
ELSEVIER

Information
Processing
Letters

Information Processing Letters 5 1 (1994) 163- 169

Fast RNS division algorithms for fixed divisors
with application to RSA encryption

Ching Yu Hung l, Behrooz Parhami
Department of Electrical and Computer Engineering, University of California, Santa Barbara,

Santa Barbara, CA 931069560, USA

Communicated by G.R. Andrews; received 8 July 1993; revised 29 April 1994

Keywords: Algorithm complexity; Computer arithmetic; Cryptography; Division; Modular multiplication; Residue number
system: Sign detection

1. Introduction

Residue number systems (RNS) present the
advantage of fast addition and multiplication
over other number systems, and have thus
received much attention for high-throughput
computations. Digit-parallel, carry-free, and
constant-time multiplication and addition is a
unique feature of RNS. However, certain op-
erations such as overflow detection, magnitude
comparison, and division are quite difficult in
RNS. Thus, RNS is in general limited to ap-
plications that do not require extensive use of
those difficult operations; for example, lilter-
ing in Digital Signal Processing. By improving
RNS division, many application areas for which
RNS was previously infeasible, such as RSA
encryption, can use the fast RNS multiplication
without being penalized too much by the slow
RNS division.

* Corresponding author. Email: parhami@ece.ucsb.edu.
’ Email: ching@simd.ece.ucsb.edu.

In this paper we consider the problem of divi-
sion by fixed divisors in RNS. Ordinary integer
division is performed; i.e., given the dividend X
and the divisor D, we wish to find the quotient
Q = LX/D] and th e remainder R = X - QD.
The idea is to perform some preprocessing based
on the divisor to improve the on-line speed of
divisions. Our algorithms do not require inordi-
nately expensive preprocessing; the cost of pre-
processing is negligible if 0 (log, D) divisions are
performed with the same D, and that is true in
the context of RSA encryption. In m-bit encryp-
tion, up to 2m modular multiplications are per-
formed with the same m-bit modulus.

Several algorithms for general residue division
have been proposed in the past [1,3,5,8]. Un-
der the assumption that D is fixed and X is uni-
formly distributed, the fastest of them [5] has
a worst-case time complexity of O(log, X) =
O(nb), where n is the number of moduli and b

is the number of bits in the largest modulus.
In this paper we present two division al-

gorithms for fixed divisors that achieve time

0020-0190/94/$07.00 @ 1994 Elsevier Science B.V. All rights reserved
S.SDI0020-0190(94)00099-K

164 C. Y. Hung, B. Parhami /Information Processing Letters 51 (1994) 163-169

complexity of O(n) for each division. The first
algorithm is based on the well-known division
method of multiplying by the divisor reciprocal.
The second algorithm is based on the Chinese
Remainder Theorem (CRT) decoding and ta-
ble lookup, and requires that the divisor D be
relatively prime to all moduli. The second algo-
rithm requires more storage but is faster. The
computation time analysis is based on the usual
parallel residue processor assumption: There
are n residue processors for an n modulus sys-
tem, each being capable of one modulus-size
modular addition or multiplication in one time
step. Additionally, we assume that the divisor
D is relatively prime to all moduli, even for
the first algorithm that does not require it but
becomes somewhat more efficient if it holds.
Unless otherwise noted, the computation times
given in the paper are parallel times. For soft-
ware implementation of RNS, we also provide
the sequential time complexities.

We also present adaptation of both algorithms
for RSA encryption. The first algorithm leads
to 4n + b time steps per modular multiplica-
tion, while the second algorithm requires 2n time
steps per modular multiplication. The second al-
gorithm is found to be very competitive with pre-
viously proposed RSA implementations.

2. Basic operations in RNS

2.1. Notation

The expression I,$ denotes the remainder of
x divided by y, where x and y are real withy > 0.
When x and y are relatively prime integers, with
y > 1, the multiplicative inverse of x modulo y,
I-y+/& is defined.

A residue number system is specified by
a list of n pairwise relatively prime moduli,
ml,m2,...,mn. A number X is represented in
RNS by a list of residues (XI, x2,. . . , xn), where
x1 = IXI,,, . Let it4 = n m, represent the prod-
uct of all moduli. Let A4, = M/mi and No =

Iy’lm,. We also define M[a,b], 1 < a d
h d n, as the product of a sequence of moduli:
M[a,b] = @_m,. We let M[a,b] = 1 for

h < a. Signed numbers in the range -[M/21 <
X < 1 (A4 - 1)/2J are represented. These RNS
parameters are used throughout the rest of the
paper without being explicitly noted in each
case.

