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Abstract

An accumulative parallel counter represents o true
generalization of a sequential counter in that it incorporates
the memory feature of an ordinary counter; i.e., it acds the
sum of its n binary inputs to a stored value. We examine
the design of accumulative parallel counters and show that
direct synthesis of such a counter, as opposed to building
it from a combinational parallel counter and a fast adder,
leads to significant reduction in complexity and delay.
While the mere fact that savings can be achieved comes as
no surprise to seasoned arithmetic designers, its extent and
consequences in designing large-scale (systolic) associative
processors, modular multi-operand adders, serial-parallel
multipliers, and digital neural networks merits detailed
examination. Both simple accumulative parallel counters
and their modular versions, that keep the accumulated
count modulo an arbitrary constant p, are dealt with.

1. Introduction

A parallel counter [SWAR73] has been definec as a
combinational digital logic circuit having » binary inputs
and m =llog, n] + 1 binary outputs, or alternarively,
having between 271 and 2™ — 1 binary inputs for m
binary outputs, where the outputs correspond to the hase-2
representation of the sum of the » input bits x1, x9, ...,
Xn; 1.8., a number between 0 and n. Such parallel counters
have been studied extensively in connection with counting
of multiple responders in associative devices and finding
the sum of a column of 1s in fast parallel multipliers,
with numerous implementation alternatives investigated.

However, the above definition does not represent a true
generalization of serial counters in the sense that the
memory feature of serial counters is not carried over. We
define an accumulative parallel counter (APC) as a
sequential circuit with a single g-bit word of memory
holding, at the end of each counting cycle, the sum of its
previous content and its » single-bit inputs. Thus, in each
cycle, the stored or output count will be incremented by a
value between 0 and n. The sum can be defined to be
modulo 27 or modulo some other arbitrary number g, with
or without a wraparound (overflow) indication outpult.

An APC can of course be designed by combining an
ordinary combinational parallel counter (CPC) with a fast
adder. To design an a-input g-output modulo-p APC, we
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need an n-input CPC (actually n — 1 inputs will do) and a
fast modulo-p carry-propagate adder with inputs of length
max(g, Llogy n) + 1). If modulo-p operation is desired for
p not equal to 27 or 27 — 1, then the fast adder must be
followed by a modulo-p reduction circuit. However,
following the idea of merged arithmetic [SWARS0], a
much more efficient implementation that combines the
two or three needed operations is possible.
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Fig. 1. Sequential and parallel counters.

We discuss accumulative modulo-p parallel counters,
concentrating initially on providing the accumulative
property for the simpler modulo-27 or modulo-(29 - 1)
parallel counters. We demonstrate that such APCs are
only slightly more complex than their combinational
versions. The optimal design and added complexity is
dependent on the relationships between various parameters
(e.g., on whether logy n is much smaller than or
comparable to g or logz p) and on the level of tolerance to
additional delay in reading out the correct accumulated
count. Design options are presented and compared with
regard to speed and cost in each case.

The results are then extended to the case of an arbitrary
modulus p. We show that by adopting a delayed reduction
policy, whereby reading out the correct (modulo-p) count
may involve a small additional delay, such counters can
also be implemented with negligible overhead. Designs
are presented and evaluated for a wide range of the
parameters g, n, and p. All of our designs compare
favorably with n-input, ordinary and modulo-p CPCs and
are considerably more efficient than those obtained by
incorporating the accumulative property after the fact.

‘We conclude by discussing the implications of our results
in several application areas and pointing to possible
directions for future research.



2, Simple Parallel Incrementers

In this section, we discuss the design of (n, ¢) parallel
incrementers with n single-bit inputs xy, x2, ... , Xp
(increment signals), a ¢-bit binary input y,_ ... y10, and
a ¢-bit binary output z4_j ... 2129 which is the sum of y
and the n single-bit inputs modulo 27 or 29- 1. Since
mod-(29-1) addition can be performed by using end-around
carries in intermediate computation steps with no added
complexity, the modular reduction aspect of the design
will be implicit in our discussion. Clearly, an APC is
nothing but a parallel incrementer suitably connected to a
q-bit register. Since this ¢-bit register is the same in all
designs, we can safely ignore it and concentrate primarily
on the design of parallel incrementers.
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Fig. 2. An (n, q) parallel incrementer.

