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Summary & Conclusions — Voting is important in the realiza-
tion of ultrareliable systems based on the multi-channel computa-
tion paradigm. In an earlier paper (1991 Aug) I dealt with voting
networks, viz, hardware implementation of certain veting schemes.
A voting algorithm specifies how the voting result is obtained from
the input data and can be the basis for implementing a hardware
voting network or a software voting routine. This paper presents
efficient n-way plurality and threshold voting algorithms based on
the type of voting (exact, inexact, or approval), rule for output selec-
tion (plurality or threshold) and properties of the input object space
(size & structure). Exact voting is the most common voting method
and is the easiest to implement. Inexact voting algorithms are more
complicated due to intransitivity of approximate equality. As an
example, when approximate equality a =5 for numerical inputs a
& b is defined as |a — b| < ¢, then a=b and b= ¢ do not imply
a=c. In approval voting, each input to the voting process consists
of a finite or infinite set of values that have been ‘‘approved’’ by
the corresponding computation channel and the value, or set of
values, with the highest approval voting must emerge as output.
Multiple approved values can result from non-unique answer to
a given problem or from uncertainties in the solution process. For
exact voting, the complexity of an n-way voting algorithm depends
on the structure of the input object space. Threshold voting often
requires less time & space, except when the threshold is very small.
I extend the techmiques for designing efficient exact voting
algorithms to inexact and approval voting schemes. My results show
that optimal linear-time (in n) voting algorithms are available when
the input object space is small. Next in the time-complexity hierar-
chy is the case of a totally-ordered object space that supports worst-
case order-[n-log(n)]-time algorithms for both exact and inexact
voting as well as for certain approval-voting schemes. These
algorithms are intimately related to sorting and have the same time
complexity. An unordered input object space leads to worst-case
quadratic-time exact and inexact voting algorithms, even when a
distance metric can be defined on pairs of input objects.

1. INTRODUCTION

Voting is important for ultrareliable systems that are based
on the multi-channel computation paradigm. Voting is required

whether the multiple computation channels consist of redundant
hardware units, diverse program modules executed on the same
basic hardware, identical hardware and software with diverse
data, or any other combination of hardware/program/data redun-
dancy and/or diversity. Depending on the data volume and the
frequency of voting, hardware or software voting schemes can
be appropriate. Low-level voting with high frequency requires
hardware voters whereas high-level voting on the results of fairly
complex computations can be performed in software without
serious performance degradation or overhead.

The use of voting for obtaining highly reliable data from
multiple unreliable versions was first suggested in the mid 1950s
[53]. Since then, the concept has been practically used in fault-
tolerant computer systems and has been extended & refined in
many ways, eg,

« reliability modeling of voting schemes by considering com-
pensating errors [46],

 handling of imprecise or approximate data [13],

¢ combination with standby or active redundancy [30],

» reconfigurable voting with declining replication factor upon
detected failures [31],

« voting on digital ‘‘signatures’’ obtained from computation
states to reduce the amount of information to be voted on [49],

 dynamic modification of vote weights based on a priori
reliability data [42].

More recently, generalized voting with unequal vote weights
has been suggested for maintaining the reliability & consisten-
cy of data stored with replication in distributed computer systems
[19]. This has become a very active research area.

Hardware voters described in the literature are essentially
‘‘bit-voters’’ that compute a majority function on n input bits
[23, 48]. Combined bit voting and disagreement detection has
been discussed [14]. Hardware voting on words and higher-level
data objects has traditionally been handled by using s-independent
parallel bit-voters or feeding the data sequentially through a single
unit. Such s-independent bit-voting yields results that are op-
timistic, particularly when s-correlated errors are likely. Several
algorithms and design techniques for hardware voters with ad-
justable or variable vote weights have been published [35, 37,
38], although none has been implemented. These hardware voting
schemes all deal with voting on exact values (typically bit strings
representing logical decisions or integer numerical values). Ap-
proximate or other context-dependent voting algorithms have not
been implemented in hardware.

Hardware voters used in actual systems include 3-way
voters in the:

o MIT FTMP design [21],
» Carnegie-Mellon University C.vmp system [47],
e August Systems industrial control computers [56].

The Jet Propulsion Laboratory’s STAR computer [3] used a
special 2-out-of-5 voter that was symmetrically connected to
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3 active modules and 2 standby spares for its critical Test &
Repair Processor (aerospace computers used hardware voters
even before STAR). The effect of switch complexity on reliabili-
ty and the design of low-complexity, and thus highly reliable,
switch-voters for hybrid redundancy were considered by
Siewiorek & McCluskey [44, 45]. This work was instrumental
in attracting attention to the importance of simple switch-voters
and led to several other designs including the self-purging [29]
and sift-out [16] variations of adaptive voting with vote weights
in {0,1}.

Proposed software voters are quite varied and possess a
wide range of features. The earliest software voters were used
in the design of modular multiprocessors with replicated soft-
ware. For example, the voter routine in the SRI International
SIFT design [55] is invoked by any task which requires inputs
for a new iteration. It uses tables provided by the local recon-
figuration task to determine which processors contain copies
of the required output (and in which of their buffers), reads the
data from the appropriate buffers and uses a majority rule to
obtain a single value. In the Space Shuttle 4-way software voting
scheme [49], selected data items are computationally combin-
ed to form ‘‘compare words’’ that are periodically exchanged
& compared in 4 out of the 5 on-board computers. Another ex-
ample is the ‘‘Stepwise Negotiating Voting’’ scheme of [24]
which amounts to a 2-out-of-n threshold voting strategy. The
advantages of such ‘‘relaxed’’ (non-majority) voting schemes
have been discussed by others as well [1, 41].