Let b be the number of bits needed to represent
each residue. For algorithm efficiency and con-
venience in analyzing complexities, we assume
that the magnitudes of the moduli are more or
less uniform. This assumption leads to mi d 2b,
Un,fWlj E 1, and M z 2nb. We say a number X
is k digits long when X z 2kb.

2.2. Base extension and division by a product of
moduli

Let a number X be representable by k
residues, k < n, in an n modulus RNS. Base
extension refers to the procedure of finding the
n - k unknown residues. Base extension is usu-
ally implemented with mixed-radix conversion
(see, e.g., [9, pp. 41-471) and takes exactly
2h- - 1 time steps with n residue processors.

Base extension can be used to divide a num-
ber by a product of first powers of moduli [9,
pp. 47-501. Let X be the dividend and M[1, k]
be the divisor. The first k residues of the remain-
der R = X mod M [1, k] are simply the first
k residues of X. The n - k remaining residues
are found by a base extension from the front k
residues toward the back n - k residues, taking
2k - 1 steps. With all residues of the remainder
known, the quotient Q can be found by evalu-
ating (X - R)M [1, k] -’ in one step. However,
M[1, k]-’ is defined only for the back n - k
residues, so only the corresponding residues of
Q are known. Another base extension, from the
back n - k residues to the front k residues, is
applied, taking 2 (n - k) - 1 steps. Totally the
division takes 2n - 2 steps.

2.3. Sign detection

In [5 1, Hung and Parhami propose a sign es-
timation procedure that in [log, nj steps indi-
cates whether a residue number is positive, neg-
ative, or too small in magnitude to tell. The pro-
cedure outlined below uses a parameter u, u > 1,

C. Y. Hung, B. Parhami/Information Processing Letters 51 (1994) 163-169 165

to specify input range and output precision: The
procedure requires input number X in the range
[-(l/2-2-“)M, (l/2-2-“)M]; i.e., a fraction
of the dynamic range is excluded. When the out-
put ES(X) is indeterminate, X is guaranteed to
be in the range [-2-UM, 2-“Ml.

Preprocessing
1. EF[i][j] = Truncate [jar/mill to the

(-t)th bit, for 1 < i d n, 0 d j < mi,
where t = u + [log, nl

Sign estimation of an input X
2. EF(X) = Icy__, EF[il [&Ill
3. ES(X) = +, lfEF(X) < l/2
4. -, if l/2 < EF(X) < 1 - 2-’
5. f, otherwise

From this sign estimation procedure we con-
struct a sign detection procedure as follows. The
relatively inexpensive sign estimation is tried
first. In case it fails (sign being indeterminate),
we compute the sign by mixed-radix conver-
sion. Since the chance of having to use the
mixed-radix conversion is low, the sign detec-
tion requires [log2 n] steps on the average and
2n + [log, n] steps in the worst case (We assume
uniform distribution of X in the allowed range,
and ignore the time spent on communication.)

2.4. Chinese Remainder Theorem and B (X)

The Chinese Remainder Theorem states that

We define B(X) [9, p. 301 as the number of
times the modular summation in Eq. (1) over-
flows M:

The sign estimation procedure can be adapted
to efficiently compute B(X) when input X is
nonnegative. The same EF [i] [j] table is used,
with parameter u satisfying u > 1. The prepro-
cessing stage is the same as in sign estimation,
followed by:

2. Y = C:=, EF[i][xi]
3. EF(X) = IYI1, B(X) = Int(Y)
4. IfEF(X) < l/2 return B(X)
5. Otherwise, return B(X) = B(X) + 1

2.5. General division

Reference [5] also contains an algorithm to
perform division in RNS without preprocess-
ing. We shall call this algorithm general division
since it does not require prior knowledge of the
divisor.

The general division algorithm is based on the
well-known binary SRT division. After proper
normalization of the dividend X and the divisor
D, in each iteration we perform X = 2X, X =
2(X-D),orX = 2(X+D),basedontheesti-
mated sign of X. To optimize for hardware im-
plementation, the n operand summation (line 2)
of the sign estimation procedure is performed
once every [log, n] iterations so that the aver-
age cost per iteration is constant. The algorithm
presented in [5] takes O(log,(M/D) + log, Q)
steps, where Q is the quotient computed by the
algorithm. The controlled way in which we use
general division in our fixed-divisor algorithms
renders some of the computations unnecessary.
Specifically, when [log, Dl is known or is guar-
anteed to be within a small range, normalization
of D can be simplified. In this case, the general
division takes 3[log, Qj time steps on the aver-
age and 3 [log, Q1 + 2n time steps in the worst
case. The extra 2n time is due to a possible final
sign detection by mixed-radix conversion. For
software implementation, the sequential time is
roughly 2n log, Q.

