
International Journal of Reliability, Quality and Safety Engineering
Vol. 1, No.1 (1994) 95-102
© World Scientific Publishing Company

THRESHOLD VOTING IS FUNDAMENTALLY SIMPLER
THAN PLURALITY VOTING

BEHROOZ PARHAMI

Department of Electrical and Computer Engineering
University of California

Santa Barbara, CA 93106-9560, USA

Received 18 June 1993
Revised 21 December 1993

We show that n-way plurality voting on a large wlOrdered object space has time and space
complexities of B(n2) and B(n), respectively. If the object space is ordered, then sorting
can be used to reduce the time complexity to the optimal B(nlogn). We then prove
that weighted t-out-of-Ev; threshold voting on such an object space has time complexity
O(np) and needs working storage space for only p objects, where p = L(Ev;)/tJ. Thus,
unless t is very small, threshold voting is considerably simpler than plurality voting.
As a corollary, weighted majority voting can be performed in linear time with working
storage for a single input object.

Keywords: Voting Scheme; Algorithm Complexity; N-Modular Redwldancy; Threshold
Voting.

1. Introduction

Voting is an important operation in the realization of ultrareliable systems that
are based on the multi-channel computation paradigm. Voting is required whether
the multiple computation channels consist of redundant hardware units, diverse
program.modules executed on the same basic hardware, identical hardware and
software with diverse data, or any other combination of hardware/program/data
redundancy and/or diversity.

With very few exceptions,1-3 previous studies of voting have been restricted to
simple input object spaces; primarily bits or numerical values. These are instances
of small and totally ordered object spaces for which efficient linear-time (based on
vote tallying) and O(nlogn)-time (based on sorting) algorithms can be devised.
Widespread concern with computer system dependability gives rise to the need for
sophisticated voting schemes on various other data types.

Before stating the objectives of this note, let us define the problem of weighted
voting and introduce some needed notation.

95

96 B. Parhami

1.1. Definition

Given n input data objects Xl, X2, ... ,Xn, with associated positive votes (weights)
VI, V2, ... , Vn, compute the output y with the vote tally w = ~{ily=xn Vi such that:

WEIGHTED THRESHOLD VOTING SCHEMES:
Consensus voting: w = ~Vi

Byzantine voting (see the notes below): w > ~~Vi

Majority voting: w > ~~Vi

m-out-of-n voting (VI = V2 = ... = Vn = 1) : w 2: m (if m ::; g., y may be
non-unique)
t-out~of-~Vi (generalized m-out-of-n) voting: w 2: t (if t ::; }~Vi' Y may be
non-unique)

WEIGHTED PLURALITY VOTING SCHEME:
No other y' gets more votes (if w ::; } ~Vi, Y may be non-unique).

The above Byzantine voting scheme is a generalized form of the unweighted
version used in distributed computing systems4 where n independent n-way voting
nodes/sites must arrive at consistent conclusions in the presence of fewer than i
faulty nodes (Byzantine faulty nodes may try to confuse other nodes by presenting
to them inconsistent values). In this generalized version, less than ~ of votes/weights
can be associated with faulty nodes. 0

1.2. Notation

Asymptotic behavior of functions (e.g., time and space bounds) are specified/
compared as:

f(n) = O(g(n)) iff there exist constants CI and nl such that f(n) ::; cIg(n)
for all n 2: nl .

f(n) = O(g(n)) iff there exist constants C2 and n2 such that f(n) 2: c2g(n)
for all n 2: n2 .

f(n) = B(g(n)) iff f(n) = O(g(n)) and f(n) = O(g(n)); i.e., c2g(n) ::; f(n)
::; cIg(n) for large n.

Hence 0,0 and B convey upper, lower, and exact bounds for growth rate,
respectively. 0

In this paper, we show that with a large unordered input object space (large, so
that linear-time tallying of votes in an array of size equal to the object space size
cannot be used; unordered, so that sorting is inapplicable), O(n2) comparison op-
erations and O(n) working storage are required in the worst case for any plurality
voting algorithm. We then present a worst-case optimal weighted plurality vot-
ing algorithm with worst-case 0(n2) and average-case linear running time in most
application contexts. We also show that unless t is very small compared to ~Vi,

Threshold Voting is Fundamentally Simpler Than Plurality Voting 97

t-out-of-~Vi threshold voting is intrinsically simpler in that it can be performed in
time O(np) and with working storage for p input objects, where p = L(~Vi)/tJ.

