Optimal Table-Lookup Schemes for Binary-to-Residue
and Residue-to-Binary Conversions

Behrooz Parhami

Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

ABSTRACT

Alternate table-lookup schemes for conversion of binary
to residue numbers, and vice versa, are presented. They
are based on high-radix methods to minimize table size
and to speed up the conversion process. Improved variants
of VLSI-based pipelined binary-to-residue converters are
derived along with balanced, highly regular, pipelined
architectures for residue-to-binary conversion in VLSI.

Keywords: High-radix methods, Input/output conversions,
Modular arithmetic, Residue number system, Table lookup.

L. INTRODUCTION

The residue number system (RNS) has found numerous
applications in the design of high-performance systems in
digital signal processing [7). RNS-based systems are
preferable to conventional ones in view of parallelism in
arithmetic operations. Recently, very efficient RNS
division algorithms have been developed [4] that can pave
the way for the use of RNS representations in much wider
areas. However, to achieve high performance, fast
arithmetic is not sufficient. It is also imperative that
conversions to and from RNS be fast and efficient.

To address this problem, let the number u be represented

in a radix-R positional number system as follows:
u= (un-l! Up 2, ..., Uy, uO)R

With a given set of moduli {m,, ...

representation of the number u is
TR (7 17 R 17 My ®)

where lul,,, represents the residue of u with respect to m;.

The binary-to-residue conversion problem is defined as:
Given: (Un1, Up3,..., ko), R, {my,..., ma, m1}
Obtain: (lul,,r, |u|,,,’_l, s |u|,,l)

Similarly, the residue-to-binary conversion is defined as:
Given: (lul_’,lul,,r_l,...,|ul,,l), R, (my,..., m2,m)
Obtain: (u,._l, Up 2y ooy uo)

In this paper, we present architectures and algorithms for
fast and cost-effective conversions between binary and
residue number representations. The architectures are tree-
structured and achieve logarithmic latency, with latches
used to make pipelining possible. ROM lookup tables are
used in the design, with special attention paid to
optimizing table size and speed. In VLSI parlance, our
converters are both scalable and area-time efficient.

)
,m2, m1}, the RNS

1058-6393/93 $03.00 © 1993 IEEE

812

II. BINARY-TO-RESIDUE CONVERSION

A straightforward technique to convert a number u to RNS
representation would be to find its residue with respect to
each modulus through a division operation. This is
clearly slow and inefficient. Hence the motivation to
investigate simpler schemes for this conversion. The
positional representation of u satisfies

u= TiowRi 3)
where R is the radix, u; is the ith digit, and the number of
digits n is at least Tlog,, u|. The following identity
provides the basis for an alternate scheme to compute the
residue of 1 with respect to a modulus m:

umod m= [Z:.]} (u; R mod m))] mod m @
Using table lookup, we can perform the conversion with a
simple and highly regular circuit. We take the pair (u;, i)
as the index into a ROM table, obtaining u; R‘mod m as

output. The value of R will affect the contents of the
table and is not an explicit input.

By adding all the returned values modulo m, the result can
be calculated very quickly. We need n operations of table
lookup and n - 1 modular additions. These can be done
sequentially using a single table and one modular adder or
with various degrees of parallelism. If n tables are used,
their contents can be specialized for particular values of i,
with ; provided as the only input.

A. The High-Radix Algorithm

It is possible to reduce the number of table-lookup and
addition operations by using a larger radix. We pick a new
radix R*> R such that n’ =[logs.u | < n and thus reduce
the number of lookup operations as well as the number of
subsequent additions. There is also a side benefit that
there will be fewer bits in the final sum, making the
computation of its modulo-m residue less complex.

To take full advantage of the reduction of the number of
table lookups and additions, we have to pick the new radix
R’ carefully so as to avoid complications due to the need
for an initial and final radix conversion.

One solution is to pick R’ to be an integer power of R.
As an example, for R’ = R2, no conversion is needed to
and from the new radix since two consecutive digits in the
old representation will form one digit u’; = (uy;, 4, uz) in
the new representation. Half as many (u’;, i) pairs are
involved in the lookup process, with the number of
additions halved as well. This higher-radix conversion is
easily generalized to the case R’ = RY.

