1378

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

Alternate Memory Compression Schemes for Modular
Multiplication

Behrooz Parhami, Senior Member, IEEE, and Hsun-Feng Lai

Abstract—A memory compression scheme which reduces the
size of the lookup tables for modular multiplication by using a
new symmetry property is presented. The compression ratio
for a modulus p is (p — 1)>/ | p/2]|? which is approximately
equal to 4 and implies a 75% savings except if p is even and
small. Although this compression ratio has been achieved be-
fore, our scheme has the advantage of simpler peripheral hard-
ware. A further benefit of our scheme is that it lends itself to
additional reduction of table size by a factor of about 2 for a
total savings of 87%. Realization of this additional reduction
requires two stages of table lookup or more complicated ad-
dressing circuits. It is up to the system designer to decide
whether this speed /cost tradeoff is worthwhile for a given ap-
plication. Since throughput will be unaffected if a two-stage
pipeline is used for the translation/lookup steps, this modifi-
cation which achieves table compression by a factor of 8 is quite
attractive in applications where long sequences of multiplica-
tions are performed. Finally, we show that by using a multi-
plication algorithm based on squaring, a compression ratio of
(p - D*/2p — 1) or roughly p/2 is achievable with moderate
hardware complexity and two lookup steps.

I. INTRODUCTION

ODULAR arithmetic has been used in digital filter-

ing and other signal processing applications for
years [6]. Operations like (x + y) mod p or (x X y) mod
p, where x and y belong to the residue class Z, = {0, 1,
2, -+ - ,p — 1} are common in modular arithmetic. Since
the computation of modulo-p residues is complicated for
an arbitrary p and this may increase the hardware com-
plexity and operation latencies significantly, it is gener-
ally advocated that table lookup methods be used for mod-
ular arithmetic. By using table lookup, we are no longer
limited to moduli of form 2¥ — 1, as suggested in [5], in
order to simplify the computation of residues.

Unlike weighted number systems, for which rounding
is applicable, residue arithmetic deals with exact results
and thus suffers from the problem of unrecoverable over-
flow. There are two ways to solve this problem. One is to
introduce approximation errors which entails overhead.
The other is to enlarge the dynamic range of the residue
number system (RNS). Let P = {p;, - -+, p.} be the
pairwise relatively prime set of moduli in an RNS. The
dynamic range of this RNS is taken to be [—-V /2, V/2),
where V = II, . ; ., p;- Either more moduli or larger mod-

Manuscript received October 16, 1990; revised April 6, 1992.

B. Parhami is with the Department of Electrical and Computer Engi-
neering, University of California, Santa Barbara, CA 93106.

H.-F. Lai is with Epic Design Technology Inc., Santa Clara, CA.

IEEE Log Number 9206038.

uli are required in the latter approach. Both methods will
result in additional hardware, with the delay increasing as
well if larger moduli are employed.

A modular multiplication table is composed of entries
T,li,j1 = (i X j) mod p where i, j € Z,. It can be shown
that 7, possesses diagonal and antidiagonal symmetry.
This symmetry property is used to construct two tables of
sizes | p/2] and | p/2]?%in [1]. The main disadvan-
tages of this scheme are that two separate tables are needed
and that the addressing protocol is complicated. The
compression ratio for the above proposed scheme is about
4, leading to a 75% savings.

In this paper, we first exploit a different symmetry
property that can reduce the size of the lookup table by
the same factor of 4 but results in a simpler mechanism
for addressing. Only one table is needed for each modulus
and the peripheral hardware is less complex. A further
compression based on the commutativity of multiplication
yields an overall reduction factor of 8. However, since
the final table resulting from this scheme is triangular,
indirect addressing or more complicated address transla-
tion must be used for each access. Finally, we adapt a
multiplication algorithm based on squaring to modular
arithmetic and study the resulting compression ratio and
hardware complexity.