2. Plurality Voting

Intuitively, in an unordered space, the equality of two objects can only be established
by direct comparison (the transitivity feature of equality is of no help in the worst
case where all objects happen to belong to distinct equivalence classes). Thus,
n(n - 1)/2 comparisons are needed in the worst case. Also, in the worst case,
the last comparison may provide the only non-singleton equivalence class of size 2.
Thus, working storage for n - 1 objects and their associated vote tallies is needed.
The following theorem formalizes these intuitive notions.

2.1. Theorem

With a large unordered input object space, n-way (weighted or unweighted) plural-
ity voting has worst-case time and space complexities 0(n2) and O(n), respectively.

Proof. Consider instances of the weighted plurality voting problem for which input
weights satisfy Vj < V2 < ... < Vn, the n input objects belong to n - 1 or n
equivalence classes (i.e., all distinct except possibly for Xq and Xr that are equal),
and Vi+Vj > Vk for all i, j, and k. Clearly, for these instances, the algorithm cannot
produce a guaranteed correct output ifit has not established whether the number of
input equivalence classes is n -1 or n (the correct output is Xq if Xq = Xr and is Xn

otherwise). To determine whether Xq = Xr, the inputs Xq and Xr must be compared
directly; all other comparisons only reveal inequality of values and provide no basis
for judging whether Xq = Xr. Since the algorithm has no way of knowing in advance
which two inputs will turn out to be equal, it may in fact sequence its operations in
a way that the comparison of Xq and Xr is done after all other comparisons. Hence
the need for O(n2) worst-case comparisons. To complete the proof for the weighted
case, we note that to compare all possible pairs of objects, O(n) working storage
will be required. The proof for unweighted plurality voting is similar but slightly
more involved. 0

Having established the above lower bounds, we now show that an O(n2)-time,
O(n)-space weighted plurality voting algorithm can be devised for a large unordered
input space. Following is a high-level description of the algorithm. The qualifier
"exact" in the title of the algorithm is to distinguish it from more complicated
algorithms such as those needed for inexact and approval voting,2,3 neither of which
will be discussed in this paper.

2.2. Algorithm

Exact Weighted Plurality Voting - Large Unordered Object Space

Let Z and u be the distinct-input and vote-tally vectors (Zj is the jth distinct input
encountered, Vj is the vote tally for Zj)

98 B. Parhami

k := 1; y := Zl := Xl; W := UI := VI

for i= 2 to n do
if 3j ~ k such that Xi = Zj
then Uj := Uj + Vi

else k := k + 1; Zk := Xi; uk := vi
endif

endfor
for i = 1 to k do

if Ui > W then y := Zi; W := Ui endif
endfor 0

The O(n2) worst-case time complexity of Algorithm 2.2 results from the (n-l)-
iteration loop and the O(n) linear search required in each iteration. The O(n)
worst-case space requirement is due to the fact that k can grow as large as n - l.
For an ordered object space, a sorting algorithm can be applied to inputs and the
voting result obtained by a sequential scan of the sorted list. Thus, the time and
space requirements become O(n log n) and O(n), respectively.

The average-case performance of Algorithm 2.2 depends on the application con-
text. In the context of dependable computing, each computation channel is highly
reliable and thus the n channels produce matching results with very high probability
(0.995 with 5-way voting and 0.999 reliability for each channel). Then the execution
time is almost linear due to the fact that k remains 1 with very high probability. In
other contexts, there may be a need to resort to more efficient search schemes (such
as those based on hashing) for finding j inside the "for" loop in order to achieve
subquadratic average-case running time.

With respect to average-case performance, it may be advantageous (depending
on the details of algorithm implementation and the host machine) to precede the
body of Algorithm 2.2 (or any other voting algorithm for that matter) with the
following statement:

if Xl = X2 = ... = Xn then (y, w) = (Xl, I:Vi) stop endif.

It may be even be worthwhile to handle the case of a single disagreeing input (the
next most likely case) separately also before resorting to the general algorithm.
These special tests increase the code length but improve the performance signifi-
cantly.