B. Effectiveness and Optimality

Even though conversion can be speeded up by selecting a
larger radix, the extreme of choosing the radix equal to the
maximal range of representation (which leads to only one
table access) is clearly impractical. Selection of the radix
not only affects the contents of the tables and the required
number of additions, but also the size of the tables which
is a critical issue in implementation. Thus, the design of
a conversion architecture involves tradeoffs in layout
regularity, table size, and performance.

In order to simplify the subsequent discussion, we focus
on table size and number of additions needed. We consider
the cost-effectiveness index E as being inversely
proportional to the weighted sum of the relative memory
size M and the relative number of additions A:

(&)

E=(0+a)/M+ ad)

Table size and number of additions for radix 2 are taken as
units of measurement and Equation (5) is defined in such a
way that the effectiveness index becomes 1 for the radix-2
implementation. The weight parameter « reflects the
unequal importance of total memory size and number of
additions in the overall complexity.

To get a feeling for the magnitude of o, we note that
determining a residue of a k-bit binary number, k two-
entry lookup tables and k adders are required. Since each
adder is significantly more complex than a 2-word table, o
is fairly large, with its value being technology-dependent.
To cover a safe interval, we have assumed 10 < a < 1000
in our numerical evaluations.

Figure 1 shows that the effectiveness index E improves
initially as the radix R increases and that radices higher
than 16 are not likely to be cost-effective unless & is very
large. We have included radices that are not powers of 2 in
order to show the variations more clearly. Such radices
will likely be inefficient in view of radix conversion costs
that have not been included in this analysis.

C. Implementation Issues

Figure 2 depicts an existing VLSI design for binary-to-
residue conversion which is suitable for pipelining [2].
By arranFing the additions in a tree structure, the ith
residue lul,,, can be obtained in logy # adder delays. We
can thus transform the design into Figure 3, obtaining a
significant speedup. Throughput is determined by the
bottleneck in the pipeline which, depending on the detailed
design and the technology used, is either the ROM delay
or the delay associated with the final (widest) addition.
With r moduli and n digits in the high-radix representation
of u, the number of tables is rn. Considering the r (n - 1)
adders needed, the space complexity may be too great for
some applications. As for the time complexity, let T,
and T, denote ROM access and adder delays, respectively.
With the above design, each pass through the pipeline
requires T, + T4 logy n time.

We can reduce the number of tables down to O(r) and use r
adders only, leading to time complexity T, + T4 which
is larger then that of the above design. This space
reduction is based on the observation that Equation (4) can
be evaluated iteratively by using only one modular
multiplication table for u;R* and a modulo-m adder for the
addiuons. Fundamentals of modulo-m multiplication can

813

be found in [8]. Parhami and Lai have provided a couple
of implementation schemes [5].

As shown in Figure 4, we use shifting to deal with
successive digits of u using the same set of hardware
elements. The tables in this scheme are general modular
multiplication tables for uR* wherei € [0 ..n—1]. Each
table in the previous scheme also contained u;R* but for a
specific value of i. The table size for m; in this lower-
complexity scheme is about the total of all tables for m;
in the previous scheme. The adder output must be fed
back to produce the modulo-m summation.

Implementation of the modulo-m adder in the above
scheme deserves a closer look. We can use either a logic
circuit or a lookup table to do the modulo part after
normal addition. The tabular version requires only small
tables with 2m — 2 entries for modulo-m addition and
provides flexibility in choosing the modulus.

This idea can be incorporated into the original conversion
scheme. We replace each adder with a tabular modulo-m
adder. This will make the implementation simpler but
requires more space for the tables. An alternative is using
carry-save adders (CSAs) for the internal additions and a
modulo-m adder at the last step. If a (log, 2m)-bit CSA is
faster than access to a 2m-entry ROM ta%le, then we can
accelerate the computation by minimizing the number of
table references. However, the last modulo-m addition
needs n(m-1) table entries because the CSAs don’t adjust
the result to within [0..m~1]. For the scheme of Figure 4,
a tabular adder is preferred because of its flexibility in
choosing the modulus and its regularity in layout.

D. Comparison to Previous Work

Two schemes to do binary-to-residue conversion have been
proposed here. Although our schemes are based on [2], we
use fewer adder levels and obtain higher performance. We
also provide a lower-complexity scheme for situations
where performance can be traded off to minimize the area.
Our performance comparisons were done from a theoretical
point of view. Actual performance indices must be
obtained through simulation or physical implementation
in order to provide realistic evaluation and comparison to
other schemes proposed earlier [1], [3].

