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1. Introduction 

Residue number systems (RNS) present the 
advantage of fast addition and multiplication 
over other number systems, and have thus 
received much attention for high-throughput 
computations. Digit-parallel, carry-free, and 
constant-time multiplication and addition is a 
unique feature of RNS. However, certain op- 
erations such as overflow detection, magnitude 
comparison, and division are quite difficult in 
RNS. Thus, RNS is in general limited to ap- 
plications that do not require extensive use of 
those difficult operations; for example, lilter- 
ing in Digital Signal Processing. By improving 
RNS division, many application areas for which 
RNS was previously infeasible, such as RSA 
encryption, can use the fast RNS multiplication 
without being penalized too much by the slow 
RNS division. 

* Corresponding author. Email: parhami@ece.ucsb.edu. 
’ Email: ching@simd.ece.ucsb.edu. 

In this paper we consider the problem of divi- 
sion by fixed divisors in RNS. Ordinary integer 
division is performed; i.e., given the dividend X 
and the divisor D, we wish to find the quotient 
Q = LX/D] and th e remainder R = X - QD. 
The idea is to perform some preprocessing based 
on the divisor to improve the on-line speed of 
divisions. Our algorithms do not require inordi- 
nately expensive preprocessing; the cost of pre- 
processing is negligible if 0 (log, D) divisions are 
performed with the same D, and that is true in 
the context of RSA encryption. In m-bit encryp- 
tion, up to 2m modular multiplications are per- 
formed with the same m-bit modulus. 

Several algorithms for general residue division 
have been proposed in the past [ 1,3,5,8]. Un- 
der the assumption that D is fixed and X is uni- 
formly distributed, the fastest of them [5] has 
a worst-case time complexity of O(log, X) = 
O(nb), where n is the number of moduli and b 

is the number of bits in the largest modulus. 
In this paper we present two division al- 

gorithms for fixed divisors that achieve time 
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complexity of O(n) for each division. The first 
algorithm is based on the well-known division 
method of multiplying by the divisor reciprocal. 
The second algorithm is based on the Chinese 
Remainder Theorem (CRT) decoding and ta- 
ble lookup, and requires that the divisor D be 
relatively prime to all moduli. The second algo- 
rithm requires more storage but is faster. The 
computation time analysis is based on the usual 
parallel residue processor assumption: There 
are n residue processors for an n modulus sys- 
tem, each being capable of one modulus-size 
modular addition or multiplication in one time 
step. Additionally, we assume that the divisor 
D is relatively prime to all moduli, even for 
the first algorithm that does not require it but 
becomes somewhat more efficient if it holds. 
Unless otherwise noted, the computation times 
given in the paper are parallel times. For soft- 
ware implementation of RNS, we also provide 
the sequential time complexities. 

We also present adaptation of both algorithms 
for RSA encryption. The first algorithm leads 
to 4n + b time steps per modular multiplica- 
tion, while the second algorithm requires 2n time 
steps per modular multiplication. The second al- 
gorithm is found to be very competitive with pre- 
viously proposed RSA implementations. 

2. Basic operations in RNS 

2.1. Notation 

The expression I,$ denotes the remainder of 
x divided by y, where x and y are real withy > 0. 
When x and y are relatively prime integers, with 
y > 1, the multiplicative inverse of x modulo y, 
I-y+/& is defined. 

A residue number system is specified by 
a list of n pairwise relatively prime moduli, 
ml,m2,...,mn. A number X is represented in 
RNS by a list of residues (XI, x2,. . . , xn ), where 
x1 = IXI,,, . Let it4 = n m, represent the prod- 
uct of all moduli. Let A4, = M/mi and No = 

Iy’lm,. We also define M[a,b], 1 < a d 
h d n, as the product of a sequence of moduli: 
M[a,b] = @_m,. We let M[a,b] = 1 for 

h < a. Signed numbers in the range -[M/21 < 
X < 1 (A4 - 1)/2J are represented. These RNS 
parameters are used throughout the rest of the 
paper without being explicitly noted in each 
case. 