II. THE COMPLEMENT-SYMMETRY PROPERTY

Fig. 1 shows the modular multiplication table 7, with
T,li,j] = (i X j) mod p. Since the multiplication result
with one zero operand is zero, we can use a smaller table
by detecting these special cases and bypassing the table
access. In the following discussion, T, refers to the mod-
ular multiplication table with entries for zero operands re-
moved. We will see later that the removal of zero entries
can in fact complicate the addressing protocol, nullifying
the savings in size. Nevertheless, we proceed with this
assumption to make our results directly comparable to
those of [1].

The following lemma states the complement-symmetry
property of T,.

Lemma 1: For any modular multiplication table T,, we
have

Tp[P“x»P_)’]:Tp[X,y] eY)
Tlx,p —yl=Tlp—x,yl =p—T)lx,y]. ()

1053-587X/93$03.00 © 1993 IEEE

PARHAMI AND LAI: ALTERNATE MEMORY COMPRESSION SCHEMES

1379

y 01 2 3 prl .. p2 p-t
olo 0 0 O 0 .. 0 0
100 1 2 3 lpr2) .. p2 p-1
210 2
3{0 3

lpr2l| 0 Lpr2)

p-20 p-2 2

p-1'0 p-1.. 2 1

Fig. 1. The complete modulo-p muitiplication table.

T

y 1 2 3 .. lprl. p=2 p-i
il 1 2 3 . 2l . p2 p-1

2| 2

3

tpi2] pr2]
p2|p=2 2
p-1 p=1 = = = 2 1

Fig. 2. Reduction of the modular multiplication table 7,,.

Proof: We prove (1) as follows:
Tip—xp -yl =[p—x X (p—ylmedp

= (p* — px — py + xy) mod p
= (xy) mod p
= T,lx, y].

To prove (2), we begin by writing

T,lx,p —y1 =[x X (p — y)] mod p

= (px — xy) mod p

= (—xy) mod p
= p — [(xy) mod p]
=p - Tp[x’ y1.

The second part of (2) can be similarly established. |

Theorem 1: A modular multiplication table 7, for the
modulus p can be reduced to the smaller table T, with
| T,|/1T,| =4 — ¢, where | T| is the size of Tand ¢, =
8/p — 4/p” for even p, €, = 0 for odd p.

Proof: By Lemma 1, the elements T,[p — x,p —
yl, T,[x,p — yl,and T,[p — x, y], can be obtained from
T,[x, y]. Thus T, can be reduced to its upper left quadrant
T, which is of size Lp/2]) by Lp/2] asshown in Fig.
2. The table size compression ratio then is | T,| /| T,| =
(p - D?/ | p/2]* =4 — ¢, Ifpisodd, then | p/2]
= (p — 1)/2 and ¢, = 0 follows. For even values of p,
the compression ratio is | T, | /| T, | = 4(p — 1)?/p* =4
— 8/p + 4/p”, leading to the desired result.

Odd Moduti
b o ————— e e
W Even Moduli
3
Compression 2
Ratio T
14
0 + +
2 20 40 60 80 100 120

p

Fig. 3. Table size compression ratio as a function of p using complement-
symmetry.

Fig. 3 shows the variation of the table size compression
ratio as function of p. Any RNS has at most one even
modulus. As a direct consequence of Theorem 1, one
should try to make the even modulus as large as possible
to achieve better compression. In practice, this is done
anyway for performance reasons [7] since by making the
even modulus comparable to the largest odd modulus uti-
lized (combining it with some odd modulus or picking a
suitably large power of 2), the range can be expanded with
no speed penalty.

Let us consider an example. The modular multiplica-
tion tables T and T; are shown in Fig. 4, with four related
entries circled in each table for illustration. Fig. 5 shows
the tables after reduction by Theorem 1. Variables x ' and

1380

7 T8

X X

1 2 3 4 5 6 y 1 2 3 4 5 6 7
112 3 4 5 @ 1(1)2 3 4 5 6 @
212 4 6 1 3 5 212 4 6 0 2 4 6
313 6 2 5 1 4 313 6 1 4 7 2 5
414 1 5 2 6 3 44 0 4 0 4 0 4
S5 3 1 6 4 2 505 2 7 4 1 6 3
6 :6) 5 4 3 2 @ 66 4 2 0 6 4 2

(16 5 4 3 2 ®
Fig. 4. Modular multiplication tables forp = 7andp = 8.