A parallel incrementer can of course be designed by
combining an ordinary CPC with a fast adder. The delay
and cost of such an (n, ¢) parallel incrementer are increased
by the delay and cost of the ¢-bit fast adder, compared to
the respective parameters of an (n - 1)-input CPC (one of
the n increment signals can be accommodated by using the
carry-in input of the fast adder). Overhead of such designs
is quite high for moderate ¢. Direct synthesis of a parallel
incrementer leads to more efficient designs.

We present a synthesis procedure based on full and half
adders (FAs, HAs) when ¢ is not much larger than logs n.
An (n, g) parallel incrementer of this type consists of an
(n — 1)-input CPC and a ¢-bit ripple-carry adder, as shown
for a (16, ¢) parallel incrementer in Fig. 3. The CPC part
of the design is based on a divide-and-conquer strategy:
given two CPCs each with [ inputs, a (2! + 1)-input CPC
is obtained by the use of a ripple-carry adder of length
[logz 1] + 1. Similarly, two such (2! + 1)-input CPCs
can be combined with a (Llogy 1] + 2)-bit ripplecarry adder
to produce a (4 + 3)-input CPC. This procedure is
repeated until a CPC of size 2 n — 1 is obtained.

The delay and cost of an (n — 1)-input parallel incrementer
of this type (in terms of FA/HA levels and their
multiplicity) can be easily derived. The CPC part has
delay and cost [SWAR73]:

Dcpc(n— 1) =2loga(n - 1) -1
Ccpc(n-1)=n-1
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Ccpc(n - 1) is actually between n —~logon—1and n -1,
but we take it to be n — 1 for simplicity. Since the delay
in the computation of the least significant CPC output bit
is Lloga(n - 1)] and the time required for the carry to
propagate in the ¢-bit ripple-carry adder is ¢, the delay and
cost of an (n, ¢) parallel incrementer with simple carry
ripple in the final stage are given by: -

Dpir(n, ) <lloga(n- 1)) + ¢
CPIR(n, @) <n+q-1

Thus, if ¢ is not much larger than log; n, as assumed, the
delay overhead of parallel incrementers constructed in this
manner is considerably reduced compared with those of the
naive design. More importantly, these advantages are
achieved with a simpler, more regular design.

For example, when n is a power of 2 (as is usually the
case in practice), the delay of an (n, ¢) parallel incrementer
is at most only ¢ — logy n FA levels more than that of an
n-input CPC and its cost is about the same because we can
take advantage of unused FA inputs in the CPC to enter
the bits of y. In particular, for ¢ = logy n, no speed
penalty is incurred. In the worst case, when n - 1isa
power of 2, the cost increases by g FAs.
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Fig. 3. Design of a (16, ¢) parallel incrementer.

When ¢ is large and high speed is desired, computation of
the sum, except for its least-significant Llogz(n- 1)J + 1
bits, can be accelerated using standard speedup techniques
(carry-select, carry-skip, etc.), alone or in combinations.

Use of carry-select is particularly attractive in terms of
both speed and cost. The high-order ¢ - ~Llogan - 1)) -1
bits of y are input to an incrementer, with a multiplexer
used to select the (g —Lloga(n — 1)))-bit incrementer result
(including overflow indication) or corresponding bits of y,
based on the carry produced by the position indexed
Liog2(n - 1)J, for output. If the delay of the incrementer,
which operates concurrently with the CPC and the low-
order bits of the final ripple-carry adder, does not exceed
2L1loga(n - 1)) + 1, then we have:

averflow




Dpis(n, g) <2 Lloga(n — 1)) + 2
Cps(r,)<n+(1+a)g-1

In deriving the above, we have used the assumption that a
multiplexer delay is < 1 FA delay. The parameter o << 1
is the product of two factors: the ratio (cost of a 1-bit
2-way mux)/(cost of FA) and 1 -|logy(n - 1) Jg, the latter
factor accounting for the fact that the number of
multiplexers is less than g.

The carry-select approach is faster than the ripple-carry
scheme for ¢ >Llogy(n — 1) + 2. Even a ripple-carry
incrementer used with the carry-select approach provides
this speed advantage for ¢ up to 3 Lloga(n — 1)] + 2; viz,
6 <g <11 with n =16, or 13 < g < 32 with n = 2048.

