Fault Tolerance Properties of Mesh-Connected Parallel Computers
with Separable Row/Column Buses

Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract —— A two-dimensional processor array with
separable row/column buses that are logically divisible into a
number of local buses has proven quite effective for a wide
class of parallel computations. I show how these separable
buses, originally proposed for improved performance, can also
be used to achieve tolerance to processor and link failures with
minimal overhead for certain applications.

Keywords —— Adaptive routing, Fault-tolerant algorithms,
Parallel processing, Reconfiguration, Resilient computation.

I. INTRODUCTION

A two-dimensional mxa mesh-connected computer, or 2-D
MCC, consists of N = mn processing elements (PEs)
arranged in a grid, where horizontally and vertically adjacent
processors are connected via local communication links.
Because of their potential for dense VLSI realization and
natural fit to many problems in matrix computations,
modeling of physical systems, and image processing, 2-D
MCCs have become popular and numerous researchers have
studied their properties with respect to algorithm design/
implementation and fault tolerance.

With respect to algorithm design/implementation, it has
been shown how basic building-block computations
(semigroup and prefix computations, sorting, selection,
data routing) can be programmed through efficient
(pipelined) use of the nearest-neighbor connections. It has
also been observed that the main disadvantage of a standard
mesh is that the number of steps required by any non-
trivial algorithm is lower-bounded by its fairly large
diameter, {XN172),

Consequently, several researchers have proposed 2-D MCC
architectures augmented with broadcast buses as global
communication mechanisms or with express channels that
provide shorter bypass paths. One such proposal, which is
of interest in this paper is that of separable row/column
buses whereby PEs in one row (respectively, column) are
connected to a broadcast mechanism that can be logically
divided into a number of local buses through the use of PE-
controlled switches. Such an architecture has been shown
to support O(log N)-time semigroup/prefix computation
and O(N'28log¥2N)-time median selection [MAEB90}.
Studies dealing with fault tolerance of MCCs have
concentrated on methods that can salvage a smaller working
mesh from a larger one with faulty PEs or links. In other
words, an mxn rectangular mesh is converted to an m’xa’
mesh (where m'< m and n’ < n) using embedded switching
mechanisms [CHEA90]. The main reason for this focus has
been that both main application areas, viz defect tolerance
and systolic numerical computation, require the availability
of a complete working mesh.

In this paper, I take a different approach and investigate
how much fault tolerance can be achieved through regular
mechanisms in MCCs that do not have special embedded
switching mechanisms for fault tolerance. As an example,
in MCCs with separable row/column buses [MAEB90],

CH 3381-1/93/$01.00 ©1993 IEEE 1128

[SERR92], [SERR93), originally added to improve their
performance for certain global computations, the buses can
be used in lieu of failed or otherwise unavailable near-
neighbor connections to achieve fault tolerance. My aim is
to characterize the extent of fault tolerance offered by such
inherent redundancies and to investigate the corresponding
cost/performance/dependability tradeoffs.

II. INCOMPLETE BYPASS MESHES

I consider applications that do not need the full 2-D
connectivity otp 2-D MCGC:s for efficient handling but rather
view the mesh as a logical 1-D array with better
communication latency characteristics than a physical 1-D
array. For example, if data is to be routed or sorted, it is
not essential that a complete mxn mesh be available, as
long as the faulty PEs can be detected, disabled, and avoided
along data movement paths. As another example, certain
geometric problems on point sets fall in this class.

A. Model and Assumptions

Each PE fails with a small probability p, independent of all
other PEs. In the following logical model for analysis and
algorithm development, I assume that any faulty PE can be
bypassed by setting certain routing switches. I will show
in Section III how this logical model can be realized
hysically. An MCC in which one or more faulty PEs
ve been bypassed is referred to as an incomplete (bypass)
MCC (Figure 1). Connectivity is of course assumed. Due
to the bypass connections, this last assumption is not a
serious one in that an unrealistically large number of PE
faults would be required to partition the array.

Figure 1. An incomplete bypass MCC.