Researchers in software diversity have designed voters
suited for processing the results obtained by multiple versions
of a program and have contributed techniques for handling ap-
proximate results [4, 10, 25, 52]. Similar considerations apply
to voting schemes with data diversity [2]. Software voters have
also been designed in connection with the management of
replicated data in distributed systems [5, 6, 18, 19, 22, 51] to
assure database reliability and/or consistency. A common way
to achieve this goal is to assign votes to participating nodes in
the distributed system and to implement mutual exclusion by
requiring each operation agent to ‘‘collect’’ a certain number
of consenting votes. Typical issues in this area are vote
assignments to maximize reliability or to minimize average tran-
saction response time (eg, by adjusting ‘‘read’’ and ‘‘write’’
quorums). The delays resulting from synchronized voting in
real-time systems and the expected time to collect a prescribed
number of votes from distributed sites with different response
characteristics have been studied in [43, 34], respectively.

Research on voting algorithms has dealt with both im-
plementation & effectiveness of voting schemes. In algorithm
implementation, the main focus has been simple majority voting,
a special case of finding repeated elements in a set {9, 12, 20,
33]. In another line of attack [28], the notion of ‘‘approximate
voting’’, henceforth applied only to real-valued numerical
results, was generalized by demonstrating that forms of inex-
act voting can be easily applied to any metric space or, for
weighted averaging, to any real vector space. As for effec-
tiveness, [28] qualitatively compares several voting schemes
under various error conditions. The problem of selecting the
best voting scheme to maximize the probability of obtaining a

correct result has been investigated in [7, 32], with some
refinements in [8]. Voting algorithms have also been studied
from the point of view of complexity {36].

This paper deals with voting algorithms. In a companion
paper [35], I dealt with voting networks, viz, hardware im-
plementation of certain voting schemes. A voting algorithm
specifies how the voting result is obtained from the input data
and can be the basis for a voting network (hardware) or a voting
routine (software). However, since voting networks are based
on very simple algorithms and deal with equally simple input
data objects (usually logical bit strings or numeric words) in
the interest of practical realizability, the bulk of this paper relates
only to software voting.

Section 2 introduces some concepts & definitions. Section
3 deals with exact voting, covering theoretical results and ac-
tual algorithms for various types of input object spaces. Sec-
tion 4 includes similar results for inexact voting; ie, when
‘‘equality’’ of input objects is approximate and, hence, intran-
sitive. Section 5, a) introduces the notion of approval voting,
b) provides examples of where it might be useful, and ¢) presents
voting algorithms for several special cases, including those for
ordered input object spaces where approved sets of input values
are represented by lists (multisets) or intervals. Section 6
discusses results and directions for further research. All proofs
are in the appendix.

Notation

8 size of the input object space (number of different
values x; can take)
d(x;, x;) distance between x; & x; in inexact voting

i identification for an input data object, i = 1,2,...,n
n number of inputs to the voting algorithm
t minimum total votes needed in threshold voting
u; vote tally associated with input class j
v; input vote associated with x;
n

|4 E Vi

i=1
w output vote associated with y
X; input data object i
y output data object produced by the voting algorithm.

Other, standard notation is given in ‘‘Information for Readers
& Authors’’ at the rear of each issue.

2. PRELIMINARIES

Regardless of the type of input objects and the type of im-
plementation (hardware or software) that is most appropriate,
I view a voting algorithm as dealing with n input data objects
x; having associated votes/weights v; (n input data-vote pairs
{x;,v;>) and producing the output data-vote pair {y,w). The
voting algorithm can also produce a set of n *‘support bits’’ s;,
one for each input, that indicate whether a given input ‘‘sup-
ports’’ or ‘‘agrees with’’ y (the notion of ‘‘support’’ is defined
later). The input votes and output vote need not be explicitly
represented or even present at all, as shown shortly.
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I start with weighted voting for 3 reasons:

1. It is more general than simple voting and thus useful
in a wider context. Setting all the weights equal to 1 yields simple
non-weighted voting as a special case.

2. In most cases, weighted voting is not harder to imple-
ment than simple voting, especially in software-based implemen-
tations (adding an arbitrary weight to a vote tally isn’t any harder
than adding 1). When non-weighted voting is considerably
simpler than weighted voting, this is pointed out.

3. Some fixed-weight schemes are essentially adaptive over
the long run. For example, disabling faulty units or reintroduc-
ing repaired units in some n-way voting schemes can be
equivalent to changing their votes from 1 to 0 or 0 to 1,
respectively.

The four main components of a voting algorithm (input
data, output data, input votes, output vote) can be used to im-
pose a binary 4-cube classification scheme (see figure 1), leading
to 16 classes.

Nomenclature (Classification Coordinates)

» Exact/Inexact. The exact/inexact dichotomy concerns whether
input objects are viewed as having inflexible values or as
representing flexible ‘‘neighborhoods’’.
Consensus/Compromise. This paper deals primarily with con-
sensus voting. Several important ‘‘compromise’’ voting
schemes, such as median and mean voting, are not emphasized
because they are specific to certain input types and do not
apply to a general object space. I deal with such voting
schemes only where applicable.

Preset/Adaptive. The preset/adaptive dichotomy corresponds
to v; being set at design time or allowed to change. Adap-
tive voting schemes can have adjustable votes (stored in
writable memory) or variable votes (presented as inputs).
Threshold/Plurality. Threshold voting requires that w exceed
a certain preset threshold whereas plurality voting identifies
an output y with maximum support from the inputs. Both

threshold & plurality voting are covered. -

Input Output

D

a Exact/ Consensus/

H Inexact Compromise

a

v

o Preset/ Threshold/

11 Adaptive Plurality

]

Figure 1.Binary 4-Cube Classification for Voting Algorithms
[based on variations in input/output data and input/out-
put votes]

Definition 2.1 encompasses virtually all consensus voting
schemes of practical interest (exact/inexact, preset/adaptive,
threshold/plurality).

619

Definition 2.1 — Weighted Consensus Voting

Given n input data objects x;, with n associated non-
negative real votes (weights) v;, compute the output y and its
vote w such that y is ‘‘supported by’ several input data objects
with votes totalling w, where w satisfies a condition associated
with the desired threshold or plurality voting subscheme.

A. Threshold voting subschemes

Unanimity voting: w = V

Byzantine voting: w > %AV

Majority voting: w > 1%V

m-out-of-n voting (v; = 1): w = m; if m < Vin, then
y can be non-unique

t-out-of-V (generalized m-out-of-n) voting: w = ¢; if t <
14V, then y can be non-unique

B. Plurality voting subscheme

No other y’ is supported by inputs having more votes; if
w < %V, then y can be non-unique.

