Two-Level Mesh

We showed in Subsection IL.A that the optimal mesh with
two-level sectioning has N®xN*® PEs with N'/2 row
buses and N'* column buses. We can build a larger mesh
using this rectangular mesh by connecting one PE from
each submesh to higher-level row and column buses.

We know that the optimal mesh with two level sectioning
has Y row buses and Y column_buses, for some Y.
We use rectangular meshes of size X 85X for some X,
each giving a time complexity of O(X'/%). Since the
sectioning has two levels, we conclude that Y/ = (X ”“}2
or Y = X. The total number of PEs is X>/3xX"“xX*®xx
=N, yielding X = N*T_ The time complexity is O(X'®) =
O%xliln’} and the dimensions of the larger mesh are
N2N'2, s0 we end up with a square mesh! Interestingly
this result is the same as for four-level sectioning: L = 4
and O(NVAL2y = O(NM1%),

B. Arbitrary Mesh

We now give the general proof for an arbitrary higher-level
mesh built from X?xX'~® submeshes for some X, each
guaranteeing a running time of O(X 5 (k < 1/2). Inour
recursive procedure for building a larger mesh, we start
first with a square mesh using only local links, so initially
a = k =1/2. We postulate b row buses and ¢ column buses.
Each recursive iteration of the algorithm is as follows:

Step 1: Perform the semigroup computation for each
component mesh. This step takes O(X*) time.

Step 2: The purpose of this step in the original algorithm
was to reduce the problem size using the row buses. For
two-level sectioning, two reductions are needed, each
reducing the problem size by X*. We thus conclude that
the number of column buses is ¢ = X*. At the end of this
step, the leftmost column contains & intermediate results.
Define b = X“ for some d.

Step 3a: Perform reduction on the leftmost column by X*.
At the end of this step, the number of values in the
leftmost column is X4*.

Step 3b: Broadcast the intermediate results of each
leftmost column-group leader to all PEs connected to a
row bus. This step takes a constant time.

Step 3c: Partition the X**intermediate results into X2
groups with X% elements in each, so that each group can
use a column bus. Copy the values of each group to the
topmost PE (Row 0) which performs the semigroup
computation. To minimize the time complexity, we set k
=d - 3k or d = 4k. Thus there are b = X* row buses.

Step 4: Step 2 can be applied once again here to reduce
the intermediate values in the topmost row. At the end,
the final result can be found in the upper-leftmost PE.

If the higher-level mesh is to have N PEs, we must have
X°xexX™b = N or X*xX*#xX'-*xX* = N, giving X =
N1 Since the running time is O(X*), this higher-
level mesh gives us a running time of O(N*(¢**1)} From
this we can derive the following recurrence relations:

k; 1=k, /(6k; + 1), Initially, k, = 1/2

a; 1= (2k; +a;)/(6k; +1), Initially, @y =1/2
The solution of the recurrence for & is k; = 1/(6i + 2),
giving a running time of O(N®*2) Intuitively, this
result should correspond to a 2i-level hierarchical
sectioninzg of buses. Setting L = 2/ in the formula
ONYCD) yields O(NY%*?) as expected. The solution of
the recurrence for a is a; = (2i + 1)/(6i + 2) which again is
consistent with the results presented in Subsection II.C.

By using this scheme directly, we always obtain a
rectangular mesh. However, if we exchange the roles of
rows and columns at each iteration step, we end up with a
square mesh. To show this, we set a; ,; = (2k; + 1 —a;)/
(6k; + 1); i.e., we replace a; with 1 —g; in the recurrence
for'a,,,. It is then easily verified by manipulating the
recurrence expression for g; ., that:

;3= (6k+a;)/(12k+1) = 1/2 + (a-1/2)/(12k+1)

Since the initial condition is a, = 1/2, we have a ;=112
for all j. Thus the mesh after 1terations 0, 2, 4, 62 c..is
square.
It is easy to extend this result to meshes that are built wi{h
L-level sectioning at each iteration. In this case, ¢ = X**
(the number of column buses) and b = X“* (the number of
row buses). Thus for the ith iteration:

k= k; / 3Lk, + 1), Initially, ko = 1/2

a; .1 = (Lk; + a;)/3Lk; + 1), Initially, a, =1/2
The solution is k; 1/(3Li + 2). As before, it can be

shown that after iterations 0, 2, 4, 6, . . . the mesh is
square in this general case.

347

C. VLSI Implications

In the construction of a mesh composed of thousands of
processors, many compromises have to be made. Given
the state of the art in VLSI, it is impossible to embed the
entire mesh into a single VLSI chip. Thus, several chips
each containing a few hundred PEs need to be built and
interconnected. In building such a mesh, regularity of
construction is important since it allows us to use several
identical chips to build a large system. Also, the density
of interconnections, especially off-chip ones, is important.

Our mesh design provides clear advantages in these regards.
In a simple mesh, all PEs have four neighbors, except for
the PEs on the first and last rows/columns. In our mesh,
that does not happen. Thus, it is possible to embed part
of the mesh into a single VLSI chip. Then, multiple chips
are connected via buses without having full connections as
in the original mesh. Even though switches are easy to
build, it may not be advisable to have many sectioning
levels by using more and more switches because of the
delay that such switches introduce. Instead, the recursive
procedure outlined in Subsection III.B can be employed to
construct a larger mesh. Of course, this implies that some
PEs have a higher degree (the leaders), but a compromise
can be achieved between the number of switches and the
number of levels in the iterative procedure.

V. CONCLUSION

‘We have shown how semigroup and prefix computations
can be performed with optimal time complexity on
processor meshes with separable row and column buses
without the provision of buses for every row and every
column. We showed that with this new architecture,
square meshes are not optimal and presented a recursive
procedure for building higher order meshes that can yield
an optimal square mesh. Our time-complexity results were
shown to correspond to those previously published when
certain parameters of our design are fixed at special values.

A possible next step is to develop algorithms for other
computations using our mesh. For many problems with
limited global communication, such as image processing,
a significant improvement in time can be expected. Our
results can also be extended to d-dimensional meshes, even
though a mesh with d > 2 is not of practical importance.

REFERENCES

D A Carlson, “Solving linear recurrence systems on
mesh-connected computers with multiple global buses”,
J. Parallel & Distrib. Comput., vol 8, pp 89-95, 1990.
Y-C Chen, W-T Chen, G-H Chen, & J-P Sheu, “Designing
efficient parallel algorithms on mesh-connected compu-
ters with multiple broadcasting”, JEEE Trans. Parallel &
Distrib. Syst., vol 1, no 2, pp 241-245, Apr 1990.

T Maeba, S Tatsumi, & M Sugaya, “Algorithms for
finding maximum and selecting median on a processor
array with separable global buses”, Electronics &
Commun. in Japan, part 3, vol 73, no 6, pp 39-47, 1990.
D Peleg & A Bar-Noy, “Square meshes are not always
optimal”, JEEE Trans. Computers, vol 40, no 2, pp 196-
204, Feb 1991.

V K Prasanna-Kumar & C S Raghavendra, “Array
processor with multiple broadcasting”, J. Parallel &
Distrib. Comput., vol 2, pp 173-190, 1987.

(1]

(2]

[31

4]

{51