Yid T8

2 y," 1 2 3 4
2 1|1 2 3 4
4 202 4 6 0
6 313 6 1 4

414 0 4 0

Reduced modular multiplication tables T3 and Ty.

]

y'in Fig. 5 are new indices used to access the reduced
tables. In general, wehave 1 < x',y’' < | p/2] .

A. The Addressing Protocol

The addressing protocol transforms the input operands
x and y into the indices x' and y’ which will be used for
addressing the reduced table T,. This procedure can be
described by the following functions:

x'=x ifx< | p/2]

=p-x ifx> |p/2] 3)
y' =y ify < |p/2]

=p—vy ify> [p/2]. O]

So after the transformation, x ' and y’ will fall in the range
[1, Lp/2] 1. From (2), if we do only one complemen-
tation, we have to complement the returned data to obtain
the correct result. A flag ¢, which is initialized to ‘“false’’
and is complemented with each operand complementa-
tion, can be introduced to keep track of this information.
If we need no complementation or if we complement both
operands, ¢ will be false and the result fetched from the
table will be correct. If ¢ is true, we need to complement
the fetched table entry before returning it.

B. Implementation Issues

Off-the-shelf read-only memories (ROM’s) come in
standard sizes of the form 2% x 2. For example take the
case of p = 23. Without compression, the required ROM
size is 484 X 5, assuming zero suppression. In a custom-
built circuit, a ROM of this size may be employed but
then addressing becomes nontrivial since the address
expression 22(y — 1) + x — 1 requires a multiplication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

It is more likely that a ROM of size 1024 X 5 is used for
ease of addressing so that x and y each determine 5 b of
the 10-b address. With an off-the-shelf ROM, the size is
likely to be 1024 x 8. In the latter case, error checking
in the form of parity bits can be incorporated into the de-
sign with little extra cost. After our reduction, the re-
quired size will be 121 X 5, with practical sizes being
256 X 5 and 256 X 8 to avoid the address computation
11(y" — 1) + x' — 1. It is easy to see that the actual
compression is by a factor of four in each case. The same
observations apply to even moduli.

Zero suppression may cause problems from a practical
point of view since x’ — 1 and y’' — 1 must be used as
indices into the reduced table. These extra computations
can be avoided by including the zero entries in the table.
Since as discussed above, in most cases the table is larger
than required, we can include entries corresponding to
zero operands with no table size penalty. This can lead to
substantial savings in the cost and delay of the peripheral
circuits for table access. For borderline cases, such as p
= 33, removing the zeros can lead to substantial reduc-
tion in table size. In such cases, it is up to the designer to
decide whether the complexity and delay added by the
zero handling hardware and operand modification circuits
are worthwhile.

It is worth noting that a two-level table lookup can be
utilized to effect address computations resulting from
nonstandard table sizes. The multiplicative part of an ad-
dress computation such as 11(y’ — 1) + x’ — 1 or more
generally | p/2] (y' — 1) + x’ — 1 can be handled by
a lookup table B, as shown in Fig. 6 and the two parts of
the computation pipelined to achieve the same throughput
as before. Fig. 7 contains two examples for the B, and
T, tables. The tables B, and T, can be merged into one
table to reduce the implementation cost, but this will af-
fect both the speed (sequential rather than cascaded op-
eration) and the throughput (loss of pipelining capability).
An offset equal to the size of B, should be added to the
original entries of B, before B » and T, are merged. Figs.
8 and 9 depict the general scheme and examples of merged
tables.

C. Comparison with Prior Work

The reduction scheme reported in [1] is based on the
diagonal and antidiagonal symmetries of T,. Since after
removing the redundancies, the remaining one-fourth of
the elements do not form a rectangular subarray, their ad-
dressing protocol is somewhat more complicated than
ours. It starts by computing x’ and y’ as in (3) and (4).
However, they need to treat the case x’ = y’ by including
a separate one-dimensional table. Furthermore, for the
case x' # y’', the larger of x’ and y’ must be determined
and assigned to the table access index a or b according to
the value of the flag ¢. The other index then assumes the
smaller of the two values and T'[a, b] is fetched.