Nomenclature

o Supported by. This term can be defined in several ways,
leading to different voting schemes, each of which has the
subschemes A & B.

i. Exact voting: an input object x; supports y iff x; = y.

ii. Inexact voting: approximate inequality (=) is defined

in some suitable way (eg, by providing a comparison

threshold e for numerical values or, more generally,

a distance measure d in a metric space) and x; sup-
ports y iff x; = y.

iii. Approval voting: y must be a member of the approv-

ed set of values that x; defines. (More on this in sec-

tion 5). -

The Byzantine voting scheme in definition 2.1 is a
generalized form of the unweighted version used in distributed
computing [17] where n autonomous n-way voting nodes/sites
must arrive at consistent conclusions in the presence of fewer
than Ysn faulty nodes; Byzantine faulty nodes might try to con-
fuse other nodes by presenting inconsistent values to them. In
this generalized form, less than !4 of votes/weights can be
associated with faulty nodes.

Figure 2 shows a classification of input object spaces
associated with voting algorithms. The input objects to be voted
upon can be atomic or composite. Composite objects, consisting
of structured collections of atomic objects, have not received
due attention in previous works on voting. The only examples
of composite inputs dealt with in this paper are sets that are
represented as lists or intervals; other structures can be envisag-
ed as well. Assuming atomic objects, the input object space can
be small or large.

 Small object spaces: Further classification is unimportant, as
they support very efficient voting algorithms.
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+ Large metric object spaces: The ability to define a distance
metric, and as an important special case, if the objects can
be ordered, improves the voting efficiency (definition 4.1.1
of distance is slightly more general than that of metric spaces).

» Large unordered object spaces: Voting algorithms tend to be
less complex if the notion of support (see definition 2.1) is
transitive’.

Input Object Space
AtomicOb;{ me Objects
Small Space Large Space
Metric Space/ }eral Space
Totlally Trarﬁ brans;:ive
Ordered "Support” "Support”

Figure 2.Classification of Voting Schemes
[based on the size & structure of the input object space)

Sections 3 - 5 discuss voting algorithms (based on defini-
tion 2.1) in relation to the classification of input object spaces
shown in figure 2. We need the following notation in discuss-
ing asymptotic-time and space-complexities of voting
algorithms.

Definition 2.2 — Complexity bounds

Asymptotic behavior of functions (eg, time & space
bounds) are specified/compared as follows:

f(n) = O(g(n)) iff there exist constants ¢; & n; such that
f(n) < ¢;-g(n) forall n = n,.

f(n) = Q(g(n)) iff there exist constants ¢; & n, such that
f(n) = c;-g(n) for all n = n,.

f(n) = 6(g(n}) ifff(n) = O(g(n)) and f(n) = Q(g(n));
ie, c;-g(n) < f(n) < c,-g(n) for large n.

In other words, O(g(n)), 2(g(n)), ©(g(n)) convey upper,

lower, exact bounds, respectively, for the growth rate of f(n). <

3. ALGORITHMS FOR EXACT VOTING

Although exact voting has been studied & used extensive-
ly, no general discussion of exact-voting algorithms appears in

(X supports Y) AND (Y supports Z) implies (X supports Z).

IEEE TRANSACTIONS ON RELIABILITY, VOL. 43, NO. 4, 1994 DECEMBER

the literature. The reason is that exact non-weighted n-way
voting for bits or numerical data with n=3 or n=5 is quite sim-
ple. But for larger n or for composite data types, the situation
changes. The discussion of algorithms is divided according to
the size & structure of the input object space.

Assumption (section 3 only)

1. Equality is transitive since we are dealing with exact
comparisons.

3.1 Small Object Space

For a small object space, an efficient linear-time voting
algorithm can be devised.

Let the set of possible values or classes of objects be encoded
by integers {1, 2, 3, ..., 8}. The algorithm consists of tallying
the votes for each of the & possible values/classes and then selec-
ting the appropriate output.

Algorithm 3.1.1: Exact Voting — Small Object Space

Notation
u; vote-holder for object class i, i=1,2,...,8.
for i = 1 to 6 do u;:= 0 endfor

for i = 1 to n do j:=class(x;);
uj:=u; + v; endfor
(y, w):=select(u) -

For all varieties of voting covered by definition 2.1, the
selection function for output (last step) can be computed in time
0(6). Therefore, the execution time of algorithm 3.1.1 is
O(n+9).

Algorithm 3.1.1 can be easily implemented in hardware.
Direct implementation for bit-voting (6=2) is depicted in figure
3. With bit voting, both hardware & software implementations
can be simplified by tallying the vote for only 1 of the 2 values.
With this simplification, the design of figure 3 becomes the
arithmetic-based design technique for bit-voting networks [35].
Despite its seemingly low O(n-8) complexity and O(log(n))
delay, hardware implementation of this algorithm is practical
only for very small é (perhaps only for bit-voting). The soft-
ware version, however, remains attractive for larger 6, as long
as the O(6) working space is acceptable. The obvious £2(n) time
lower bound for n-way voting leads to theorem 3.1.2.

Theorem 3.1.2. Algorithm 3.1.1 is an optimal n-way voting
scheme for 6=0(n). -

3.2 Totally Ordered Object Space

With a large object space (eg, 32-bit integers), algorithm
3.1.1 is inapplicable. This section shows that if the input ob-
ject space is totally ordered, then algorithm 3.2.1 (based on sor-
ting) is optimal.
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x Demultiplexers

v 1 0-adder
X2
23 1-adder
X3

V3

X4

V4

Xs

Vs

I<

Select [

Figure 3. Hardware Realization of 5-Way Weighted Bit-Voting
[The triangular demultiplexers use the x; data bits
as control or selection signals and have widths equal
to the number of bits in the binary representations
of the v;. Each circular adder attaches its carry-out
signal to its output, which is then fed to a wider
higher-level adder. If each of the n input votes can
be as large as vy, then w has gilb(log, (n-Va)) + 1
bits.]

