Generalized Signed-Digit Multiplication and Its Systolic Realizations

Ching Yu Hung and Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract — A generalized signed-digit (GSD) number system is a fixed-
radix number system, with radix r and digit set {—a,—a+1,...,8— 1,8},
where @ > 0, 8 > 0, and a+ 8+ 1 > r. The redundancy of GSD number sys-
tems allow digit-parallel addition, based on which linear-time algorithms for
multiplication are devised. Systolic and semisystolic schedules derived from
these algorithms lead to the design of one-dimensional and two-dimensional
array multipliers that have O(n) latency for n-digit operands.

INTRODUCTION

In applications requiring arithmetic operations with long operands, signed-
digit number systems offer the advantage of limited carry propagation by
exploiting the redundancy in the representation. With limited carry prop-
agation, operations can be performed in parallel for all digits of a number.
Consequently, the computation can be completed much faster in a parallel
system. Limited carry propagation also enables most-significant-digit-first
computation, which can be applied to digit sequential systems to reduce the
latency. A conventional nonredundant representation, on the other hand,
slows down the computation by requiring the carry to propagate from the
least significant to the most significant digit, which in the worst case takes
O(n) time for n-digit operands.

Signed-digit (SD) number systems and associated arithmetic algorithms
were first proposed by Avizienis [1]. Ercegovac and Lang [5] have proposed a
systematic method to design on-line arithmetic algorithms with SD represen-
tation. Addition, multiplication, division, and square-rooting algorithms have
been presented. Preparata and Vuillemin [9] discuss division algorithms and
propose systolic implementations. All these works use a symmetric digit set
for the SD number system, i.e., the digit set has the form {-a,...,0,...,a},
and the redundancy indez p, defined as the size of digit set minus the radix,
is bounded by 0 < p < r.

Recently Parhami [8] has considered a generalized signed-digit (GSD)
number system in which the digit set need not be symmetric, and the redun-
dancy index has no upper bound. GSD representations cover conventional
SD number systems as well as several other redundant representations. GSD
addition algorithms are also discussed fully in [8].

In this paper, four algorithms for carry-free and limited-carry GSD mul-
tiplication are presented. They differ in the information passed between
adjacent digit positions after each product accumulation step. The carry-free
algorithm requires a transfer digit, the estimate-transfer algorithm requires an
estimate digit then a transfer digit, and the two-phase-transfer and parallel-
transfer algorithms both require two transfer digit exchanges. The two-
phase-transfer algorithm does so serially, while the parallel-transfer algorithm
does so in parallel. To show how these algorithms can be implemented, we
present a semisystolic and a systolic schedule for each algorithm and derive
the latency. Additionally, we discuss two-dimensional and one-dimensional
array processors for carry-free multiplication.

CARRY-FREE MULTIPLICATION
The following is the carry-free algorithm:

1. z; := 0 for each j

2. For i = n — 1 downto 0 do begin

3. For j = 0 to 2n — 1 do begin

4. Ifi<j<i+n-1,then p; =2 +ziy;j_;
5. Otherwise p; := z;

6. end R

7. Find t;4; and wj s.t. p; = rtj4) +w; for each j
8. zj 1= wj +t; for each j

9. end

The algorithm accepts two n-digit GSD numbers z and y, and computes
their 2n-digit product z = zy. The structure of the algorithm is just a
standard serial-parallel multiplication augmented with transfer steps (lines 7
and 8) to absorb partial products generated in each digit positions. On line

CH 3381-1/93/$01.00 ©1993 IEEE

7, a transfer digit ¢;;1 and remainder digit w; are found based on p;. Line 8
adds the left-shifted t; to w; and produces the partial product digit z;.

We have found that this algorithm always requires a larger partial product
digit set, denoted as [~a’, '], than the input product set, [—a, f]. These
parameters are constrained by:

e ri-r2 [+ [—]
Let p = a+ 8 — r+ 1 be the redundancy index of the input digit set. Under
the normal assumption that p < r, the partial product digit set is up to twice
as large as the operand digit set. The incurred increase of one bit in logic or
computation time is not significant.