Our scheme removes the need for a separate ‘‘diago-
nal’’ table and replaces the comparison and assignment

PARHAMI AND LAI: ALTERNATE MEMORY COMPRESSION SCHEMES 1381

Bp’ Lp’
Row 1 0 1
Row 2 o 2
Row 3 2l 3
KK LI Y
Row -1 eoe
Rowa | ler2ientn)
1p2ipr2)-1)kmodp
(on2llprzhmodp
|
Fig. 6. Pipelined indirect addressing implementation of T,.
B7 L7 Bs' Ls
1{ 0 1 1 i o0 1 1
2|1 3 2| 2 20 4 2 2
38 3 3 3 8 3 3
4 2 4 12 4 4
5 4 5 2
6 6 6 4
7 3 7 6
8 6 8 0
9| 2 9 3
10 6
11 1
12 4
13 4
14 0
15 4
16 0
Fig. 7. Table contents for B3, L7, Bg, and Ls.
¥
lpr2] loglpf2)
2lpr2)
Bpr LK IR 4 Adder
P d 2
T loglp2) log(lp21+pr21)
Lpr2]
1 Bp +Lp’ R
1 maxlog (p-1), log p21)
3 "log (>-1)
Lp' oo Y
Lor2pr2k-Dimod p Tp'lx\yl
L2z bmedp

Fig. 8. Merged indirect addressing implementation of T .

steps outlined above by a selective complementation step
for the fetched value. Even if this complementation is
done through a full-fledged subtraction, our scheme will
still be faster. Furthermore, when our scheme is used with
an asynchronous mode of operation, the complementation
time can be saved in 50% of the cases when the fetched
entry is the correct result. No such saving is possible with
the previous scheme.

III. THE COMMUTATIVITY PROPERTY

Inspection of the reduced tables in Fig. 5 reveals a di-
agonal symmetry property of 7, that can be used to fur-
ther reduce their sizes. This symmetry is due to the com-
mutativity of modular multiplication; i.e., (x X y) mod p
= (y X x) mod p since x X y =y X x. Fig. 10 shows
the parts of these example tables that need to be stored.

1382

B7+ L7 B+ Ls

|

|

0N OB LN e

[SY - NEI- Y PN T ERY I

—
~
olbrio|hasl=niwojon sl sl 0 =

Fig. 9. The tables B, L and By, L after merging.

"
%

¥ 1 2 3
1|1 2 3
2 4 6
3 2

Fig. 10. Further reduction for modular multiplication tables T7 and T} .

Theorem 2: A reduced modular multiplication table
T, for the modulus p can be further transformed to the
smaller table T, with |T,|/|T, | = 2 — ¢, where |T|
isthe sizeof Tande, =2/(|p/2] + 1).

Proof: By commutativity of multiplication, we can
remove all 7,[x’, y'] entries for which x’ > y’. The
remaining upper right triangle has | p/2| (| p/2] +
1)/2 entries. Thus |T,|/|T)| = 2|p/2]?%/
[Lp/2](Lp/2] + D1 =2-2/(lp/2] + D =-2
— €

CI;rollary 1: The overall compression ratio achieved
by applying the reductions defined by Theorems 1 and 2
is |T,|/|T, | =8 —¢,, wheree, = (32p — 8)/(p° +
2p) foreven p, ¢, = 16/(p + 1) for odd p.

Proof: From Theorems 1 and 2, we can write
ITI1/1T, | = (T1/1T, D) x AT, /1T, 1) = [(p ~
D’/ Lp/2]M x 2 Lp/2)*/lLp/2) (Lp/2] + D]
= 8 — ¢, . The value of e[: can be obtained for even and
odd values of p as in the proof of Theorem 1.]

Fig. 11 depicts the variation of the table size compres-
sion ratio as a function of p. Again, odd moduli enjoy
higher compression ratios.

A. The Addressing Protocol

To assure that indices for accessing T, fall in the proper
range, x' and y’ have to be transformed into x” and y"
through a simple comparison. This transformation can be

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 41, NO. 3, MARCH 1993

Even Moduli

Compression
Ratio

+ N N
T T y

2 20 40 60 80 100 120
p

Fig. 11. Table size compression ratio as a function of p using commuta-

tivity.