Algorithm 3.2.1: Exact Plurality Voting — Totally Ordered Ob-
ject Space

Sort (ascending order) in place the set of records (x;, v;) with
x; as key. Use the end-marker (x4, vo41) = (o0, 0).

VISZI=X U =wi=
fori = 2ton+1do

while x; = zdo w:=u + v;; i:=i + 1 endwhile

if u > w then w: =u; y: =z endif

=X ui =y,
endfor {next i} -
This algorithm can be easily modified for other voting schemes.
For example, majority voting requires appending, at the end,
the statement:
if w < %V then w:=0 (no-quorum indicator).

Weighted median voting is performed as follows.

Algorithm 3.2.2: Weighted Median Voting — Totally Ordered
Object Space

Sort (ascending order) in place the set of records (x;, v;) with
x; as key.

u:=vy; ii=1
while u < %V doit=i + 1; u:=u + v; endwhile

yi=x -
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Since sorting is asymptotically an Q (n-log(n) ) operation
(it takes quadratic time for small values of n that are of prac-
tical interest in voting), with highly reliable computation chan-
nels it is quite advantageous to add the following test to the
beginning of all algorithms in section 3:
ifx; =x = ... =x,then (y, w) = (x;, V) stop endif
For example, if each computation channel produces a cor-
rect result with probability 0.999 and we use 5-way non-
weighted voting to obtain a result with even higher reliability,
then the effect of this additional voting test is to make: a) the
running time of the algorithm linear in at least 99.5 percent of
the cases, and b) the average running time almost linear. It might
even be worthwhile to handle the case of a single disagreeing
input (the next most likely case) separately also before resor-
ting to the general algorithm. These special tests increase the
code length but improve the performance appreciably.
Hardware implementation of algorithm 3.2.1 or its variants
can also be contemplated. The straightforward hardware design
consists of a sorting network followed by a combining and a
max-selection network. The cells in a sorting network can be
modified to convert it into a vote-tallier [35] that requires very
little additional hardware to become a voting network.
Theorem 3.2.3 shows that algorithm 3.2.1 is optimal in
the sense that voting with a large object space has @ (n-log(n))
complexity.

Theorem 3.2.3. The complexity of n-way plurality voting as
specified in definition 2.1 with large object space is
Q(n-log(n)). -
3.3 Unordered Object Space

Algorithm 3.3.1 for plurality voting runs in O (n?) time.
Algorithm 3.3.1: Exact Plurality Voting — Unordered Object
Space
Notation

g distinct input j encountered

u; vote tally for z;.

ki=1; yi=z;:=x; wi=u;:=v,

fori = 2tondo
if there exists j<k such that x; = z;
then u;:=u; + v;
else ki=k + 1; zi:=x; w:=v;
endif

endfor

fori = 1tokdo
if u; > w then y: =z; w: =u; endif

endfor <
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The O(n?) worst-case time complexity of this algorithm
results from the (n—1)-iteration loop and the O(n) linear search
required in each iteration. The average performance is again
almost linear because k remains 1 with very high probability.
Because of excellent average-case performance, there is no need
to resort to more efficient search schemes (such as those based
on hashing) to find j inside the for loop.

Intuitively, in an unordered space, the equality of two ob-
jects can be established only by direct comparison (the tran-
sitivity feature of equality is of no help in the worst case where
all objects happen to belong to distinct equivalence classes).
Thus in the worst case, a) Y2n- (n—1) comparisons are need-
ed, and b) the last comparison might provide the only non-
singleton equivalence class of size 2. Thus, working storage
for n—1 objects and their associated vote tallies is needed.
Theorem 3.3.2 formalizes these intuitive notions.

Theorem 3.3.2. With an unordered input object space, n-way
plurality voting has time complexity Q(n?). <

One can devise simpler threshold voting algorithms in this
case. Consensus voting clearly has linear complexity. Less ob-
vious is theorem 3.3.3.

Theorem 3.3.3. Let p=gilb(V/r). With an unordered input
space, r-out-of-V voting can be performed with time complexi-
ty O(n-p) and space complexity O(p). -«

Theorem 3.3.3 is a generalization of a published result for
m-out-of-n voting [12], although my proof appears to be simpler
as well as more general.

Corollary 3.3.4. Weighted majority voting (z-out-of-V, with
t > V) can be performed in O(n) time using working storage
for a single object. «

Corollary 3.3.5. Unweighted m-out-of-n voting can be perform-
ed in O(n?/m) time. Unweighted majority, (gilb(Yzn) +1)-
out-of-n, voting can be performed in O (n) time using working
storage for a single object. -«

Example 3.3.6

Consider 6-way, 8-out-of-15 voting with the vote weights
4,3, 3,2,2, 1. Take an instance of the voting problem with
inputs (A, 3), (B, 2), (B, 2), (A, 1), (C, 3), (A, 4) in presenta-
tion (input) order. A single working storage slot (z;, u;) is re-
quired that will successively hold the values (4, 3), (4, 1),
(B, 1), (-,-), (C, 3), (A, 1) as we proceed through the steps
of the algorithm in the proof of theorem 3.3.3. Therefore, A
is a candidate value for the voting result and a second pass
through the input yields its actual vote tally of 8 for comparison
with the threshold of 8. <

4. ALGORITHMS FOR INEXACT VOTING

Algorithms for inexact voting are generally more complex
than their exact-voting counterparts, primarily due to the non-
transitivity of approximate equality. Although the notion of
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approximate or inexact voting and its applications have been
discussed in the literature, only one published inexact voting
algorithm is known to me [28] and that algorithm happens to
be incorrect (more on this in section 4.1). Inexact voting with
a small object space, though theoretically possible, is
impractical.

Assumption (section 4 only)

2. The object space is large.

4.1 General Weighted Inexact Voting

Notation

X input object space

R set of real numbers

€ a suitably small comparison threshold.

Dealing with approximate equality requires defining a real-
valued distance function d: X> — R on pairs of objects in the
input object space. Then two objects, x; & x;, are approximate-
ly equal if d(x;, x;) < e. Definition 4.1.1 captures some pro-
perties of d consistent with the intuitive notion of approximate
equality.