In the end a carry-free correction step is required to convert the product
digit set to the input digit set. This correction need only be performed once
for each multiplication, so it is not a significant drawback.

LIMITED-CARRY MULTIPLICATION

The transfer steps of the estimate-transfer algorithm for GSD multiplica-
tion are as follows. The rest of the algorithm is identical to the carry-free
algorithm.

7. Compute €;4;, an estimate for ¢4, for each j
7a. Knowing e;, find ¢j41 and w; s.t. p; = rtj4) + w; for each j
8. zj:=wj; +1; for each j

On line 7, an estimate ;4 for the transfer digit ¢;4, is found based on
the value of p;, where €43 € {1,2,..., E}. On line 7a, ¢; is shifted one digit
position to the left, and the actual transfer digit ¢; 41 and the remainder digit
wj is chosen so that p; = rtj}; + w;. Finally on line 8, ; is added to w; to
form z;.

The estimate e; 41 is determined by comparing p; against some thresholds
Ty < Ty < +-+ < Tgyy, and T; < p; < Ty, indicates ej4y = i. After an
estimate ej41 = k is sent out, the actual transfer digit ¢;4, must comply
with the estimate by being in a predetermined subrange [~t;,t}]. Due to
the length limitation, we cannot present detailed derivation of T;, ¢~, and tt.
Instead, some important intermediate results are shown.

On line 7, the remainder digit w; must have a range no smaller than r,
since r is the divisor. On line 8, in order for z; to fall into the digit set [—a, 8],
the range of ¢; must be no larger than a + #+1 —r = p. Therefore we have

4+t +120,

which dictates the size of each subrange of transfer digit. These subranges
must also overlap, so that proper margin is left on p; for the incoming transfer
digit. We have derived the requirement

tp i, 2+t — (e + 8+ 1)/r],

which dictates the amount of overlap between the subranges, where t7 =

[aB/(r —1)] and t} = [max(a?, #2)/(r — 1)]. By requiring that the total

range [—tl',tE] be covered by the union of all subranges, we have derived the

minimum cardinality of estimate, Enin, as
tf -t}

t++t_—p
E i = 1= E 1
min [t:’—t*'k—l] r

p—ty +tf

1.

Finally, the threshold constants for determining ;41 are chosen in the

intervals:
-y —a+tT ST <rtf_,+B-1h+1.

To ease the task of determining e;41, we would like to choose threshold
constants to be numbers that are easy to compare with. In most practical
cases where r is a power of 2, we may, for example, choose the thresholds to
be multiples of r. Doing so might incur a slight increase in E in some cases.

‘VARIATIONS ON LIMITED-CARRY MULTIPLICATION

Two-Phase-Transfer Algorithm

The two-phase-transfer algorithm uses the following transfer steps:

7. Find tj4; and wj s.t. pj =
Ta. gj := wj +¢; for each j
7b. Find uj41 and v; s.t. ¢ = ruj4q + v; for each j
8. zj := vj + u; for each j

i+1 + w; for each j

The transfer steps are basically the transfer steps of carry-free algorithm
performed twice. We have analyzed the algorithm and proven that for the
algorithm to be applicable, we must have

p(r?—1)—2r+4

pt+r—1
which is satisfied by most GSD number systems.
Parallel-Transfer Algorithm

The parallel-transfer algorithm uses the following transfer steps:

max(a,) <

»

7. Find 42, uj41 and wj 8.t. pj = rtj42 + rujq1 + w; for each j
8. zj:=wj+t;+ujfor each j

Line 7 generates two transfer digits, {;12 and uj41, carrying weights r?
and r respectively. Then, they are shifted to the left, two digit positions for
t;.+2 and one digit position for u; 1, and added to the remainder w; to obtain
partial product z;. We have shown that the partial product digit set must
be at least 2r 4 1 in size. Consequently, in almost all cases, a final correction
is required to convert the product digit set to the input digit set.

Sparse-Transfer Variation

Since both the two-phase-transfer and the parallel-transfer algorithms are
able absorb a larger partial product digit, a sparse-transfer variation has been
conceived. Instead of performing n transfer steps, only [n/m] transfer steps
are carried out. For example, in a minimally redundant signed-digit system,
i.e., p =1, using the parallel-transfer method, m can be 4 for r = 2 and 5 for
r>2.