3. Multiplying by the divisor reciprocal

Our first algorithm for fixed divisor RNS di-
vision precomputes the reciprocal of the divisor
and uses it to compute the approximate quotient
(X is the dividend and D the divisor):

Preprocessing
1. Compute C = [M/Dj, choose k such that

1 <k ,< nandM[l,k-1] < D<M[l,k]

166 C. Y. Hung, B. Parhami /Information Processing Letters 5 1 (1994) 163-169

Each subsequent division
2. X’ = LX/M[k,n]J
3. Q = \X’C’/M[l,k- 11)
4. X” = X - QD
5. Call general division to obtain Q and R with

0 d R < D such that X” = Q’D + R
6. Return Q” = Q + Q’ and R

In the preprocessing stage, C is computed
as the quotient of M divided by D, using the
general division algorithm. For each subsequent
division, first we scale down X by a factor of
1 /M [k, n] to obtain X’. Then X’ is multiplied
by Candscaleddownby l/M[l,k- l] totind
an approximate quotient Q. The remainder X”,
found on line 4, can thus be off by a multiple
of D. We next use general division to divide
X” by D, thereby correcting the error of the ap-
proximate quotient. We call lines 2-4 the coarse
modulo stage and lines 5-6 the correction stage.

The approximate quotient satisfies

i.e., there is an upper bound error of [M[k, n]/
Dl + 1 with respect to the correct quotient.
Intuitively, C is close to the fraction M/D =
M(l,n]/D,X’isclosetoX/M[k,n],andsoQ
is close to X’C/M [1, k - 1] = X/D. Hence, Q is
close to the correct quotient iX/Dj . Any error is
due to truncations in the three integer divisions.

The general division needed in the preprocess-
ing stage takes 3 (n - k) h steps on the average
and 2n steps more in the worst case [51. The
coarse module stage in each subsequent division
requires two divisions by products of moduli,
M[k,n] andM(l,k- l],besidesafewmulti-
plications and additions. Dividing by a product
of moduli is by base extension and each takes
2n - 2 steps. With the largest error in the quo-
tient being [M[k,n]/Dl + 1, or (n -k + 1) -
(k - 1) = n - 2k + 2 digits long, the correction
stage takes about 3h (n - 2k) steps on the aver-
age and 3b (n - 2k) + 2n steps in the worst case.
(When n < 2k, it takes constant steps on the av-
erage and 2n steps in the worst case.) Each sub-
sequent division using this algorithm thus takes
about 4n + 3b (n - 2k) steps on the average and

6n + 3b(n - 2k) steps in the worst case. In a
software implementation, a base extension for k
unknown residues takes n2 - k2 steps, and so a
division by a product of moduli takes n2 - k2 +
n2 - (n -k)’ = n2 + 2nk - 2k2 steps. Our algo-
rithm takes 2n (n - k) b steps for preprocessing
and 2n2 + 4nk - 4k2 + 2nb(n - 2k) steps for
each division.

4. CRT decoding and table lookup

The second algorithm for fixed divisor divi-
sion achieves faster computation with a larger
lookup table (n + 1 entries rather than 1). An
outline of the algorithm follows.

Preprocessing
1. z = IMID
2. For i = 1,2,. . . , n do
3. k, =) - ZD-*I,,
4. Compute Z; = (Z + k,D)/m,
Each subsequent division
5. Compute B(X)
6. Y = C;=, Itr,.~,],~Zi + B(X)(D - Z)
7. Call general division to obtain Q and R with

0 G R < D such that Y = QD + R
8. Return Q’ = 1(X - R)D-‘~M and R

The algorithm is based on the Chinese Re-
mainder Theorem. When X is nonnegative,
Eq. (2) becomes

x = 5 jrL;Xl],ti,‘14, - B(X)M. (3)
I=1

We view Eq. (3) as a linear decomposition of X.
To reduce X modulo a fixed divisor D, we pre-
compute Z, = M, mod D and Z = A4 mod D.
We then have

jX]D - e I~~Jllrn,Z,
1=1
+ B(X)(D - Z) (modD). (4)

Thus, for each division, the algorithm first
computes the weighted sum of Eq. (4) in the
coarse modulo stage. The sum, Y, is at most

C. Y. Hung, B. Parhami/Information Processing Letters 51 (1994) 163-169 16-i

CC:=‘=, (mi - 1) + HID, or (log,n)/b + I dig-
its longer than the divisor. Next, the correction
stage utilizes general division to further reduce
Y to the correct remainder. In step 8, X - R
is divisible by D and since D is assumed to be
relatively prime to each mi, D-’ exists.