Let b be the number of bits needed to represent 
each residue. For algorithm efficiency and con- 
venience in analyzing complexities, we assume 
that the magnitudes of the moduli are more or 
less uniform. This assumption leads to mi d 2b, 
Un,fWlj E 1, and M z 2nb. We say a number X 
is k digits long when X z 2kb. 

2.2. Base extension and division by a product of 
moduli 

Let a number X be representable by k 
residues, k < n, in an n modulus RNS. Base 
extension refers to the procedure of finding the 
n - k unknown residues. Base extension is usu- 
ally implemented with mixed-radix conversion 
(see, e.g., [ 9, pp. 41-471) and takes exactly 
2h- - 1 time steps with n residue processors. 

Base extension can be used to divide a num- 
ber by a product of first powers of moduli [9, 
pp. 47-501. Let X be the dividend and M[ 1, k] 
be the divisor. The first k residues of the remain- 
der R = X mod M [ 1, k] are simply the first 
k residues of X. The n - k remaining residues 
are found by a base extension from the front k 
residues toward the back n - k residues, taking 
2k - 1 steps. With all residues of the remainder 
known, the quotient Q can be found by evalu- 
ating (X - R)M [ 1, k ] -’ in one step. However, 
M[ 1, k]-’ is defined only for the back n - k 
residues, so only the corresponding residues of 
Q are known. Another base extension, from the 
back n - k residues to the front k residues, is 
applied, taking 2 (n - k) - 1 steps. Totally the 
division takes 2n - 2 steps. 

2.3. Sign detection 

In [ 5 1, Hung and Parhami propose a sign es- 
timation procedure that in [log, nj steps indi- 
cates whether a residue number is positive, neg- 
ative, or too small in magnitude to tell. The pro- 
cedure outlined below uses a parameter u, u > 1, 



C. Y. Hung, B. Parhami/Information Processing Letters 51 (1994) 163-169 165 

to specify input range and output precision: The 
procedure requires input number X in the range 
[-( l/2-2-“)M, (l/2-2-“)M]; i.e., a fraction 
of the dynamic range is excluded. When the out- 
put ES(X) is indeterminate, X is guaranteed to 
be in the range [ -2-UM, 2-“Ml. 

Preprocessing 
1. EF[i][j] = Truncate [jar/mill to the 

(-t)th bit, for 1 < i d n, 0 d j < mi, 
where t = u + [log, nl 

Sign estimation of an input X 
2. EF(X) = Icy__, EF[il [&Ill 
3. ES(X) = +, lfEF(X) < l/2 
4. -, if l/2 < EF(X) < 1 - 2-’ 
5. f, otherwise 

From this sign estimation procedure we con- 
struct a sign detection procedure as follows. The 
relatively inexpensive sign estimation is tried 
first. In case it fails (sign being indeterminate), 
we compute the sign by mixed-radix conver- 
sion. Since the chance of having to use the 
mixed-radix conversion is low, the sign detec- 
tion requires [log2 n] steps on the average and 
2n + [log, n] steps in the worst case (We assume 
uniform distribution of X in the allowed range, 
and ignore the time spent on communication.) 

2.4. Chinese Remainder Theorem and B (X) 

The Chinese Remainder Theorem states that 

We define B(X) [9, p. 301 as the number of 
times the modular summation in Eq. (1) over- 
flows M: 

The sign estimation procedure can be adapted 
to efficiently compute B(X) when input X is 
nonnegative. The same EF [i] [j] table is used, 
with parameter u satisfying u > 1. The prepro- 
cessing stage is the same as in sign estimation, 
followed by: 

2. Y = C:=, EF[i][xi] 
3. EF(X) = IYI1, B(X) = Int(Y) 
4. IfEF(X) < l/2 return B(X) 
5. Otherwise, return B(X) = B(X) + 1 

2.5. General division 

Reference [ 5 ] also contains an algorithm to 
perform division in RNS without preprocess- 
ing. We shall call this algorithm general division 
since it does not require prior knowledge of the 
divisor. 