B7 L7 Bs" L8
1o ! ! 1l 0
2[3] 2 2 2| 4
3Ls] 3 3 3 7

4 4 4 9

5 6

6 2

E\OOO N A AW N
S| O (s |H WIN| -

Fig. 12. Table contents for By, L7 and By, Lg.

described by the following functions:

"

X

min (x’, y')

®
y" ©®

Thus assuming that a triangular table can be stored di-
rectly, the element 7,/ [x”, y"”] will provide the desired
result.

max (x', y")

B. Implementation Issues

The main implementation problem for 7' arises from
its triangular shape. A straightforward approach for using
this reduction is to pack two triangular tables into a square
ROM. This will reduce the speed roughly by a factor of
2 since the two tables cannot be accessed simultaneously.
Throughput reduction may be somewhat less severe if the
merged tables are associated with separate address com-
putation circuits and pipelining is used. Another approach
would be to store the table in row-major order and apply
the two-level addressing scheme (two sequential table ac-
cesses) discussed at the end of Section II-B to effect the
address computation | p/2|x" —x"(x" = 1)/2 + y"
= f,(x") + y" through a lookup table for f, and an adder.
Fig. 12 shows examples of the tables B and 7, that are
required for the indirect addressing scheme and Fig. 13
shows the merged versions of the tables.

In the remainder of this subsection, we explore the pos-
sibility of rearranging some of the entries to convert the
triangular table into a rectangular one and deal with the
associated address translation schemes. Consider an n X

PARHAMI AND LAL: ALTERNATE MEMORY COMPRESSION SCHEMES

Br"+L7" Bs"+Ls"

O 00 = OB W N -
O 0~ B W=

0o [& o =

—
=)
o|le|=lojols | & |w (=

Fig. 14. Triangular tables Us and U,.

n upper triangular table U, as in the examples of Fig. 14
(lower triangular tables can be handled similarly and thus
will not be discussed here). We can move some of the
elements from the lower right corner to the unused slots
in the upper left corner. Fig. 15 shows the process of con-
verting U; and U, into 2 X 3 and 3 X 4 rectangular tables.
The resulting Ry and R, tables are depicted in Fig. 16
(‘“ X’ denotes an original table entry, ““O”’ represents a
displaced entry, and *‘b’’ is a blank or unused entry). The
general rearrangement process is shown in Figs. 17
through 20. Conceptually, the indices x and y of U, [x, y]
are transformed by the following steps:

1) Change xtox’ =n + 1 —xify > Ln/2] +1
(see Fig. 17).

2) Change ytoy' =n + 1 —yify > |n/2] +1
(see Fig. 18).

3) Change y' to y’ + 1 for elements transformed by
the above rules (see Fig. 19).

The final rectangular table is shown in Fig. 20. Thus a
rearranged entry U, [x, y] moves to the location R,[n +
1—x,n+2—ylinthe corresponding rectangular table.
The above arguments lead to the following resuit.

Theorem 3: For any upper n X n triangular table U,,
we can form a rectangular table R, of size (ln/2) +1)
% n such that the original table entry U, [x, y] is either at
location R, [x, y] or at location R,n+1—-x,n+ 2 -

Proof: The number of rows in the rearranged rectan-
gular table will be | n/2] + 1. Since eachy > | n/2]
+ 1 is changed to n + 2 — y, which is at most n =
|n/2] < [n/2] + 1, each rearranged entry will have
a row index of at most | n/2| + 1. What remains to be

1383

v Ln2de) L2 2 ...

Fig. 18. The second step in the conceptual address transformation.

established is that all rearranged entries actually fall in the
empty slots. For this to happen, we must have n + 1 -
x<n+?2—yorx =y, which is true of any rearranged

entry U, [x, y].

C. Comparison with Prior Work

The scheme just described allows a further table size
reduction by a factor of about 2 at the expense of more

1384

- ln2btln2k2 o 0B

Fig. 19. The third step in the conceptual address transformation.