Links do not fail in this logical model. This assumption
is realistic in view of the implementations discussed in
Section III. Furthermore, one can always incorporate the
failure probabilities of 2 of the 4 nearest-neighbor links
(e.g., the N and W links) into the PE failure probability
and treat bypass failures as complete row/column failures.
For the sake of generality (in case other implementations
are proposed in future to support this logical model), row
and column buses are not used in the algorithms.
However, such buses can be used in the standard way to
improve algorithm performance if desired.

B. Semigroup Computation

A semigroup computation is defined by (@, §), where @ is
an associative binary operator and § = {ay, a,...,ay_)
is a set of data items. The problem is to compute a, ® a,
®...®a, . Algorithms are available to perform such a
semigroup computation on an nxn MCC in O(n) steps.

For the sake of clarity of exposition, I assume that the
upper-left PE is never faulty and that it is designated as the
initial recipient of the semigroup computation result. This
assumption can be easily relaxed.

I now show that an incomplete MCC can also perform a
semigroup computation in O(n) steps. Here is an outline
of the algorithm. First, all PEs are set in the “horizontal”
mode and the semigroup computation is performed in each
row. Because the widths of various rows might differ (see
Figure 1), each “row leader” waits until it receives a special
endmarker generated by the rightmost boundary PE in that
row. Then it enters the “vertical” mode. A PE in vertical
mode sends its value to the north neighbor if it is in
Column 0 and to some PE in Column O otherwise. The
naive strategy of sending values up or to the left does not
always work, as is clear for PE 2 in Figure 2.

Figure 2. A degenerate incomplete bypass MCC.

One way around this problem is for each PE to have a tag
showing the direction to move for getting to the closest PE
in Column 0. For example, in Figure 2, the “Column- 0"
tag for PEs 2 and 3 would be “E” and “S”, respectively.
This information is easily computed after each
reconfiguration (via broadcast signals sent by all PEs in
Column 0). It is easy to prove that the longest such path
to Column O has length O(n). Once the mesh leader has
the final result, it broadcasts the value to all PEs. Each of
the two phases is completed in O(n) steps.

C. Parallel Prefix Computation

For parallel prefix computation, I use complete rows and
columns, that exist in any large faulty MCC with near
certainty, to derive an efficient O(n)-step algorithm.

Semigroup computation can be viewed as a special case of
prefix computation defined as the simultaneous
computation of S;=a,®a, & ...® g, forall i in the
range 0<i SN-1 LetS;;=a,0a,,®...9a,i<)
be the partial prefix from a; foa, Cleariy, §;=50;=8

P aabuh Qi
DS, 01, @B, ; Where 0< i <iy<... <'z’,‘,<}.Jl

iMtlyJ
To describe the algorithm, one needs to specify an ordering
for the PEs and their associated values. My assumption is
row-major ordering, starting from 0. The algorithm is to
generate §; in the PE initially holding a,.

In the first phase of the algorithm, local prefixes for rows
are computed. For example, in Figure 1, PEs 6, 7, and 8
would hold the values ag, a, ® a;, and a;® a, ® g;. In the

1129

second phase, each PE with no right neighbor must provide
its value to all su uent rows to be combined with the
values held there. This is not as straightforward a step as
in complete meshes. For example, PE 2 in Figure 1 has
no direct connection to the next row. Also, step-by-step
routing of values to the nearest PE in the next row is not
viable unless the number of faulty PEs is bounded by a
small constant. Figure 2 provides a good example where
such routing would go from PE 1 to PE 3 (d = 5), from PE
3 to PE 4 (d = 3), and from PE 5 to PE 6 (d = 2), implying
10 steps overall.
With no topological restriction on the incomplete MCC
(i.c. allowing degenerate cases such as the one depicted in
Figure 2) and with PEs having O(1) complexity, there
appears to be no way for systematically sending the values
in rightmost PEs of all rows downward while guaranteeing
no duplicates and O(n) running time. Thus the topology
needs to be restricted.
A relatively minor condition that solves the above problem
(and one that is satisfied in practice with near certainty) is
the existence of at least one complete column having all of
its n PEs fault-free.

prob{a given column is complete} = (1 - p)*

prob{a given column is incomplete} = 1 - (1 - p)*

prob{all n columns are incomplete) = (1 - (1 - p)™)"

prob{some column is complete} =1 - (1 - (1 - p)")*
For example with p = 0.01 and meshes of size 10x10
through 250x250, no complete column exists with
probability of at most 10-°. For p = 0.001, the probability
of having no complete column is no greater than 10-!6 for
all practical mesh sizes (up to several billions of PEs).
Thus the restriction is truly insignificant.