The general division algorithm is based on the 
well-known binary SRT division. After proper 
normalization of the dividend X and the divisor 
D, in each iteration we perform X = 2X, X = 
2(X-D),orX = 2(X+D),basedontheesti- 
mated sign of X. To optimize for hardware im- 
plementation, the n operand summation (line 2) 
of the sign estimation procedure is performed 
once every [log, n] iterations so that the aver- 
age cost per iteration is constant. The algorithm 
presented in [5] takes O(log,(M/D) + log, Q) 
steps, where Q is the quotient computed by the 
algorithm. The controlled way in which we use 
general division in our fixed-divisor algorithms 
renders some of the computations unnecessary. 
Specifically, when [log, Dl is known or is guar- 
anteed to be within a small range, normalization 
of D can be simplified. In this case, the general 
division takes 3[log, Qj time steps on the aver- 
age and 3 [log, Q1 + 2n time steps in the worst 
case. The extra 2n time is due to a possible final 
sign detection by mixed-radix conversion. For 
software implementation, the sequential time is 
roughly 2n log, Q. 

3. Multiplying by the divisor reciprocal 

Our first algorithm for fixed divisor RNS di- 
vision precomputes the reciprocal of the divisor 
and uses it to compute the approximate quotient 
(X is the dividend and D the divisor): 

Preprocessing 
1. Compute C = [M/Dj, choose k such that 

1 <k ,< nandM[l,k-1] < D<M[l,k] 
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Each subsequent division 
2. X’ = LX/M[k,n]J 
3. Q = \X’C’/M[l,k- 11) 
4. X” = X - QD 
5. Call general division to obtain Q and R with 

0 d R < D such that X” = Q’D + R 
6. Return Q” = Q + Q’ and R 

In the preprocessing stage, C is computed 
as the quotient of M divided by D, using the 
general division algorithm. For each subsequent 
division, first we scale down X by a factor of 
1 /M [k, n] to obtain X’. Then X’ is multiplied 
by Candscaleddownby l/M[l,k- l] totind 
an approximate quotient Q. The remainder X”, 
found on line 4, can thus be off by a multiple 
of D. We next use general division to divide 
X” by D, thereby correcting the error of the ap- 
proximate quotient. We call lines 2-4 the coarse 
modulo stage and lines 5-6 the correction stage. 

The approximate quotient satisfies 

i.e., there is an upper bound error of [M[k, n]/ 
Dl + 1 with respect to the correct quotient. 
Intuitively, C is close to the fraction M/D = 
M(l,n]/D,X’isclosetoX/M[k,n],andsoQ 
is close to X’C/M [ 1, k - 1 ] = X/D. Hence, Q is 
close to the correct quotient iX/Dj . Any error is 
due to truncations in the three integer divisions. 

The general division needed in the preprocess- 
ing stage takes 3 (n - k ) h steps on the average 
and 2n steps more in the worst case [ 51. The 
coarse module stage in each subsequent division 
requires two divisions by products of moduli, 
M[k,n] andM(l,k- l],besidesafewmulti- 
plications and additions. Dividing by a product 
of moduli is by base extension and each takes 
2n - 2 steps. With the largest error in the quo- 
tient being [M[k,n]/Dl + 1, or (n -k + 1) - 
(k - 1) = n - 2k + 2 digits long, the correction 
stage takes about 3h (n - 2k) steps on the aver- 
age and 3b (n - 2k) + 2n steps in the worst case. 
(When n < 2k, it takes constant steps on the av- 
erage and 2n steps in the worst case.) Each sub- 
sequent division using this algorithm thus takes 
about 4n + 3b (n - 2k) steps on the average and 

6n + 3b(n - 2k) steps in the worst case. In a 
software implementation, a base extension for k 
unknown residues takes n2 - k2 steps, and so a 
division by a product of moduli takes n2 - k2 + 
n2 - (n -k)’ = n2 + 2nk - 2k2 steps. Our algo- 
rithm takes 2n (n - k) b steps for preprocessing 
and 2n2 + 4nk - 4k2 + 2nb(n - 2k) steps for 
each division. 

4. CRT decoding and table lookup 

The second algorithm for fixed divisor divi- 
sion achieves faster computation with a larger 
lookup table (n + 1 entries rather than 1). An 
outline of the algorithm follows. 