- k122 . n

Fig. 20. The final rectangular table.

complicated peripheral circuits. This reduction scheme is
probably worthwhile only in situations where pipelining
can be used to offset its negative effect on throughput. If
a two-level table lookup arrangement is used, the
throughput will be comparable to our initial scheme
(compression ratio of about 4) and to the scheme proposed
in [1]. With address translation to obtain a rectangular
table, the multiplication pipeline will include an extra
stage and pipeline drainage [4] due to data dependencies
and conditional branches will become more likely. Thus
the latter scheme must be used with care.

IV. MULTIPLICATION BY SQUARING
In a recent paper, Ling [3] describes a table compres-
sion scheme for ordinary (not modular) multiplication
through squaring. He takes advantage of the equality

xy =[x+ y)’ - (x—y)31/4 @)

and suggests that n X n multiplication can be performed
by two accesses to a table of size 2" * ! rather than through
a lookup table of size 2%* (actually through minor adjust-
ments to the above, he arrives at a table size of 2", but
this simpler view is sufficient for our purposes). We now
show that the same scheme is applicable to modular mul-
tiplication. We first prove the following result for modu-
lar multiplication.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 3, MARCH 1993

Theorem 4:
(xy)modp = [| (x + y)’/4] mod p
— | &x — y)*/4] mod p] mod p. (8)

Proof: We note that x + y and x — y are either both
even or both odd. If they are even, then (8) is equivalent
to (7). If they are odd, then | (x + y)2/4j is1/4of a
unit less than (x + y)*/4 and | (x — y)* /4] is 1 /4 of a
unit less than (x — y)2/4. Thus in either case we can
write

[0+ y) = (&~ y)1/4
= L& +y)i/4) - Le—y)/4].
This concludes the proof.]

A. The Addressing Protocol

The addressing protocol consists of computing 2’ = x
+ y and z” = x — y and then accessing the f(z) =
| z2/4] mod p table twice to obtain | (x + y)*/4| mod
pand | (x — y)*/4] mod p. A final modulo-p subtrac-
tion provides the desired result. Since x + y is in the range
[0, 2p — 2], the table size will be 2p — 1.

Although it is possible to use | (x + y)/2| and | (x
— y)/2] instead of z' and z” in order to reduce the table
size by about 50% in a manner similar to Ling’s multi-
plication scheme [3], it is our judgment that the additional
peripheral circuits cannot be justified in view of the fact
that 2p — 1 is already quite small in practice.

B. Implementation Issues

The two table accesses required can be performed se-
quentially or in parallel. With sequential accesses and
pipelining, four main steps are required:

1) Compute x + y.
2) Compute |x — y| and lookup | (x + y)*/4] mod

p.
3) Lookup | (x — y)*/4] mod p.
4) Subtract, modulo p, the above two entries.

The next multiplication can be initiated once the cur-
rent one is in step 3. Thus, we can have pipelining within
a single multiplication (pipelining period of 1 cycle) and
between successive multiplications (pipelining period of
2 cycles).

Parallel tables can improve both the delay and the
pipelining period for successive multiplications. The steps
in this case are:

1) Compute x + y and |x — y]|.

2) Lookup | (x + y)*/4] mod p and | (x — y)*/4]
mod p.

3) Subtract, modulo p, the above two entries.

The delay has been reduced to 3 cycles and a new multi-
plication can be initiated in each cycle. This gain is
achieved by the extra cost of another table and the asso-
ciated input adder.

PARHAMI AND LAI: ALTERNATE MEMORY COMPRESSION SCHEMES

C. Comparison with Other Schemes

The table size reduction for this scheme is from (p —
1) to 2p — 1 with sequential access and to 4p — 2 with
parallel tables and supporting hardware. However, since
residue arithmetic based on table lookup requires fairly
small moduli, the previous two schemes remain compet-
itive due to their simpler peripheral hardware. As a spe-
cific example, to achieve a range of about 48 binary dig-
its, moduli set {7, 11, 13, 17, 19, 23, 25, 27, 29, 31,
32} is adequate. The largest modulus in this set requires
a table with 1024 words before compression. Our first
compression scheme yields a table of size 256. Our ex-
tended compression scheme reduces the table size to 128
words. The squaring approach needs two 64-word tables
that are accessed in parallel if it is to be competitive with
respect to speed.