Definition 4.1.1.

The function d: X? — R is a distance function for the ob-
Ject space X iff for all x;, x; € X:

1. d(x,‘, x]‘) =0
2. d(x,-, x]) = 0 iff X = Xj
3. d(x,-, x]) = d(x]', x,‘). -

Excluded from definition 4.1.1 is the triangle inequality,
d(x;, x) = d(x;, x;) + d(x;, x;), which would make (X, d)
a metric space. This is done because the triangle restriction
would not simplify the voting algorithm while it needlessly
eliminates some potentially useful definitions of distance.

Example 4.1.2

Let our objects be pairs of integers (i, j) denoting points
on a 2-dimensional grid. Let,

d( (i, j1), (i, j2)) = min(|i; =], |j;—j2]) with e=0.

Accordingly, two objects are considered approximately equal
iff they have matching i or j coordinates. Then, sets of approx-
imately equal objects contain points that are horizontally or ver-
tically aligned. -

While distance functions such as the one in example 4.1.2
might not seem particularly useful for common applications,
there is no compelling reason to exclude them (by restricting
the discussion to metric spaces) when the exclusion does not
lead to simpler algorithms.
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Given input objects x; with associated votes v;,
i=1,2,...,n and the distance function d: X* — R satisfying
definition 4.1.1, algorithm 4.1.3 can be used for inexact voting.

Algorithm 4.1.3: Weighted Inexact Voting

1. Determine a maximal-vote subset S of the set of n input
objects such that for all x;, x; € S, d(x;, x;) < e (this subset
can be non-unique).

2. In general, S can contain identical elements; viz, ob-
jects x; & x; with d(x;, x;) = 0. Combine the votes for iden-
tical objects in S, getting the set S’ = {z, z, ..., z,} of
distinct objects and associated vote tallies uy, u,, ..., u,,, with
m < nand d(z;, ;) > 0.

m
3. y:=select(z, u); w:= E u;. -
i=1
Algorithm 4.1.3 is at a high level, and each step must be
further clarified & analyzed with respect to complexity. Step
1 requires O(n?) time and can be carried out using well-
known procedures for minimizing the number of states in an
incompletely specified sequential machine [27].

Brief Overview of a Procedure for Step 1

An (n—1)x(n—1) triangular table is constructed in
which entry (i, j) indicates the compatibility (approximate
equality) of x; & x; Compatibility classes of size 2 are read
directly from the table. Larger compatibility classes are built
in a stepwise fashion by adding, to an existing class, a new ob-
ject which is compatible with every member of that class. As
illustrated by the example of figure 4, the maximal compatibility
classes thus obtained form a cover on the set of objects (and
not a partition as asserted in [28: section 2.1]).

Maximal
Compatible
Class wgim

"Median*®

Figure 4. Maximal Compatible Subsets in Inexact Voting and
the Generalized Median Selection Rule

It is also possible to define the computation in step 1 (of
algorithm 4.1.3) recursively.

Notation

S cluster({x;, x,, ..., x,}): the computed function in
step 1

M {z1, 22, ..., }: any set of objects.
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Given M, let z;, z; € M be a pair of objects that are furthest
apart. Then,

cluster(M) =

{M, ifd(z, zj) < ¢

max[cluster(M — {z;}), cluster(M — {z;})], otherwise.

The resulting implementation is fairly efficient because in prac-
tice recursion stops after 0 or 1 level with very high probability.

Step 2 of algorithm 4.1.3 is simple and can be merged with
step 1 (reducing the compatibility table by combining objects
pairs having O distance).

The selection function in step 3 can be specified in dif-
ferent ways depending on the structure of the input object space.
A general selection rule would be to a pick an object z; having
maximal vote (plurality voting). For a metric space, generaliz-
ed median? voting can be used as suggested in [28]. Figure 4
shows an example of finding a generalized median within a max-
imal compatible class. For numerical values, the mean selec-
tion rule can also be applied. In all the above cases (plurality,
generalized median, mean), the worst-case complexity of step
3 is O(n), resulting in overall O(n?) complexity for algorithm
4.1.3. Whether one of the objects z; is picked as the output,
or a compromise object is constructed based on the set S, the
output vote w is the sum of the votes for the entire subset S.

There are also situations in which the complexity of the
final selection dominates that of the rest of the algorithm. A
good example is voting on strings with d defined as the edit
distance® between two strings, and the voting result defined as
a string for which the weighted sum of distances from z;, z;,
..., Zy, is minimal. Since in the worst case m = n, any selec-
tion rule that would require a search in the large input space
for a value that optimizes an objective function would dominate
the algorithm’s time complexity. In such cases, the time com-
plexity of the algorithm is Q(n?).

Example 4.1.4

Consider the following object-vote pairs (x; € R, v; € N)
as inputs to an inexact 8-out-of-13 voting algorithm with the
comparison threshold of 0.02; d(x;, x;) = |x; — x;].

i Objects (x;) Votes (v;)

1 1.300
2 1.310
3 1.330
4 1.340
5 1.350

_— B W N

?Recursively removing an object pair with the largest distance until
only a single object or two objects are left, then picking one at will.
*The minimal number of symbol insertions, deletions, or substitutions
that would convert one string into the other.
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The compatible pairs are: (x;, x), (X3, X3), (x3, X4), (%3, X5),
(x4, x5). The maximal-compatible cover is thus (x;, x5) (x,,
x3) (x3, x4, x5) with class vote tallies being 5, 7, 8, respective-
ly. Thus w = 8. As for y, the maximal-vote selection rule yields
1.330 while the weighted median and weighted mean rules result
in 1.340 and 1.336, respectively. <

Clearly, distances between all object pairs must be obtained in
any algorithm for inexact voting. This leads to theorem 4.1.5
that establishes the optimality of algorithm 4.1.3.

Theorem 4.1.5. The time complexity of weighted inexact voting
with a general object space is Q(n?). -

4.2 Totally Ordered Object Space

In the special case of a totally ordered object space, a
simpler inexact voting algorithm can be devised based on sort-
ing. The notion of a totally ordered object space for inexact
voting is formalized in definition 4.2.1.