MAPPING ALGORITHMS ONTO ARRAYS

The mapping from algorithms to array processors is well covered in [6]
and has become a standard technique. In {4], Chen constructs 18 multiplier
designs from the long multiplication algorithm. In this section, we show
some examples of how the algorithms presented in the previous sections can
be implemented.

We derive systolic and semisystolic schedules for each the four algorithms
presented. Schedules for the sparse-transfer variant of each algorithm can be
derived similarly and are thus omitted. Next, from the semisystolic schedule
for carry-free algorithm, we derive a linear array and a two-dimensional array.
Our procedure and terminology in the development of schedules and array
processors follow those of [6].

Semisystolic Schedule for Carry-Free Multiplication

The most natural schedule of the carry-free multiplication is the digit-
parallel schedule. Figure 1 shows a schedule for a four-by-four-digit multipli-
cation.

There are two kinds of nodes in Figure 1, represented by circles and
squares. Each circle performs lines 8, 4, and 7, and each square performs
lines 8, 5, and 7. The exceptions are: the top row only executes lines 4
or 5, and 7; and the bottom row only executes line 8. The arcs represent
dependencies in the algorithm. The vertical and diagonal arcs represent the
transmission of w; and ¢; values, respectively, between the operations on lines
7 and 8.

A semisystolic schedule is also specified on the figure, by equitemporal
hyperplanes, the horizontal dashed lines, and by the schedule vector §. Nodes
on the same hyperplane are computed at the same time. The schedule vector
represents the advancing of time. The interpretation of § in Figure 1 is that
the nodes in the top row of nodes are computed first, and those in the bottom
row last.

‘This schedule is called olic b the op d digits z; need
to be broadcast among p in the same row. When the number of
digits becomes large, physical dimensions of array grow accordingly, and the
communication delay might slow down the computation significantly.

From this schedul | and two-di | array processors
can be derived. The two-dimensional array, shown in Figure 2, has the same
topology as the schedule. Arcs have been added for the communication of z;
and y; values. Dots in the figure represent single clock cycle delays. The array

Y

one-di

1506

processor is pipelined for full utilization. As the z and y operand streams are
piped into the array, one multiplication operation is completed at each clock
cycle. Figure 3 shows the linear array of processors derived from the schedule
in Figure 1. The latency of both arrays, determined by the schedule, is n + 1
clock cycles for n-by-n-digit multiplications.

Systolic Schedule for Carry-Free Multiplication

For most-significant-digit-first computations, another schedule, shown in
Figure 4, can be used. In this schedule, equitemporal hyperplanes run diag-
onally through the graph. Because nodes in the same row are not computed
at the same time, operand digits z; have time to pass from one node to the
next, and consequently no broadcast of data is required. This schedule is
therefore a systolic one.

Here we omit figures for two-dimensional and one-dimensional arrays that
can be easily derived from the schedule. The latency of both arrays is 4n for
n-by-n-digit multiplications; it takes 2n + 1 clock cycles to reach the lower-
left corner node, and 2n — 1 more to reach the lower-right one. The two-
dimensional array is pipelined and able to complete one multiplication per
clock cycle. The latency, in terms of clock cycles, is about four times that
of the semisystolic arrays. However, the systolic design does not necessarily
have four times longer latency. Duration of clock cycle depends on the logic
and wiring delay between clock ticks; systolic design supports much faster
clocking because it requires only local communication.

Estimate-Transfer and Two-Phase- Transfer Multiplication

The limited-carry algorithm and its two-phase-transfer variant have the
same pattern of logical dependency; they both require two inter-digit transfers
in series. Therefore, they have the same topology in their schedules. The
logical dependency for both algorithms is shown in Figure 5.

For the estimate-transfer algorithm, the dotted circular nodes in the figure
represent lines 8, 4, and 7, the white circular nodes represent lines 8, 5, and
7, and the square nodes represent line 7a, with possible exclusions in the top
and bottom rows.