For even larger values of ¢, our design options include use
of carry-skip to speed up the incrementer (thus allowing its
length to grow even further with the same single-level
carry-select structure), use of 2-level carry-select, or a
combination of these methods. It is doubtful that more
than 2 levels of carry-select will ever be needed in practice.
A carry-skip structure which is allowed a total delay of
21oga(n — 1)J + 1 units can lead to designs with g as
large as (logp n)? bits with no increase in delay and
minimal effect on cost.

3. Modular Parallel Incrementers

In this section, we extend our results for simple parallel
incrementers to the case of modulo-p parallel incrementers,
where the modulus p satisfies 29-1 < p < 29. An (n, ¢; p)
modular parallel incrementer computes the ¢-bit modulo-p
sum of the n single-bit increment signals and a g¢-bit
binary input. An (n, q; p) modular parallel incrementer
can be realized by using an (n, ¢) parallel incrementer
followed by a modulo-p reduction circuit [PARH94].
However, as before, a merged design significantly reduces
the delay and cost overheads.

Assuming ¢ > log n, the modular reduction is essentially
equivalent to detecting if the sum has exceeded p — 1 and to
subtract p from it (add 29 — p to it) if it has. Overflow is
detected by observing the carry-out.
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Fig. 4. Modulo-p parallel incrementer.

A straightforward implementation of a modular parallel
incrementer consists of an (n ~ 1)-input CPC followed by
two g¢-bit ripple-carry adders and a g-bit multiplexer: the
first ¢-bit adder adds the output of the CPC and a single-bit
increment signal (only needed if n is a power of 2) to the
additive binary input; the second ¢-bit adder adds the
constant 29 — p to the result of the first one; the
multiplexer selects the result of one of the g-bit adders
based on the sign of the second one.

The added cost for an (n, ¢; p) modular parallel incrementer
with respect to an (n, g) parallel incrementer is the cost of
a g-bit ripple-carry adder and a ¢-bit multiplexer; the delay
overhead is less than 2 units (1 FA delay plus a
multiplexer delay). The speedup methods discussed in
Section 2, while applicable to this design, make it
somewhat more complex. We are thus motivated to seek
other performance improvement methods for both simple
and modular APCs.

4. Improving the Performance

The designs of simple or modular parallel incrementers
presented so far are efficient for moderate n and ¢ in that
they involve negligible cost overhead. However, when n
or ¢ becomes larger, their delay or complexity will
increase. In this section, we introduce a technique called
delayed readout and present several APC designs, with
small overhead, that are suitable for applications that can
tolerate a small additional delay in reading out the correct
accumulated count. We also deal with pipelined designs.
The two techniques essentially yield efficient designs for
the cases of large ¢ and large », respectively.

4.1. APCs with Delayed Readout

We first present a simple modulo-29 APC with delayed
readout. The accumulated count is kept in carry-save form,
which we call internal count, rather than fully computed
within each cycle. The output of the CPC part and the
stored internal count are added by a carry-save adder (CSA)
to get the new internal count within each cycle. So, only
1 FA delay, plus the register setup time, is added to the
delay of the CPC to achieve the accumulative property.
‘When there is need for reading out the accumulated count,
the correct external count is obtained by adding the two
components of the carry-save internal count using a carry-
propagate adder of length ¢. The added complexity
compared with the simple APC design is a register and a
carry-save adder, both of length ¢. In return, the internal
delay (not counting the readout operation) is reduced to 2
Lioga(n - 1)] FA delays, which is only one FA delay
larger than that of an n-input CPC and is independent of g.

It is also possible to take advantage of the fact that the
high-order bits of the count are updated relatively



infrequently. Thus, one can keep these bits in a counter of
the type proposed by Vuillemin [VUIL91]. When a
readout is needed, carries in the carry-save part are
assimilated, leading to the determination of the carry going
into the high-order section. This carry then selects either
the original count of the incremented count for output.
Both delay and complexity are thus reduced. The optimal
division of the word-length ¢ into the carry-save part and
the upper (counter) part is technology-dependent.

Modular operation increases the complexity somewhat.
With either operation mode discussed above, the correct
modular count is impossible to maintain without
propagating all carries. The carry-out can be handled by
ignoring it and instead adding 29 — p to the internal count
(this requires an additional CSA level and a multiplexer).
With a carry-save internal count added to the CPC output,
the maximum possible sum of 29 -1)+ (29-2)+n
may exceed 4p in the worst case. Thus, modular reduction
at readout can add significantly to the implementation cost
and may be unacceptable in some applications.