Definition 4.2.1. An object space X is totally ordered with
respect to the distance metric d if for any 3 distinct objects x;,
X, X € X, d(x;, %) = |d(x;, x) + d(x;, x)]. -

Definition 4.2.1 establishes a total order as follows. Pick 2
distinct elements x;, x, and order them arbitrarily; say x;
precedes x;, denoted by x; — x;. Given an element x;, it can
be ordered relative to x; & x; by the rules:

X = x; — x iff d(x;, xp) [d(x, x) — d(x;, x)]

x; — X — x, iff d(x;, x;)

j d(x, x) + d(x;, x)

xX; = x — x; iff d(x;, ) = d(x;, x;) — d(xj, xp).

Continued application of these rules will order all elements in
X. Assuming that the relative order of any two objects can be
determined by simply comparing the object pair, then any fast
sorting algorithm can be used to obtain a worst-case
O(n-log(n))-time inexact voting algorithm.

Algorithm 4.2.2: Inexact Plurality Voting — Totally Ordered
Object Space

Sort in place the set of records (x;, v;) with x; as key; use
special end-marker (oo, 0)

ir=jr=1; ur=w:=0

while j < n do

while d(x;, x;) < e dou:=u + v; j:=j+1 endwhile
if u > wthen w:=u; first: =i; last:=j — 1 endif
w=u — vy i:=i+1

endwhile

y: =select(first, last) /* the vote w has already been computed
*/ -

The selection function here takes the indices of 2 elements
in the sorted list and returns a value selected from xgpg tO Xjag
or computed from all elements in that interval. The complexity
of algorithm 4.2.2 is dominated by the O(n-log(n))-time sor-
ting phase, as the rest runs in linear time. Since inexact voting
is at least as hard as exact voting, corollary 4.2.3 to theorem
3.2.3 establishes the optimality of algorithm 4.2.2.

Corollary 4.2.3. The time complexity of n-way inexact plurality
voting as specified in definition 2.1 is Q(n-log(n)). -«

Again, as was the case for exact voting, a simple initial test,
establishing if the distance between the end (minimal and max-
imal) objects is no more than ¢, can produce almost linear
average-case running time for the algorithm.

Here, also, a recursive formulation is possible. Instead of
sorting, we recursively remove from the set under considera-
tion, the smallest or the largest element. Thus we want to
compute:

S = cluster({x|, x;, ..., x,}),
cluster(M) =

M, if max(M) — min(M) < ¢
larger of[M — {max(M)}, M — {min(M)}], otherwise.

The advantage of this method is that it achieves average-case
linear running time in most practical situations.

Example 4.2.4

Consider the inputs of example 4.1.4, which are already
in sorted order, the same distance function d(x;, x;) = |x; —
x;|, and the same comparison threshold of ¢ = 0.02. In per-
forming inexact voting by means of algorithm 4.2.2, the
variables involved assume the following values after each itera-
tion of the outer while-loop:

Iteration i j u w first last
0 1 1 0 0 — —
1 2 3 3 5 1 2
2 3 4 4 7 2 3
3 4 6 4 8 3 5

Therefore, the output y must be computed based on the set {x;,
X4, x5} of inputs; the output vote is w = 8.

5. ALGORITHMS FOR APPROVAL VOTING

In ordinary socio-political context, approval voting is an
election process whereby each participant votes for a subset of
candidates who meet that participant’s criteria for the position
rather than picking just the one “‘best’’ person. The candidate
with the highest approval vote tally wins the election. Some
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restrictions might apply to the subset that each voter can ap-
prove (eg, there is a maximum size). Such details, as well as
certain disadvantages of approval voting, are not relevant to this
discussion. An important advantage of approval voting (and rele-
vant to dependable computing) is that a lesser qualified can-
didate does not get the highest vote because of vote-splitting
among several better, but almost equally qualified, candidates.
In this paper, approval voting means that each input to the voting
consists of a set (finite or infinite) of approved values. Multi-
ple approved values can result from: a) non-unique answer to
a given problem, or b) uncertainties in the solution process.
Either way, the set of values with the highest approval vote
emerges as output.

Example of Useful Approval Voting

A process-control requires the periodic determination of
a safe setting for a particular system variable. In general, there
might be more than one safe setting or a range of safe values.
If multiple redundant versions of the control program present
their sets of ‘‘approved’ values in a suitable format, an
approval-voting routine can pick the required setting based on
these values. -

5.1 Small Object Space

Let the input object space be of size §; let the set of possi-
ble values or classes of objects be encoded by integers {1, 2,
..., 0}. Since § is small, the approval-set i can be represented
by the bit vector x; with components x; ; (x;; = 1 means that
input i approves the value/class j). Then the algorithm consists
of tallying the votes for each of the § possible values/classes
and then selecting the appropriate output.

Algorithm 5.1.1: Approval Voting — Small Object Space
u; (1 = i < §) holds the vote tally for object class i
for i = 1 to 6 do u;; =0 endfor

fori = 1tondo

forj = 1to 8 doif x;; = 1 then uyr=u; + v; endfor
endfor

(y, w):=select(u) -«

The pair of nested loops in algorithm 5.1.1 involves n & & itera-
tions, respectively. For all varieties of voting covered by defini-
tion 2.1, the selection function for output (last step) can be com-
puted in time O(8). Therefore, the execution time of algorithm
5.1.1 is O(n-6).

A slightly modified version of the circuit in figure 3 can
be used for hardware implementation of this algorithm if: a)
the bits x; ; are applied serially to the x; inputs, and b) pipelin-
ing is used. It is fairly easy to show the optimality of this
algorithm via:
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Theorem 5.1.2. Algorithm 5.1.1 is an optimal n-way approval
voting scheme. <

5.2 Totally Ordered Object Space

Just as for exact voting, a large object space renders the
approach in section 5.1 impractical. The set of approved values
associated with each input can be represented in various ways.
When all approval sets are relatively small, they can be
represented by lists. In this case, let the approval lists be sorted
in ascending order and terminate each list by the special marker
‘“00”’, This marker makes each set nonempty, facilitates the ter-
mination check, and obviates the need for special handling of
empty sets at input & output. For large approval sets, This paper
considers only interval representation; ie, all values from some
lower bound /; to an upper bound A; are approved; denote this
approval interval by [/;, h;].