3. Threshold Voting

Threshold t-out-of-I:vi voting can be shown to be simpler than plurality voting,
unless the threshold value t is very small. Consensus voting clearly has linear com-
plexity. Less obvious are the following threshold voting algorithm and corresponding
complexity theorem.

Threshold Voting is Fundamentally Simpler Than Plurality Voting 99

3.1. Algorithm

Exact Threshold Voting - Large Unordered Object Space

We need working storage space or "slots" for p = L(~Vi)/tJ different objects
Zl, Z2, ... , zp, each with an associated vote tally Uj.

Zl := Xl; ul := Vl; Uj := 0 (2 ~ j ~ p)
for i = 2 to n do

if 3 Uj =F 0 such that Xi = Zj

then Uj := Uj + Vi

else if 3 Uj = 0
then Zj = Xi; Uj := Vi

else let m = Uk be a minimum of all UjS (1 ~ j ~ p)
if Vi ~ m
then Uj := Uj - Vi (1 ~ j ~ p)
else Zk := Xi; uk := Vi; Uj := Uj - m (1 ~ j ~p)
endif

endif
endif

endfor
Uj := 0 (1 ~ j ~ p)
for i = 1 to n do

if 3 j such that Xi = Zj then Uj := Uj + Vi endif
endfor
Output Zj with Uj ~ t 0

Following is a textual description of Algorithm 3.1. The first input object and
its associated vote are stored in the first slot and all other UjS are initialized to 0,
thus designating the remaining p - 1 slots as empty. The next input object Xi to
be considered is compared to the stored objects. If Xi = Zj for some j, then Uj is
incremented by Vi. If xi is not equal to any Zj and fewer than p objects have been
stored in the p slots, then (Xi, Vi) is stored in an available slot. If all of the p slots
are occupied, then the minimum vote tally m = Uk for the stored objects is found.
If Vi ~ m, then Xi is discarded and all stored vote tallies are red uced by Vi. If
Vi > Uk, then all vote tallies are reduced by m and (Xi, Vi - m) replaces one of the
objects which is left with 0 vote tally. A second pass through the input, comparing
each Xi to all remaining Zj s, and tallying the actual vote for each Zj, completes the
algorithm.

3.2. Theorem

With an unordered input space, t-out-of-~Vi voting can be performed with time
complexity O(np) and space complexity O(p), where p = l(~Vi)/tJ.

Proof. We assert that once all n input objects have been examined in the first "for"
loop of Algorithm 3.1, any object with total vote tally of t or more will be among

100 B. Parhami

the final p objects stored III the p available slots. Since only objects whose vote
tallies become zero through the vote reduction process are discarded, this assertion
can be proven by showing that the total of the votes lost by any object is less
than t. The proof is by contradiction. Suppose an object loses t or more votes in
this process. Each time an object loses votes (due to the vote reduction process
described above), p other distinct objects also lose the same vote. Thus if an object
loses t votes in this process, a total of (p + 1)t votes must have been lost. But this
is impossible since (p+ 1)t is greater than ~Vi, the sum of all input votes. Each of
the two "for" loops requires O(np) time, thus proving the desired result. 0

According to Theorem 3.2, when the threshold t is comparable in value to ~Vi

(i.e., when p is a small constant), a small amount of working storage is required
and the running time is linear in n, the number of inputs. Clearly, constant storage
requirement and linear running time are the best that can be expected, since any
algorithm must examine all n inputs.

3.3. Corollary

Weighted majority voting (t-out-of-~vi voting with t > ~~Vi) can be performed in
O(n) time using working storage for a single object. 0

3.4. Corollary

Unweighted m-out-of-n voting can be performed in O(n2/m) time. Unweighted
majority, or (Ln/2 J + 1)-out-of-n, voting can be performed in O(n) time using
working storage for a single object. 0

3.5. Example

Consider 6-way, 8-out-of-15 voting with the vote weights 4, 3, 3, 2, 2, 1. Take an
instance of the voting problem with input (A, 3), (B, 2), (B, 2) (A, 1), (C, 3),
(A, 4) in presentation (input) order. A single working storage slot (Zl' Ul) is re-
quired that will successively hold the values (A, 3), (A, 1), (B, 1), (-, -), (C, 3),
and (A, 1) as we proceed through the steps of Algorithm 3.1. Therefore, A is a
candidate value for the voting result and a second pass through the input will yield
its actual vote tally for comparison with 8. 0