Now going back to the second phase of the algorithm, it is
fairly easy to mark each PE in the rightmost complete
column (the pivot column) as the “row pivot” PE. Then
the following three subphases comprise Phase 2:

1. Sending the value in the rightmost PE of each row
to the row pivot PE.

2. Sending the values down the pivot column while
combining them.

3. Broadcasting combined values from each row pivot
1o all row elements.

Clearly the entire algorithm takes O(n) stcps. I observe
that the algorithm could be modified to work with a pivot
row and that the existence of a complete row or column
also simplifies the semigroup algorithm. Whether or not
efficient algorithms exist with milder restrictions is open.

D. Sorting and Selection

Sorting is an important operation in itself and also forms
the basis for other data movement primitives. It is thus
important that sorting be efficient. Sorting involves more
extensive data movements com to both semigroup and
prefix computations. Thus, efficient sorting may require
stronger topological constraints on the incomplete MCC.
A condition that allows us to sort efficiently is to have at
least n/2 complete columns.

prob(any given column is complete} = (1 - p)* = ¢

prob (2 n/2 columns complete) = EM_‘(;)q"(l -~
For example with p = 0.01 and a fairly small 8x8 mesh,
four or more complete column exists with probability
exceeding 0.9999. For p = 0.001 and meshes with 100

through 100,000 PEs, no complete column exists with
probability of at most 10-9.

A possible sorting algorithm works in three phases. First,
all PEs in complete columns are marked and all row values
are transferred to marked PEs. After this O(n)-step phase,
each marked PE has one or two values. Second, sorting is
done within the rectangular mesh consisting of the
complete columns using any mesh sorting algorithm,
suitably modified to deal with up to two values per PE and
to guarantee that the number of values in each row does not
change (this isn’t as easy as it sounds). The third phase
distributes the values to PEs in each row, taking into
account the desired order (e.g., row-major or snakelike).

We have also adapted the shear-sort algorithm [SCHES89] to
run directly on an incomplete MCC [PARH93]. Shear-sort
works through alternating row and column sorts. The
original proof of shear-sort is based on the zero-one
principle and the fact that with each pair of row/column
sorts, half of the remaining “dirty” rows (containing Os and
1s) are “cleaned up” (contain only Os or 1s). Clearly, this
proof does not extend to an incomplete mesh in general.

We have shown that the number of dirty rows is reduced
from D to D/2 + 2X in each iteration, where X is the
maximum number of faults among the odd- or even-
numbered elements of a column [PARH93). Hence, for
reasonably small X, the number of dirty rows is reduced
from n to some small quantity h after several iterations.
Assuming the availability of end-around connections as in
Figure 3, sorting can be completed through the application
of hn steps of odd-even transposition along the overall
snake. With X, and thus h, small, the O(n log n) time
complexity of shear-sort is preserved.

Figure 3. An incomplete MCC with end-around links.

Selection can be done either through sorting or by adapting
existing selection algorithms for 2-D meshes to incomplete
bypass MCCs. If complete columns are identified and used
as in the case of sorting, adaptation of existing algorithms
is straightforward. Direct implementation of selection
algorithms for incomplete MCCs is now under study.

E. Data Routing

Data routing from a source PE at Row i, Column j,
abbreviated as (i, j), to a destination PE at (i’, j) can be
accomplished in a variety of ways. Two issues must be
considered: path length and path selection (routing). When
faults render a mesh incomplete, some paths become
shorter (e.g., 0 to 11 in Figure 1) while others become
longer (e.g., 2 to 5 in Figure 1). This observation, along
with a formal proof that the diameter of an incomplete
mxn mesh has a tight upper bound of m + n - 2
[PARH93], suggest that path length is not a major issue.