The proof that the expression & = (Z +
kiD)/mi computed by the algorithm is actually
A4i mod D follows from the following easily
provable statements:

lz + ki&, = 0,

and 0 d Z + kiD < D.
mi

It takes 3b (n - k) steps to compute 2 with
general division, constant time to compute all
the ki’s, and 2 (n - k) time to compute each Zi
with base extension, where k is the number of
residues required to represent the divisor D, and
so is roughly the same as the k defined in Sec-
tion 3. Total time for the preprocessing stage is
3b(n-k)+2n(n-k).Notethatitwouldtake
3b (n - k) (n + 1) steps if the preprocessing is
performed as n + 1 instances of general division.
Sequential time is 2nb(n -k) + n(n -k)*.

Computation time for each division is ana-
lyzed as follows. Computing B (X) takes [log, n]
time steps. Computing (aiXj(m, takes one step.
The weighted summation takes about 2n steps
assuming that the time needed to broadcast
the Jai~i]~, values to all processors is negligible
(each processor does 12 + 1 multiplications for
taking the weights into account and n additions).
If it takes one time step to send a residue-sized
number to an adjacent processor, the broadcast
operation takes n steps on a ring. The general
division on line 7 takes 3 (b + log, n) steps on
the average and 3(b + [log, n]) + 2n steps in
the worst case. Total time for each subsequent
division is thus log, n -l- 2n + 3 (b -t log, n) =
2n + 3b steps on the average and 4n + 3b steps
in the worst case. Sequential time is 2n2 + 2nb.

5. Application to RSA cryptography

Encryption and decryption in RSA cryptogra-
phy are modular exponentiation operations of
the form Z = Xy mod D. For encryption, X is
the plain text, Y and D together comprise the
encryption key, and Z is the ciphered text. For
decryption, X is the ciphered text, Y and D the
decryption key, and Z is the deciphered text.
All operands, X, Y, D are potentially very large
integers, perhaps 1000 bits long. Let m be the
number of bits in D, and let log, Y N” m. A mod-
ular exponentiation requires up to 2m modular
multiplications in a simple square-and-multiply
scheme (see, e.g., [10]). It is possible to use only
(1 + E) m modular multiplications with exponent
recoding [71, and, in decryption only, perform
shorter modular operations with respect to the
two (secret) factors of D. We shall compare our
algorithm with existing ones in terms of compu-
tation time for each modulo-D multiplication.

Our fixed-divisor algorithms apply to the
modulo-D reduction step that follows a regular
multiplication. The dynamic range of RNS thus
needs to be at least the square of the modulus
D. The 2m instances of modular reduction in
a modular exponentiation are viewed as a se-
quence of divisions with the same divisor D.
The preprocessing based on D is therefore good
for 2m divisions, and can be good for many
times more when a long message is broken into
several modular exponentiations with the same
modulus D. The preprocessing times are $nb
and n2 + inb, respectively for the first and
the second algorithm, when k “N n/2. With
n = 2m/b, the preprocessing times become 3m
and 4m2/b2 + 3m, both of which are negligi-
ble compared to the O(mn) = O(m*/b) time
taken by 2m instances of O(n)-time division.
The conversions between RNS and binary take
O(n) = 0 (m/b) time, also negligible com-
pared to O(m*/b).

The on-line portion of each algorithm is fur-
ther divided into the coarse modulo stage and the
correction stage. For modular exponentiation, it
is not necessary to fully reduce intermediate re-
sults modulo D. In its coarse modulo stage, the

168 C. Y. Hung, B. Parhami /Information Processing Letters 51 (1994) 163-169

first algorithm reduces an n digit dividend to an
approximate remainder up to n - k + 1 digits
long. This is not enough since we know that n >
2k and that the modular reduction must at least
reduce a dividend to half-length to accommodate
the squaring in the modular exponentiation. It
is necessary, therefore, for the first fixed-divisor
algorithm to perform at least b iterations of gen-
eral division after the coarse modulo stage.

The second fixed-divisor algorithm works bet-
ter. It produces, in the coarse modulo stage, an
approximate remainder up to (log, n) /b + 1 + k
digits long. If we make n large enough such that
2[(log,n)/b+ I +k] isnomorethann,weget
sufficient reduction in the coarse modulo stage.
The second algorithm is also more efficient in
this stage, taking 2n steps versus 4n steps for the
first algorithm. With the coarse modulo stage of
the second algorithm and constant-time multi-
plication inherent in RNS, each modular multi-
plication takes about 2n z 4m/b steps. The se-
quential time is 2n2 NN 8m2/b2 for each modular
multiplication.