In practice, exact threshold voting has been done by simply using variants of
Algorithm 2.2, followed by a comparison of the tallied votes with the threshold t.
Since the average-case time complexity of such algorithms is linear and the number
of input objects is usually small « 10), researchers were perhaps not motivated
to seek more efficient algorithms. With the use of higher degrees of replication
along with more complex input objects, requiring both more storage space and
more time to determine object equality, algorithm efficiency becomes important.
Algorithm 3.1 is a generalized version of efficient non-weighted majority voting (a
special case of the problem of finding repeated elements in a set) and m-out-of-n
voting algorithms.s-s

Thre.hold Voting i. Fundamentally Simpler Than Plurality Voting 101

4. Comparisons and Conclusions

The time complexity of noway plurality and majority voting for a large unordered
object space were shown to be B(n2) and B(n), respectively. These are sequen-
tial complexities (i.e., for a single thread of computation). If parallel operations
are allowed as in hardware-based voting networks,9 then plurality voting can be
performed in O(n) steps using B(n2) network elements,lO whereas majority voting
requires B(log n) time and has B(n2) complexity since the results of n2 comparisons
can be combined using (log n)-depth adder trees.

Our results do not suggest that threshold voting is "better" than plurality voting;
only that it is "simpler". The choice of a voting scheme is primarily dependent
on application context and the types of data elements or structures being voted
on, with algorithm complexity being at best a secondary factor. However, once
threshold voting has been selected as the voting scheme of interest, there is no
excuse for tallying the votes as in Algorithm 2.2 in order to determine the voting
result. The simpler Algorithm 3.1 should be used.

Analyses offered in this paper for the complexity of the various voting algorithms
have been asymptotic and worst-case. Since in most practical cases the number
of input data objects that participate in voting is small, more detailed analyses
are needed for comparing and selecting algorithms. There are situations however
when voting with a fairly large number of inputs is needed. One example is in
image processing filters where each point may be replaced by voting on a collection
of neighboring points.l1 Another example is in distributed fault diagnosis where
voting might be used to determine the signature of a fault-free processor from the
self-diagnosis signatures of participating processors.12

References

1. P. R. Lorczak, A. K. Caglayan and D. E. Eckhardt, "A theoretical investigation of
generalized voters for red undant systems" , Proc. Int. Symp. Fault- Tolerant Computing
(Chicago, 1989), pp. 444-451.

2. B. Parhami, "Optimal algorithms for exact inexact, and approval voting", Proc. Int.
Symp. Fault- Tolerant Computing (Boston, 1992), pp. 444-451.

3. B. Parhami, IEEE Trans. Reliability, to appear in 1994.
4. D. Dolev, 1. Lamport, M. Pease, and R. Shostak, "The Byzantine generals", in Con-

currency Control and Reliability in Distributed Systems, ed. B. K. Bhargava, Van
Nostrand Reinhold (New York, 1987), pp. 348-369.

5. J. Misra and D. Gries, Science of Computer Programming 2, 143 (1982). See also
correspondence in The Computer Journal 35(3), 298 (1992).

6. D. Gries, "A hands-in-the-pocket presentation of a k-majority vote algorithm", in
Formal Development of Programs and Proofs, ed. E. w. Dijkstra (Addison-Wesley,
1990), pp. 43-45.

7. R. S. Boyer and J. S. Moore, "MJRTY - A fast majority vote algorithm", in Auto-
mated Reasoning; Essays in Honor of Woody Bledsoe, ed. R. S. Boyer (Kluwer, 1991).

8. D. Campbell and T. McNeill, The Computer Journal 34(2), 186 (1991).
9. B. Parhami, IEEE Trans. Reliability 40,380 (1991).

102 B. Parham;

10. B. Parhami, "The parallel complexity and weighted voting", Proc. of the Int. Symp.
on Parallel and Distributed Computing and Systems (Washington, DC, 1991),
pp. 382-385.

11. D. R. K. Brownrigg, Commun. ACM 27(8), 807 (1984).
12. S. Y. H. Su, M. Cutler and M. Wang, IEEE Trans. Computers 40(11), 1252 (1991).