Preprocessing 
1. z = IMID 
2. For i = 1,2,. . . , n do 
3. k, = ) - ZD-*I,, 
4. Compute Z; = (Z + k,D)/m, 
Each subsequent division 
5. Compute B(X) 
6. Y = C;=, Itr,.~,],~Zi + B(X)(D - Z) 
7. Call general division to obtain Q and R with 

0 G R < D such that Y = QD + R 
8. Return Q’ = 1(X - R)D-‘~M and R 

The algorithm is based on the Chinese Re- 
mainder Theorem. When X is nonnegative, 
Eq. (2) becomes 

x = 5 jrL;Xl],ti,‘14, - B(X)M. (3) 
I=1 

We view Eq. (3) as a linear decomposition of X. 
To reduce X modulo a fixed divisor D, we pre- 
compute Z, = M, mod D and Z = A4 mod D. 
We then have 

jX]D - e I~~Jllrn,Z, 
1=1 
+ B(X)(D - Z) (modD). (4) 

Thus, for each division, the algorithm first 
computes the weighted sum of Eq. (4) in the 
coarse modulo stage. The sum, Y, is at most 
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CC:=‘=, (mi - 1) + HID, or (log,n)/b + I dig- 
its longer than the divisor. Next, the correction 
stage utilizes general division to further reduce 
Y to the correct remainder. In step 8, X - R 
is divisible by D and since D is assumed to be 
relatively prime to each mi, D-’ exists. 

The proof that the expression & = (Z + 
kiD)/mi computed by the algorithm is actually 
A4i mod D follows from the following easily 
provable statements: 

lz + ki&, = 0, 

and 0 d Z + kiD < D. 
mi 

It takes 3b (n - k) steps to compute 2 with 
general division, constant time to compute all 
the ki’s, and 2 (n - k) time to compute each Zi 
with base extension, where k is the number of 
residues required to represent the divisor D, and 
so is roughly the same as the k defined in Sec- 
tion 3. Total time for the preprocessing stage is 
3b(n-k)+2n(n-k).Notethatitwouldtake 
3b (n - k) (n + 1) steps if the preprocessing is 
performed as n + 1 instances of general division. 
Sequential time is 2nb(n -k) + n(n -k)*. 

Computation time for each division is ana- 
lyzed as follows. Computing B (X) takes [log, n] 
time steps. Computing (aiXj(m, takes one step. 
The weighted summation takes about 2n steps 
assuming that the time needed to broadcast 
the Jai~i]~, values to all processors is negligible 
(each processor does 12 + 1 multiplications for 
taking the weights into account and n additions). 
If it takes one time step to send a residue-sized 
number to an adjacent processor, the broadcast 
operation takes n steps on a ring. The general 
division on line 7 takes 3 (b + log, n) steps on 
the average and 3(b + [log, n] ) + 2n steps in 
the worst case. Total time for each subsequent 
division is thus log, n -l- 2n + 3 (b -t log, n ) = 
2n + 3b steps on the average and 4n + 3b steps 
in the worst case. Sequential time is 2n2 + 2nb. 

5. Application to RSA cryptography 

Encryption and decryption in RSA cryptogra- 
phy are modular exponentiation operations of 
the form Z = Xy mod D. For encryption, X is 
the plain text, Y and D together comprise the 
encryption key, and Z is the ciphered text. For 
decryption, X is the ciphered text, Y and D the 
decryption key, and Z is the deciphered text. 
All operands, X, Y, D are potentially very large 
integers, perhaps 1000 bits long. Let m be the 
number of bits in D, and let log, Y N” m. A mod- 
ular exponentiation requires up to 2m modular 
multiplications in a simple square-and-multiply 
scheme (see, e.g., [ 10 ] ). It is possible to use only 
( 1 + E ) m modular multiplications with exponent 
recoding [ 71, and, in decryption only, perform 
shorter modular operations with respect to the 
two (secret) factors of D. We shall compare our 
algorithm with existing ones in terms of compu- 
tation time for each modulo-D multiplication. 