As for routing, I have devised several strategies that are
applicable to both packet routing and wormhole routing.
One is based on complete rows and columns, of which
many are likely to be available. At reconfiguration time,

1130

each PE will find out whether it is a member of complete
row or column (2 flags) and if not, in which direction the
closest complete row/column is located (2-bit tag). For
example, in Figure 1, PE 10 will have both of its
“complete” flags set and PE 8 will have its “nearest
complete” tag point in the direction of PE 12. Routing is
then accomplished by the following local decisions within
each PE (choice of direction is implicit):
if data is already at the destination
then remove data
else if data is in the destination row/column
then send along the row/column
else if data is in a complete row/column
then send along the row/column
else send toward nearest complete row/column
endif
endif
endif
The above algorithm, like any adaptive routing algorithm
[GAUG93], does not necessarily route data along a shortest
path. However, the worst-case path length can be proven
to be 2n — 2 which is optimal. The actual performance is
likely to be considerably better than the above upper
bound. If & is the worst-case distance to a closest complete
row/column, then routing from (i, j) to (i’, j*) takes no
more than li — i1+ |j - j1 + 28 steps.

II. REALIZING THE MODEL

In this section, I show how previously proposed separable
row/column buses, with switches inserted between all
adjacent PEs, can be used to physically realize the logical
bypass model of Section II. I then propose a novel, more
efficient, scheme for providing the needed bypass
connections with separable buses.

A. Using Separable Buses

A scparable row/column bus is a broadcast mechanism to
which all PEs in a particular row/column are connected and
which can be sectioned into several local buses through
PE-controlled switches. If a switch is inserted after each
PE, then any sectioning pattern is realizable. This is the
ideal case for my fault tolerance scheme, although sparser
switch placements are also possible.

Consider the column buses and assume that each PE can
control the two switches to its north and south. Switches
are assumed to be normally closed and failures are assumed
to be benign, so that a faulty PE leaves its switch closed
(note that this is a much less stringent requirement
compared to the requirement that a faulty PE do something
to establish the bypass paths). Finally, PE faults are
assumed 1o be detectable by neighboring PEs.

To establish vertical bypass connections going north, a
fault-free PE will open {Re switch to its south if its north
neighbor is faulty. Similarly, the north switch is opened if
the south neighbor is faulty. An obvious limitation is that
both neighbors should not be faulty at the same time, since
it is impossible for a PE to send to the north and receive
from the south on the same bus. This isn’t a serious
limitation, since a PE surrounded by two faulty PEs can be
assumed to have failed. After this, there is a vertical path
on the column bus from any PE 10 the first fault-free PE to
the north. Bypass connections in the other three directions
are established similarly.

When a mesh algorithm calls for communication with the
north neighbor, a sender whose north neighbor is faulty,
puts the data on the column bus. Similarly, a receiver
whose south neighbor is faulty, gets the requisite data from

the column bus. Since, in algorithms devised with
separable row/column buses, local links and buses are not
used simultaneously, the above scheme imposes no
performance penalty for previously proposed algorithms
except for switch set-up times which are relatively small.
Thus the performance and fault tolerance benefits of
separable buses are simultaneously realized.

One issue of concern is whether the bypass connections
realized through row/column buses can be operated at the
same speed as the local, nearest-neighbor connections
(otherwise, an additional slowdown factor will be
introduced). Unlike row/column broadcasts, which may be
slowed down by the large number of switches on any given
bus, the delay through a bypass connection depends only
on the number of switches between the source and
destination PEs (same as the grid distance between the
two). Even with highly pessimistic failure probabilities, it
is virtually impossible to have such large failure clusters as
to render the bypass delay unacceptable. Furthermore, in
the extremely unlikely event that a row/column is affected
by too many consecutive failures, the entire row/column
can be bypassed to reduce the bypass delay (this can also
have a positive effect on the performance of certain
algorithms such as shear-sort).

B. A Novel Separable Bus Scheme

The scheme proposed above is somewhat inefficient in that
it involves separate connections that are never used
simultaneously under fault-frec and fault conditions and
requires each PE to control 4 switches (2 in each
dimension). Figure 4 shows a novel architecture that
merges the separable buses with local connections, thus
reducing the number of ports per PE from 6 to 4 and the
number of switches controlled by each PE from 4 to 2.

7
£

PE

Column Bus

Sw

Row Bus

Figure 4. Proposed separable row/column buses.