III. RESIDUE-TO-BINARY CONVERSION

Our method for residue-to-binary conversion is based on a
“high-radix” property similar to that used in the binary-to-
residue conversion. The major purpose of raising the radix
is to balance the size of the lookup tables. Balancing the
size of the conversion tables among the moduli leads to
the regularity suitable for VLSI realization and a higher
performance. Hardware structure of the basic conversion
scheme is depicted in Figure 5.

A. The High-Radix Algorithm

The weight w; associated with the modulus m; is a value
having the RNS representation (0, ... , 0, 1,0, ... , 0),
where the ith digit is one and all others are zero. With

M=[];; mi, the conversion process can be formulated as:

u=[Xo w;lul,) mod M) mod M ©®
To realize the conversion based on Equation (6), we take
lul,.; as the index into a table and get (w; lul,,) mod M
directly. The required table has Y. m; entries.

In a fully parallel implementation, we use CSAs to
compute the sum in Equation (6)._ This requires r — 1
adders arranged in a tree with(hogz rlevels. For a residue
representation system with many moduli, we can use
high-radix residue-to-binary conversion to increase the
speed of this summation step. Instead of taking a single
residue for table access, we may take multiple residues at a
time to index each table. Let S = (my,m3, ... ,m,) be
the set of moduli and P = (51, 52, ... , 51} be a partition
over § with siC §,sin sj=Bfori#jand§=VU s;
We look up all the residues in the subset s, at once to
produce the partial result up

up = [ZM‘ GSP (wilulll.')] mOd M (7)
with the res?lt of the conversion obtained by

us= Lioitp ®

u=u; mod M O

The summation step in Equation (8) needs a[log, ITlevel
CSA tree and /- 1 adders. Since / < r, the summation
step can be accelerated.

The final result u is obtained after the modulo-M
computation of Equation (9). This step requires particular
caution and will be discussed in the Subsection C.

B. Partitioning Strategies

The only remaining lem is how to pick an optimal or
good partition over §. As an example, for § = {2, 3,5, 7,
11, 13, 17, 19}, a balanced partition would be:

P={{2,3,5,7}, (11,19}, (13,17})

This partition effectively transforms the original RNS to
the *“high-radix” system with moduli 210, 209, and 221.
Hence uniform 256-entry ROMs can be used.

Finding an optimal partition for this method as described
in Subsection A is quite difficult and requires extensive
searching. Besides, even the best partition may be highly
unbalanced for particular sets of moduli. Fortunately,
however, combining does not have to occur for entire
residues. We can combine residues into equal-size blocks
of bits, with each block containing chunks of one or more
residues. The counterpart of Equation (7) in this case
becomes more complicated, but since its evaluation is
done by table lookup, the required hardware is equally
simple and, in addition, highly regular.

With the above observation, the analysis of complexity
becomes very similar to that of Section II and is thus
omitted here for brevity.

C. Implementation Considerations

Implementation of the above scheme is straightforward,
but efficiency in the summation step doesn’t guarantce
overall efficiency. We have to pay attention to the final
modulo step also. The major problem of this final step is
the modulo-M addition. The method of Section II is not
appropriate here because M is much larger than the
individual moduli. The table size is dictated by [[m;
rather than Y m;.

From Equations (7) and (8), we know that u,, is in the
interval [0 .. M — 1] and us= 3 up € [0.. I(M - 1)].
Therefore, trial subtraction and testing can become quite
inefficient since it may require up to / steps.

814

If we use a few most significant bits of us to determine
the amount to subtract from ug, then we do not have to
approach u iteratively. In fact, only one table lookup and
one subtraction would be needed. We have shown (proof
omitted here) that for ¢ an integer, gM and (g + 1)M differ

[n some bit of the bina:hy representation to the left of the
log, M lth bit from the right and that once a stored
multiple of M based on the high-order bits of uj is

subtracted from ug, at most one subtraction is needed to
find u. The table size is thus bounded by

2(logy (M — 1)1~ Liog, M1+ 1).