4.2. Pipelining Considerations

A parallel incrementer or APC may be used to accumulate
the count for multiple sets of n inputs. The multiple sets
could be independent, resulting from a computation in
which things to be counted are obtained in multiple stages,
or due to input partitioning in order to reduce the
implementation cost of the APC. Pipelining the multiple
inputs is a natural way to reduce the total APC delay.

The pipelined version of our modulo-29 APC uses the
delayed readout method. Full-adder outputs are connected
to latches. Each sum bit is connected to a single latch,
whereas each carry output (except in the last level) is
connected to two latches. An appropriate number of
latches are inserted on each line between the CPC part and
the CSA in order to equalize the delay from input to the
CSA for all bits. In this way, once the two CSA registers
(the bottom two rows of latches) are read out and cleared,
the next computation can proceed with no intermediate
delay. Since the feedback loop has merely one level of FA
delay, such APCs can be pipelined efficiently. The
construction of a pipelined (12, 6) APC is illustrated in
Fig. 5. This design can operate at a higher throughput
than a pipelined partial CSA tree [KORE93] which has a
feedback loop with 2 FA delays.

The pipelined design of two-level accumulative parallel
counter can be realized by using a pipelined internal
accumulative parallel counter, an external register of length
4, two buffers of length ¢’, and a reduction circuit consist
of several carry-propagate adders of length g. One carry-
propagate adder suffices when modulus p = 29, Three or
four (five) adders are required for the reduction circuit when
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29 +29%1 4 n - 32 2p or 3p (4p), while in most cases,
two adders suffice unless 29, 29, n, and p are comparable.
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Fig. 5. Design of a pipelined (16, 6) APC.

The buffers are used to keep the values of internal registers
whenever a read-out or reduction operation is needed.
When the values of the internal registers are written into
the buffer, the two internal registers are cleared. Then the
reduction is performed and the result is stored in the
external register of length ¢ and/or read-out. The operation
of counting does not need to be stopped when the
accumulated count is read out. However, the last two rows
of latches in Fig. 5 must be provided with a reset line so
that the counter can be cleared when needed.

5. Some Applications

Parallel incrementers and APCs find applications in many
areas, including modular or serial-parallel multipliers,
(modular) multi-operand adders [PIES94], digital neural
networks [ZHAN91], and large-scale systolic associative
processors [PARH92].

In designing high-speed multipliers based on column
compression (finding the sum of bits in one column of the
partial products matrix), the role of APCs and parallel
incrementers is quite similar to that of additive multiply
modules, used to design highly regular multiplication
networks with skewed layout [HWAN79], in that they
allow uniform synthesis with identical building blocks,
regular connections, and little need for external glue logic.

In digital neural networks and threshold logic applications,
a parallel incrementer with its additive input set to the
negative of the threshold can be used to evaluate the firing
condition, since the sign of the output would directly
indicate if the number of active inputs exceeds the
threshold. Unequal input weights can be handled cither by
generalizing our designs to include multiple input columns



or, in the case of weights that are small integers, using
fan-out or multiple sequential passes.

Finally, systolic associative processors (APs) can make
use of our designs for counting the multiplicity of
responders following a search operation. Systolic APs are
built from small building-block APs that are connected
into a linear array, a 2-D mesh, a binary tree, etc. To
determine the number of responders, a count instruction is
pipelined through the system. As the instruction is
forwarded from one module to the next along the pipeline
path, it carries the partial count up to that stage (point in
linear array, diagonal cut in 2-D mesh, or level in tree).
The receiving module must then combine information
about its own responders with this partial count before
forwarding the result.

6. Conclusion

We have defined parallel incrementers and APCs as true
generalizations of ordinary incrementers and sequential
counters. We use the term accumulative parallel counter,
rather than the more appropriate parallel counter, for such
devices in order to avoid confusion and to honor the wide-
spread use of the latter to designate an (n, Lloga nl + 1)
parallel incrementer, with its y input fixed at 0. Our design
strategies and examples are not meant to exhaust the space
of possible design approaches but rather as a beginning in
the discussion of these novel devices.

Further research may deal with many issues, including:
refinement, extension, and augmentation of the techniques
presented; detailed analyses of delay, cost, and associated
tradeoffs; investigation of usefulness and impact in other
application areas; and possible generalization to
accumulative parallel compressors.
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