For the two-phase-transfer algorithm, the dotted circular nodes in the
figure represent lines 8, 4, and 7, the white circular nodes represent lines 8,
5, and 7, and the square nodes represent lines 7a and 7b, again with possible
exclusions in the top and bottom rows.

A semisystolic schedule is also shown in Figure 5. Equitemporal hy-
perplanes run horizontally, and reflect the digit-parallel computation. The
passing of operand digits z; requires broadcast among circular nodes in the
same row. Again, two-dimensional and one-dimensional array processors can
be derived from the schedule. The latency of both designs is 2n + 1 clock
cycles. The two-dimensional array is again pipelined and able to complete
one multiplication per clock cycle.

Next, we show a systolic schedule in Figure 6. It implies a most-significant-
digit-first computation, and is useful when broadcasting is to be avoided, or
when digit sequential computation is favored.

In the figure, equitemporal hyperplanes run diagonally through the graph,
and there is a two-unit time difference between two adjacent rows. The
latency imposed by the schedule is 6n; it takes 4n + 1 clock cycles to reach
the lower-left corner node, and 2n — 1 more to reach the lower-right one. The
latency, in terms of clock cycles, is about three times that of the semisystolic
schedule.

Parallel-Transfer Multiplication

The semisystolic schedule for the parallel-transfer algorithm is similar to
that for the carry-free (single-transfer) algorithm. With the parallel transfer
of two transfer digit, we have extra arcs connecting digits two positions away,
as shown in Figure 7. The latency of the schedule is n + 1, same as the
semisystolic schedule of carry-free algorithm.

The systolic schedule is shown in Figure 8. It requires longer latency
compared to that of the carry-free multiplication. With longer arcs carrying
the transfer digits, we have extra delay between rows; 3 clock cycles instead
of 2. Consequently, the latency is 5n clock cycles.

COMPARISON OF ALGORITHMS

To compare the algorithms, in Table 1 we list the latencies in semisystolic
and systolic schedules and the time and space required in each clock cycle.
The latter can only be estimated because there are too many parameters to
consider.

Time estimates are based on approximating each computation step in the
algorithms with the number of additions and multiplications. An addition
costs one A in space and one A in time, while one multiplication costs one M
in space and one M in time. The estimates assume that r is a power of 2, as
should be in most practical cases. In terms of space-time tradeoff, we favor
minimum time and then optimize space requirements under the minimum
time constraint.

Table 1: Comparison of algorithms

Algorithm carry-free estimate 2-phase parallel
Latency | Semisys. n+1 2n+1 2n+1 n+1
Systolic 4n 6n 6n 5n
Time /space 4 A+M/A+M A+M/A+M A+MJA+M | A+M/A+M
in each line 7 24/2A (E-1)A/A 2A/24 2A/3A
7a 24/24 AlA
b 24/24
8 Af/A A/A AlA AJA
Time/space | circle |4A+M/2A+M | (E+1)A+M/A+M | 4A+M/2A+M | 4A+ M/3A+ M
clock cycle | square 24/24 24/24 3A4/24 24/34

o The product accumulation step takes A + M in time and A+ M in
space.

Finding a transfer digit ¢;41 and a remainder w; from a position sum
p; takes 24 in time and 24 in space. First, tj4, and w; are assigned
with p; div r and p; mod r by taking the upper and lower portions of
p; (routing takes no time). Next, w; is compared against the allowed
upperbound, and adjustment is made if necessary. The comparison is
counted as one addition. The adjustment adds one to t;; and subtracts
r from wj, 8o is counted as two parallel additions.

Finding t; 42, 4j41, and w; in the parallel-transfer algorithm is assumed
to take 24 in time and 3A in space. First, the three variables are
assigned with the upper, middle, and lower portions of the number p;.
Then, u;41 and w; are compared with their upper bounds simultane-
ously, and finally adjustment is made in parallel to the three variables if
necessary. Here we assume that the range of u; has enough redundancy
to absorb the the adjustment.

Finding an estimate digit e;4; is assumed to take E — 1 sequential com-
parisons with the threshold constants T}. Since E is a small number,
this approach is usually more efficient than binary search. We need
(E — 1)A in time and A in space.