6. Conclusions

We have presented two new algorithms for
RNS division with fixed divisors. Adaptation of
our second algorithm leads to an efficient RSA
implementation, with 4m/b steps per modular
multiplication.

Existing implementations of RSA encryption
can be roughly classified into word-level single
processor, bit-level array processors, and word-
level array processors. Because of the variety of
special hardware involved in the designs, it is
rather difficult to compare different designs in
terms of time complexity; we almost always have
to compare actual or estimated encryption rates
of the designs.

We compare our proposed method with two
classical sequential methods: one uses a binary
version of multiplying by divisor reciprocal
for modular reduction [21, the other uses a
residue table for modular reduction [6]. With
a b-bit processor, a modular multiplication
takes 9(m/b)2 and 4(m/b)* steps, respectively.

Treating a b-bit processor as having hardware
complexity of b2, the conventional methods
have hardware-time products of 9m2 and 4m2.
Our method has a hardware complexity of
(2m/b)b* = 2mb, and a hardware-time prod-
uct of 8m2. On the basis of hardware and time
complexity, our design competes well with se-
quential implementation of classical methods.
Actual encryption speed depends on the hard-
ware platform, and is still under investigation.

While we have analyzed the time complexity
of our algorithms, there are many implemen-
tation details that must be considered. For ex-
ample, the communication and storage require-
ments of the algorithm, integration of the binary-
residue and residue-binary conversions into the
algorithm, and the possibility of systolic imple-
mentation. Other cryptographic algorithms can
benefit from our new techniques. Our choice of
RSA to illustrate the efftciency of these tech-
niques is merely a reflection of the fact that it
is better known and more widely applied. We
are also looking for other applications of our
new residue division algorithms. The EF func-
tion serves as an index function of residue num-
bers in our sign detection procedure. In a re-
cent publication [41, Dimauro et al. propose an-
other index function, called the Sum of Quo-
tients, for comparison of residue numbers. While
a straightforward implementation of their tech-
nique seems as expensive as residue-to-binary
conversion with the Chinese Remainder Theo-
rem, it remains to be investigated whether a trun-
cated version leads to an efficient approximate
comparison procedure.

Acknowledgement

Careful reading of the manuscript by the ref-
erees has led to a significant improvement in our
presentation. We thank them for their efforts.

References

[I] D.K. Banerji, T.-Y. Cheung and V. Ganesan, A high-
speed division method in residue arithmetic, in: Proc.

C. Y. Hung, B. Parhami /Information Processing Letters 51 (1994) 163-169 169

5th Symp. on Computer Arithmetic (IEEE Press, New [6] S. Kawamura and K. Hirano, A fast modular
York, 1981) 158-164. arithmetic algorithm using a residue table, in: C.G.

[2] P. Barrett, Implementing the Rivest Shamir and Giinther, ed., Advances in Cryptology, Proc. Eurocrypt
Adleman public key encryption algorithm on a 88 (Springer, Berlin, 1988) 245-250.
standard digital signal processor, in: A.M. Odlyzko, [7] C.K. Koc and C.-Y. Hung, Adaptive m-ary
ed., Advances in Cryptology, Proc. Crypt0 86 (Springer, segmentation and canonical recoding algorithms for
Berlin, 1986) 31 l-323. multiplication of large binary numbers, Compuf.

[3] W.A. Chren Jr, A new residue number system division Math. Appl. 24 (3) (1992) 3-12.
algorithm, Comput. Math. Appl. 19 (7) (1990) 13-29. [8] M. Lu and J.-S. Chiang, A novel division algorithm

[4] G. Dimauro, S. Impedovo and G. Pirlo, A new for the residue number system, IEEE Trans. Comput.
technique for fast number comparison in the residue 41 (8) (1992) 1026-1032.
number system, IEEE Trans. Comput. 42 (5) (1993) [9] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and
608-612. its Applications to Computer Technology (McGraw-

[5] C.Y. Hung and B. Parhami, An approximate sign Hill, New York, 1967).
detection method for residue numbers and its [lo] N. Takagi, A radix-4 modular multiplication hardware
application to RNS division, Comput. Math. Appl. 27 algorithm for modular exponentiation, IEEE Trans.
(4) (1994) 23-35. Comput. 41 (8) (1992) 949-956.