Our fixed-divisor algorithms apply to the 
modulo-D reduction step that follows a regular 
multiplication. The dynamic range of RNS thus 
needs to be at least the square of the modulus 
D. The 2m instances of modular reduction in 
a modular exponentiation are viewed as a se- 
quence of divisions with the same divisor D. 
The preprocessing based on D is therefore good 
for 2m divisions, and can be good for many 
times more when a long message is broken into 
several modular exponentiations with the same 
modulus D. The preprocessing times are $nb 
and n2 + inb, respectively for the first and 
the second algorithm, when k “N n/2. With 
n = 2m/b, the preprocessing times become 3m 
and 4m2/b2 + 3m, both of which are negligi- 
ble compared to the O(mn) = O(m*/b) time 
taken by 2m instances of O(n)-time division. 
The conversions between RNS and binary take 
O(n) = 0 (m/b) time, also negligible com- 
pared to O(m*/b). 

The on-line portion of each algorithm is fur- 
ther divided into the coarse modulo stage and the 
correction stage. For modular exponentiation, it 
is not necessary to fully reduce intermediate re- 
sults modulo D. In its coarse modulo stage, the 
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first algorithm reduces an n digit dividend to an 
approximate remainder up to n - k + 1 digits 
long. This is not enough since we know that n > 
2k and that the modular reduction must at least 
reduce a dividend to half-length to accommodate 
the squaring in the modular exponentiation. It 
is necessary, therefore, for the first fixed-divisor 
algorithm to perform at least b iterations of gen- 
eral division after the coarse modulo stage. 

The second fixed-divisor algorithm works bet- 
ter. It produces, in the coarse modulo stage, an 
approximate remainder up to (log, n ) /b + 1 + k 
digits long. If we make n large enough such that 
2[(log,n)/b+ I +k] isnomorethann,weget 
sufficient reduction in the coarse modulo stage. 
The second algorithm is also more efficient in 
this stage, taking 2n steps versus 4n steps for the 
first algorithm. With the coarse modulo stage of 
the second algorithm and constant-time multi- 
plication inherent in RNS, each modular multi- 
plication takes about 2n z 4m/b steps. The se- 
quential time is 2n2 NN 8m2/b2 for each modular 
multiplication. 

6. Conclusions 

We have presented two new algorithms for 
RNS division with fixed divisors. Adaptation of 
our second algorithm leads to an efficient RSA 
implementation, with 4m/b steps per modular 
multiplication. 

Existing implementations of RSA encryption 
can be roughly classified into word-level single 
processor, bit-level array processors, and word- 
level array processors. Because of the variety of 
special hardware involved in the designs, it is 
rather difficult to compare different designs in 
terms of time complexity; we almost always have 
to compare actual or estimated encryption rates 
of the designs. 

We compare our proposed method with two 
classical sequential methods: one uses a binary 
version of multiplying by divisor reciprocal 
for modular reduction [ 21, the other uses a 
residue table for modular reduction [6]. With 
a b-bit processor, a modular multiplication 
takes 9(m/b)2 and 4(m/b)* steps, respectively. 

Treating a b-bit processor as having hardware 
complexity of b2, the conventional methods 
have hardware-time products of 9m2 and 4m2. 
Our method has a hardware complexity of 
(2m/b)b* = 2mb, and a hardware-time prod- 
uct of 8m2. On the basis of hardware and time 
complexity, our design competes well with se- 
quential implementation of classical methods. 
Actual encryption speed depends on the hard- 
ware platform, and is still under investigation. 

While we have analyzed the time complexity 
of our algorithms, there are many implemen- 
tation details that must be considered. For ex- 
ample, the communication and storage require- 
ments of the algorithm, integration of the binary- 
residue and residue-binary conversions into the 
algorithm, and the possibility of systolic imple- 
mentation. Other cryptographic algorithms can 
benefit from our new techniques. Our choice of 
RSA to illustrate the efftciency of these tech- 
niques is merely a reflection of the fact that it 
is better known and more widely applied. We 
are also looking for other applications of our 
new residue division algorithms. The EF func- 
tion serves as an index function of residue num- 
bers in our sign detection procedure. In a re- 
cent publication [ 41, Dimauro et al. propose an- 
other index function, called the Sum of Quo- 
tients, for comparison of residue numbers. While 
a straightforward implementation of their tech- 
nique seems as expensive as residue-to-binary 
conversion with the Chinese Remainder Theo- 
rem, it remains to be investigated whether a trun- 
cated version leads to an efficient approximate 
comparison procedure. 
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