From Table 1, we observe that when E = 2, the estimate-transfer algorith-
m requires the least amount of time in a clock cycle, and thus might lead to
the design with the fastest clock. In terms of latency, the carry-free algorithm,
with either semisystolic or systolic schedule, is the best. However, there are
other considerations in design: digit set size, input/output conversion, and
communication delay. The sparse-transfer variations of the algorithms should
also be considered in search of an efficient design.

CONCLUSIONS

Algorithms for multiplying generalized signed-digit numbers have been
discussed. The first algorithm, carry-free multiplication, requires a transfer
digit between accumulation of product terms. To apply it to GSD, we have to
use a larger digit set for the partial product than for the input operand digits.
This is not a significant drawback, since a conversion step can be performed
after the multiplication to bring the product digits back to the input digit set.
Such conversions are special cases of more general schemes currently under
investigation [7].

The second algorithm, estimate-transfer algorithm, requires first a binary
estimate digit, then a transfer digit, between accumulation of product terms.
With the maximally redundant symmetric SD number system, the algorithm
requires only a binary estimate, and is therefore easiest to implement.

The third algorithm, two-phase-transfer algorithm, requires two passes of
transfer digits between product accumnulation steps. The amount of informa-
tion transferred is greater than that required by the second algorithm. This
algorithm is applicable to almost all GSD number systems.

The fourth algorithm, parallel-transfer algorithm, generates and processes
in parallel two transfer digits carrying weights r? and r. It has even larger
capacity than the third algorithm. In this algorithm, the partial product

digit set must be at least 2r + 1 in size, and thus output conversion is almost
always required.

The sparse-transfer variants of the algorithms perform several accumula-
tion steps between transfer stages. The number of transfer stages is therefore
reduced. This is particularly useful for the parallel-transfer algorithm, which
has the largest capacity in a transfer stage.

Semisystolic and systolic schedules for the algorithms were presented. The
latencies of all algorithms are O(n); the constant factors differ. The first algo-
rithm has the least latency in terms of clock cycles, while the second one leads
to the fastest clock rate if a binary estimate is used. One-dimensional and
two-dimensional arrays can be designed from both semisystolic and systolic
schedules. It is also possible to have finer pipelining in the two-dimensional
arrays to increase the clock rate.

As a suggestion for further study, detailed modeling of the multipliers,
including logic cost, communication delays, and logic delays as functions
of the digit set can be performed. With detailed modeling, the sparse-
transfer approach can be optimized for each algorithm. Additionally, we
may study application of the algorithms to division of GSD numbers and to
larger problems such as vector and matrix computations.

REFERENCES

[1] A. Avizienis. Signed-digit number representations for fast parallel
arithmetic. IRE Transactions on Electronic Computers, EC-10:389-400,
1961.

[2] P. R. Cappello and K. Steiglitz. Unifying VLSI array design with linear
transformations on space-time. Advances in Computing Research, 2:23—
65, 1984.

[3] I-Ngo Chen and R. Willoner.
bit-sequential input and output.
28(10):721-727, October 1979.

An O(n) parallel multiplier with
IEEE Transactions on Computers,

[4] M. C. Chen. The generation of a class of multipliers: Synthesizing highly
parallel algorithms in VLSI. JEEE Transactions on Computers, 37(3):329—

338, March 1988.

[5] M. D. Ercegovac and T. Lang. On-line arithmetic: A design methodology
and applications in digital signal processing. VLSI Signal Processing,
111:252-263, 1988.

[6] S. Y. Kung. VLSI Array Processors. Prentice Hall, Englewood Cliffs,
New Jersey, 1988.

[7] B. Parhami. Systolic converters for number radices and digit sets. Paper
in preparation.

[8] B. Parhami. Generalized signed-digit number systems: A unifying
framework for redundant number representations. IEEE Transactions
on Computers, 39(1):89-98, January 1990.

[9] F. P. Preparata and J. E. Vuillemin. Practical cellular dividers. IEEE
Transactions on Computers, 39(5):605-614, May 1990.

1507

limjted-carry algorithm

stolic schedule for the

p
%4
~
L’
’
/
|/

Figure 3. One-dimensional array processor from the scl

1508