When no fault is present, all switches are opened to allow
for local communications. Switches are closed selectively
to take advantage of the broadcast facility. With faults
present, a scheme similar to that discussed earlier can be
used to bypass faulty PEs horizontally or vertically. The
main point is that no speed is lost due to the shared local
and broadcast links because their usage is mutually
exclusive. Switches are normally closed and must be
opened temporarily to effect local communication. Thus, a
PE that fails in a benign mode is permanently bypassed.

A distinct advantage of this new architecture over the
previous one is that even an isolated PE, surrounded on all
sides by faulty PEs, can be effectively utilized. This is due
to the fact that each PE has two connections to the row and
column buses and can thus send and receive on the same
bus (with the switch open). A disadvantage of this scheme

1131

is that if a PE fails in such a way that one or both of its
associated switches remain disconnected, an entire PE row
and/or column may become unusable. It is possible,
however, to use fail-safe design techniques to reduce the
probability of such an event to an acceptably low level.

IV. CONCLUSION

I have presented a framework for the design of resilient
algorithms that can run on complete as well as incomplete
) MCC's and suggested two physical realizations for
the assumed model. A k:{ property of these algorithms is
that they run with virtually no overhead on a fault-free
MCC and with negligible penalty when the number of
faults is small. Thus, both efficiency and graceful
degradation are provided.
It has been shown that the use of buses has important
performance implications for MCCs. Some of these carry
over directly to my fault tolerance scheme. For example,
both Subphase 1 and Subphase 3 of the second phase of the
prefix algorithm discussed in Subsection II.C can be
performed in 1 step instead of O(n) steps if row/column
buses can be utilized. It remains to be established if
efficient fault-tolerant versions of algorithms that use the
row/column buses for performance enhancement can be
developed with this new architecture. However, one point
is clear even now: the proposed scheme provides an
architecture that can be used for high performance if there is
no fault and for fault tolerance (perhaps at lower
performance) in the presence of faults. The resulting
performance dependability tradeoffs must be quantified.

The design of switches to establish the bypass connections
is an important aspect of both of the proposed
architectures. Similar switches have been successfully used
in other architectures [MARE93]. Several alternatives are
being examined in this respect.

Acknowledgement: This research was supported in part by
the US National Science Foundation, Grant MIP-9001618.

REFERENCES

{CHEA90] Chean, M. and J.A.B. Fortes, “A Taxonomy of
Reconfiguration Techniques for Fault-Tolerant Processor
Arrays”, Computer, Vol. 23, No. 1, pp. 55-69, Jan. 1990.

[GAUG93] Gaughan, P.T. & S. Yalamanchili, “Adaptive
Routing Protocols for Hypercube Interconnection
Networks”, Computer, Vol. 26, pp. 12-23, May 1993.

[MAEB90] Macba, T., S. Tatsumi, & M. Sugaya, “Algorithms
for finding maximum and selecting median on a processor
array with separable global buses”, Electronics and Commu-
nications in Japan, Part 3, Vol. 73, No. 6, pp. 39-47, 1990.

[MARE93] Maresca, M., “Polymorphic Processor Arrays”,
IEEE Trans. Parallel and Distributed Systems, Vol. 4, No. 5,
pp. 490-506, May 1993.

[PARH93] Parhami, B. & C.Y. Hung, “Parallel Computation
on Incomplete Meshes”, Submitted for publication.

[SCHE89] Scherson, 1.D. and S. Sen, “Parallel Sorting in
Two-Dimensional VLSI Models of Computation”, IEEE
Trans. Computers, Yol. 38, No. 2, pp. 238-249, Feb. 1989.

[SERR92] Serrano, M.J. and B. Parhami, “Optimal Aspect
Ratio and Number of Separable Row/Column Buses for
Mesh-Connected Parallel Computers”, Proc. Int’l Parallel
Processing Symp., Mar. 1992, pp. 343-347.

[SERR93]} Serrano, M.J. and B. Parhami, “Optimal
Architectures and Algorithms for Mesh-Connected Parallel
Computers with Separable Global Buses”, IEEE Trans.
Parallel and Distributed Systems, \o appear.