Algorithm 5.2.1: Approval Voting — List Representation

Initialize the working list N of value-vote pairs to §;
S:={1, 2, ..., n}; zz=-00

while z # o do
Read the next element of L; into z; for all i € S

z:=min(zy, 22, .., 2,).

S:={jlz =z} u = E Vi
ies
Append the value-vote pair (z, u) to the working list V.

endwhile
Compute the output list M: =select(N). -

Example 5.2.2
Consider the approval lists:

Ll =
L,
Ly = (3,4, 5, o).

(1, 2,3, 4, @),

(2,3, 4,5, ),

Just before executing the final selection step of algorithm 5.2.1,
N is:

(1, 1), 2,2), 3, 3), 4, 3), 5, 2), (=, 3)).

Depending on the selection rule applied, the output list M is:
Unanimity/Consensus (3, 4, o)

Majority 2,3,4,5, o)
Compilation

(19 25 3’ 4) 5’ m)

Plurality (3, 4, x), 3)
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Compilation is useful to obtain all possible safety risks (eg, pairs
of aircraft that are dangerously close to each other, or radar
targets that are judged to be hostile, even though only one of
the n computation channels *‘thinks’* so) for subsequent in-depth
analysis. For larger values of n, other schemes such as 2/3 ma-
Jority and second opinions (values approved by at least two in-
puts) can be considered.

Notation

n number of input lists

q number of distinct elements in the n input lists
k size of the longest input list.

The complexity of algorithm 5.2.1 is O(n-q), because an
O(n)-time search for the minimal element is needed g times.
Since it is possible that no two lists contain common elements,
g can be as large as n-k; the worst-case running time is
O(n?-k). Like all other voting algorithms, this worst-case per-
formance is almost never encountered in practice.

Even though algorithm 5.2.1 is most likely to be implemented
in software, hardware realization is possible. One can envision
n fixed-size dedicated queues, each associated with one of the
n computation channels. The elements at the queue heads are
the z; (i = 1, 2, ..., n). In each step, the smallest of these
values is removed from the queues, a decision is made whether
to output this value, and the process is repeated until all the
head elements are ‘‘o0”’,

Algorithm 5.2.3: Approval Voting — Interval Representation

Sort the 2n values, [; & h; into ascending order to obtain
the list N.

Form the 2n-element list V such that;

v [ if N, = [
v, it N; = b,

(this is done by initializing V appropriately and exchanging its
elements in tandem with the exchanges required to sort N).

Initialize I, h, u, w to 0.
fori = 1to 2n do

while ( < 2n)and (V; 2 O)dou —u + Vi — i+
1 endwhile

ifu >wthenw — u; [ — N;,_;; h — N; endif

while (i < 2n) and (V, <= 0)dow — w + Visi—i
+ 1 endwhile

endfor
Output /, h, w. -
The complexity of algorithm 5.2.3 is dominated by the initial

sorting since the remainder of the algorithm needs O(n) time.
Thus the complexity is O(n-log(n)) overall.

Algorithm 5.2.3 selects the lowest subinterval in the case
of tie votes for several subintervals. The selection rule can be
modified with knowledge about the object space. For example,
with intervals on the real line, it is reasonable to assume that
for tie votes, the widest interval is to be selected since it
represents a wider range of approved values. This is easily done
by modifying the condition for the if-statement to:
u>wor[w=w)and (N, - N._, > h — )]

Example 5.2.4

Consider the intervals:
(h, b1), (b, b)), (B, B), (U, hy)
on the real line as depicted in figure 5. Let,
vi=3,v=2,vy=2 v =1
The lists N & V (after sorting) are:
N = (b, L, Uy, b, he, b3, by, By)
V=2@321,2-1,-2 -3 -2).

The output of algorithm 5.2.3 is then,

indicating that subinterval (/,, h4) has obtained all 8 votes
(unanimous approval).

1 1 h 1
1 =]
h hy
— 1
B hy
1 J
I hy
—

Figure 5. Approval Voting With Intervals On the Real Line

The two while-loops in algorithm 5.2.3 increase the efficiency
of the algorithm by avoiding the additional work in the state-
ment between them, in a great majority of cases. For example,
with the 4 intervals of example 5.2.4, step 4 of the algorithm
is executed only once. If efficiency were of no concern, a
somewhat simpler algorithm could be used.

Theorem 5.2.5 establishes an interesting relationship be-
tween inexact and approval voting.

Theorem 5.2.5. With the real line as the input space, approx-
imate voting with values x|, x;, ..., x, and comparison
threshold e is equivalent to approval voting with the input in-
tervals [x; — Ye, x; + Yel,i =1, 2, ..., n. «
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Example 5.2.6

Figure 6 depicts the intervals corresponding to the
approval-voting formulation of an inexact plurality voting prob-
lem with:

X = 53, X = 54, X3 = 52, X4 = 56, X5 = 54,

assuming the error threshold of e = 0.1 in establishing approx-
imate equality.

5.0 5.2 5.4 5.6 5.8
d L i L L 1 Il 1 3
L) ) 1) 1 L ] Ll 1 ]
i x
X2
X3
| 2
| *
0 1 2 3 2 1 0
Figure 6. Approval-Voting Formulation Of an Inexact

Voting-Problem

6. IMPLEMENTATION & EXTENSIONS

The algorithms for exact, inexact, and approval voting have
demonstrated that the complexity of voting algorithms depends
on the structure of the input object space. The algorithms were
presented in an abstract form, with little attention to the effi-
ciency of data structures & operations. Many application-
dependent factors affect the hardware or software implementa-
tion details for such algorithms. However, tools & techniques
to facilitate such implementations do exist. When the input ob-
ject space is small, techniques for multiple-operand addition and
parallel counting (well-studied problems in computer arithmetic
[54]) can be used for hardware realization of the voting
algorithms. For an ordered input object space, one can choose
from an extensive library of sorting algorithms and networks
to realize the most time-consuming phase of the algorithms. In
other cases, particularly for the new approval voting schemes,
more effort is needed to develop efficient designs.