V. CONCLUSION

We have presented three new compression schemes for
modular multiplication tables. Our first scheme provides
the same compression ratio as that offered in [1], but has
a simpler addressing protocol and a more uniform mem-
ory structure.

We have also shown that our new scheme lends itself
to a further table size reduction by a factor of 2 with more
complicated peripheral hardware, thus presenting the de-
signer with an opportunity for speed/cost tradeoff. Be-
cause the additional hardware is used in an extra stage
between the original address translator and the lookup ta-
ble (without affecting the logical structure or the com-
plexity of either of these two components), achieving the
same throughput is quite easy with a pipelined organiza-
tion. The scheme is thus quite attractive in applications
where long sequences of multiplications are performed.

Additionally, we have discussed a compression scheme
based on squaring that is particularly attractive for large
moduli since it reduces the table size from (p — 1)* to 2p
— 1 with the slower sequential table access and to 4p —
2 for the higher speed parallel version.

In practice the various parameters of the three table
compression schemes proposed in this paper are fairly
close and the optimal selection will depend on speed/cost
requirements as well as the parameters of the technology
used for implementation.

1385

REFERENCES

[1] C. H. Huang and F. J. Taylor, ‘‘A memory compression scheme for
modular arithmetic,”’ IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. ASSP-27, pp. 608-611, Dec. 1979.

[2} K. Hwang and F. A. Briggs, Computer Architecture and Parallel Pro-
cessing. New York: McGraw-Hill, 1984.

[3] H. Ling, *‘An approach to implementing multiplication with small ta-
bles,”’ IEEE Trans. Comput., vol. 39, no. S, pp. 717-718, May 1990.

[4) P. M. Kogge, The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981.

[5] R. D. Merill, Jr., ‘‘Improved digital computer performance using res-
idue number theory,”” IEEE Trans. Electron. Comput., vol. EC-13,
no. 2, pp. 93-101, Apr. 1964.

[6] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor,
Residue Number System Arithmetic: Modern Applications in Digital
Signal Processing. New York: IEEE Press, 1986.

{71 S. Waser and M. 1. Flynn, Introduction to Arithmetic for Digital Sys-
tems Designers.

Holt, Rinehart and Winston, 1982.

Behrooz Parhami (S'70-M’73-SM’78) received
the Ph.D. degree in computer science from the
University of California, Los Angeles, in 1973.

Presently, he is Professor in the Department of
Electrical and Computer Engineering, University
of California, Santa Barbara. His current research
deals with parallel architectures and algorithms,
high-speed computer arithmetic, and dependable
(fault-tolerant) computing. In his previous posi-
tion with Sharif University of Technology in Teh-
ran, Iran (1974-1988), he was also involved in the
areas of educational planning, curriculum development, standardization ef-
forts, technology transfer, and had various editorial responsibilities, in-
cluding a five-year term as Editor of Computer Report, a Farsi-language
computing periodical. His technical publications include over 90 papers in
journals and international conferences, two Farsi-language textbooks, and
an English/Farsi glossary of computing terms.

Dr. Parhami is a member of the Association for Computing Machinery
and the British Computer Society and a Distinguished Member of the In-
formatics Society of Iran for which he served as a founding member and
President during 1979-1984. He also served as Chairman of IEEE Iran
Section (1977-1986) and received the IEEE Centennial Medal in 1984.

5

Hsun-Feng Lai was born in Taipei, Taiwan, Re-
public of China, on May 4, 1964. He received the
B.S. degree in computer science and information
engineering from the National Taiwan University
in 1986 and the M.S. degree in computer engi-
neering from the University of California, Santa
Barbara, in 1991.

Since August 1991, he has been with Epic De-
sign Technology Inc., where his responsibilities
include transistor-level timing and power simula-
tion. His areas of technical and research interest
include computer arithmetic, computer architecture, CAD, operating sys-
tems, and software engineering.