For typical values of M, [logz(lﬁM -1))l- Llog2 Ml+1
can be approximated by [log; I1+ 1. Since / is'small in

tice, the storage requirements are quite modest. For
instance, with / = 16, we need to use five bits from ug to
look up a 32-entry table.

D. Comparison to Previous Work

Alia and Martinelli [2] give asymptotic results assuminﬁ
that all moduli are of same order. Obviously, suc
asymptotic results are not tical since the moduli tend
to be fairly small and thus significantly different in
magnitude. We have provided a “high-radix” residue-to-
binary conversion scheme using a method to balance the
table size and to speed up the conversion. The regular
layout of the scheme makes it particularly suitable for
VLSI implementation. Fast computation of the residue of
a large number is new to this research and makes our
approach highly competitive with previous ones [6].

IV. CONCLUSION

To meet the speed requirement of special-purpose digital
systems based on residue number representation, we have
proposed fast schemes to perform conversions between
positional number systems and RNS. Lookup tables are
used for conversions in either direction in order to
accelerate the process. The proposed architectures are
suitable for VLSI realization with pipelining and can thus
support very high conversion rates.

ACKNOWLEDGEMENT

The assistance of Mr. Frank H.-F. Lai in the preparation
of an early draft of this paper is gratefully acknowledged.

REFERENCES

[1] Alia, G. and E. Martinelli, “A VLSI Algorithm for Direct
and Reverse Conversion from Weighted Binary Number
System to Residue Number System”, IEEE Trans. Circuits
and Systems, Vol. 31, No. 12, pp. 1033-1039, 1984.

Alia, G. and E. Martinelli, “VLSI Binary-Residue
Converters for Pipelined Processing”, The Computer
Journal, Vol. 33, No. 5, pp. 473-474, 1990.

Capocelli, RM. and R. Giancarlo, “Efficient VLSI
Networks for Converting an Integer from Binary System
to Residue Number System and Vice Versa”, JEEE Trans.
Circuits and Systems, Vol. 35, No. 11, pp. 1425-1430,
Nov. 1988.

Hung, C.Y. and B. Parhami, “An Approximate Si
Detection Method for Residue Numbers and ﬁl;
ApX’lication to RNS Division”, To appear in Computers
& Mathematics with Applications.

(2]

(3]

4

[5] Parhami, B. and H.-F. Lai, “Alternate Memoré
Compression Schemes for Modular Multiplication”, JEE.
Trans. Signal Processing, Vol. 41, No. 3, pp. 1378-
1385, Mar. 1993.

[6] Shenoy, A.P. and R. Kumaresan, “Residue to Binary
Conversion for RNS Arithmetic Using Only Modular
Look-Up Tables”, IEEE Trans. Circuits and systems,
Vol. 35, No. 9, pp. 1158-1162, Sep. 1989.

7

(8]

Soderstrand, M.A., W.K. Jenkins, G.A. Jullien, and F.J.
Taylor (Editors), Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing, IEEE
Press Reprint Collection, 1986.

Waser, S. and M.J. Flynn, Introduction to Arithmetic for
Digital Systems Designers, Holt, Rinehart and Winston,
1983. Note: Other standard texts in computer arithmetic
also provide the needed introduction.

E o

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

050 4

0.00 L $

L L
] 1 1 Ll

2 4 6 8

i
T

14

—
-
-

10

-
-

12 16

Figure 1. Effectiveness index for binary-to-residue conversion scheme as a function of the radix R.

ur Us Us Us Us Uz u Uo

[I [I [[| |]
[]
A S AN) | DN 0 | § O ERNSEINN b | R » | R & |8 S
oM Ho o "M o R kN Hou
g Jg.o U U U U U U
v | | mm || mowt [i|]| o N | wow B | wne B | mem B|| wow]
b P o M P H M '
O S O SN © S © HVU © B G I O B o'

Figure 2. VLSI binary-to-residue converter architecture suitable for pipelining.

815

175

U

T

1

Figure 3. Pipelined binary-to-residue converter design with trees of adders.

U

/73

Us

Using shift for loading of the arguments

Figure 4. A lower-complexity scheme for binary-to-residue conversion.

lutlrs leddrm lulne Il lulm [71P"

lulms

Il

U O O O O O

Figure 5. Basic hardware architecture for residue-to-binary conversion.

816