Techniques for making the algorithms faster on the average
were presented. While reducing the average-case complexity
of voting algorithms can be quite important in many contexts,
it might be unimportant in real-time applications with hard
deadlines. However, even then, lower average-case running
times can be used to advantage in a multiprocessing environ-
ment if it can be shown that the probability of missing a deadline
due to excessive voting delays is comparable to the contribu-
tion of other sources of failures such as resource exhaustion
or imperfect coverage [40]. Exploring the suitability of various
voting strategies and their effects on tradeoffs between the cor-
rectness and timeliness of computation results remains a fruit-
ful area of research.
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Analyses, in this paper, for the complexity of the voting
algorithms have been asymptotic and worst-case. Since in prac-
tice the number of input data objects that participate in voting
is small, more detailed analyses are needed for comparing &
selecting algorithms. Such analyses and associated algorithm
selection guidelines remain to be developed. There are situa-
tions, however, when voting with a fairly large number of in-
puts is actually needed. For example:

« In image-processing filters where during each pass, pixel
values can be replaced by values determined from voting on
a predefined neighborhood of nearby points [11].

« In distributed fault diagnosis where voting might be used to
determine the signature of a fault-free processor from the self-
diagnosis signatures of participating processors [50].

APPENDIX

A.1 Proof of Theorem 3.2.3

Any voting algorithm is based on comparison & combin-
ing: comparing two input objects and combining their votes if
equal. The proof is in 2 parts:

1. Any voting algorithm must tally the votes for all distinct
input values.
2. The complexity of vote-tallying is (rn-log(n)).

Part 1 is easy to prove. If the vote for a particular value
is not tallied, we can change the vote weights such that this par-
ticular value has the maximum total vote. But changing the votes
does not change the decision structure of the voting algorithm
and the instances of vote combining. Thus, incorrect output is
produced if the original algorithm did not tally all the votes.

Part 2 uses a decision-tree argument similar to the one us-
ed for establishing a lower-bound for sorting. The number L(n)
of leaves in this binary decision tree is equal to the number of
ways combining can occur. This is equal to the number of dif-
ferent partitions of a set of n elements into nonempty disjoint
subsets. The number of partitions with m classes is S{m) (Stirl-
ing number of the second kind [26]). Hence:

L(n) = zn: Sim,

m=1

(A-D)

Using the Szekeres-Binet approximation to (A-1) [15], for large
n:

L(n) = (8 + )™[1 — B/(12n)]
-expln- (B—1 + 1B) — 1]

B is defined by 3-exp(8) = n.

For large n,

B = log(n) — log(log(n)) = O(log(n)),
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L(n) = (log(n)) " -exp(n-log(n)).

The minimum number of levels in the decision tree, and thus
the number of compare-combine operations in the worst case,
is at least logy(L(n)) = n-log(n). Q.E.D.

A.2 Proof of Theorem 3.3.2

Consider instances of the weighted plurality voting prob-
lem for which:

« input weights satisfy v, < v, < ... < v,

* the n input objects belong to n—1 or n equivalence classes
(ie, all are distinct except possibly for x, & x, that are equal),

*vi+ v, > w, foralli, j, k.

Clearly, for these instances, the algorithm cannot produce a
guaranteed correct output if it has not established whether the
number of input equivalence classes is n—1 or n (the correct
output is x, if x, = x, and is x, otherwise). To determine if
X, = X, the inputs x, & x, must be compared directly; all other
comparisons reveal only inequality of values and provide no
basis for judging whether x, = x,. Since the algorithm has no
way of knowing in advance which two inputs are equal, it might
in fact sequence its operations such that x, & x, are compared
after all other comparisons. Hence the need for Q(n?) worst-
case comparisons.

To complete the proof for the weighted case, comparing
all possible pairs of objects, requires 2(n) working storage.

The proof for unweighted plurality voting is similar but
slightly more involved. Q.E.D.

A.3 Proof of Theorem 3.3.3

The algorithm needs working storage space or ““slots”” for
p = gilb(V/t) different objects z;, z5, ..., z,, each with an
associated vote tally w; (the u; are initialized to O, thus
designating all p slots as empty). The next object x; to be con-
sidered is compared to all the stored z;. If x; = z; for some j,
then u; is incremented by v;. If x; is not equal to any z; and
fewer than p objects have been stored in the p slots, then (x;,
v;) is stored in an available slot. If all of the p slots are oc-
cupied, then the minimum vote tally u, for the stored objects
is found. If v; < u, then x; is discarded, and all stored vote
tallies are decremented by v;; otherwise all vote tallies are
decremented by u; and (x;, v;—u;) replaces one of the objects
which is left with 0 vote tally.

Once all 7 input objects have been examined in this man-
ner, any object with total vote tally of 7 or more is among the
final p objects stored in the p available slots. Since only objects
whose vote tallies are reduced to zero through the decrementa-
tion process are discarded, this assertion can be proven by show-
ing that the total of the votes lost by any object is less than 7.

The proof is by contradiction. Suppose an object loses ¢
or more votes in this process. Each time an object loses votes
(due to the vote decrementation process) p other distinct ob-
jects also lose the same vote. Thus if an object loses ¢ votes
in this process, a total of (p + 1) - votes must have been lost.

But this is impossible since (p + 1)-¢ > V, the sum of all
input votes. A second pass through the input, comparing each
x; to all remaining z;, tallying the vote for each z;, and keeping
track of the largest vote tally, completes the algorithm. Each
pass requires O(n-p) time. Q.E.D.

A.4 Proof of Theorem 5.2.5

The proof is quite simple. The intervals [x;—e/2, x; +¢/2]
and [x;—e€/2, x;+¢€/2] overlap iff |x;—x;| < e. Hence, any
maximal compatible set of input values obtained in step 1 of
algorithm 4.1.3 corresponds to a maximal number of overlap-
ping subintervals in algorithm 5.2.3. Q.E.D.
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