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Abstract

Multiple sensors are used for much the same reasons as
redundant computation channels; viz to tolerate certain
types of error, incompleteness, inaccuracy, andlor tardiness
in the data supplied by individual system elements such as
sensors or processors. Data fusion in multi-sensor systems
is investigated by numerous signal processing researchers.
The problem of “voting” or, more generally, integrating
results from multiple identical or diverse computations has
been studied by computer scientistslengineers interested in
fault tolerance and distributed computing issues. With very
few exceptions, these groups publish their results in
disjoint conferences and journals. Thus, there is little
interaction and cross-fertilization between the two efforts.
We review common aspects of the two problems and show
how a data-driven methodology may offer potentials for
tackling both problems within a unified framework.
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1. Introduction

Sensor processing is needed in environmental monitoring,
intelligent manufacturing, process control, military
surveillance, medical imaging, robotics (e.g., handling of
hazardous material), and remote sensing [TYEN95].
Sensors can range from very simple (e.g., metal or smoke
detector, barometer) to highly complex (e.g., identifying
obstacles in the path of a robot).

Data obtained from sensors may be erroneous, incomplete,
inaccurate, or tardy for a variety of reasons. These can be
classified roughly into four categories:

(1) Inherent limitations of sensor capabilities,
(2) Permanent or intermittent malfunctions,

(3) Communications-related errors or delays, and
(4) Anomalies or faults in storage/processing.

A good example of (1) is when one uses two sensors to
obtain target position data: one with poor elevation and
azimuth precision but with relatively accurate range (radar)
and another with complementary characteristics (FLIR =
forward looking infrared). Another example is when the
coverage of a sensor (e.g., area sensed) is limited and
multiple sensors are needed to provide the desired coverage.
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Limitations are evaluated with respect to the level of
certainty required. A particular sensor may be adequate for
one application (uncritical situation or unsophisticated
adversary) but deemed to be limited for another (battlefield,
advanced jamming methods). As examples of (2), sensor
unavailability may result from physical faults, jamming,
or overload in the case of non-dedicated sensors. Both of
the aspects (1) and (2) are usually handled through sensor
replication while (3) and (4) are dealt with by means of
information coding and redundant computations.

Sensor replication gives rise to the problem of data
integration or fusion. Traditionally, researchers dealing
with multi-sensor data fusion have assumed that the
communication, storage, and processing subsystems are
highly reliable and have focused only on algorithms for
integrating data from homogeneous or heterogeneous
collections of potentially faulty/inaccurate sensors.

On the other hand, researchers dealing with redundant or
replicated computations have, for the most part, assumed
that the input data is perfect and that the only sources of
errors or inaccuracies are faults in the data communication,
storage, and processing subsystems and perhaps the
numerical characteristic of the algorithms being used (e.g.,
with regard to the accumulation of roundoff errors).

In this paper, following brief overviews of the two
disciplines, we discuss the similarities between multi-
sensor data fusion and multi-channel computation, point to
the need for closer interaction between the two disciplines,
and suggest that a data-centered or data-driven methodology
can be used as a framework for dealing with both
problems. The methodology fosters a unified treatment of
data errors, inaccuracies, and tardiness regardless of the
underlying cause (data generation/collection, transmission,
storage, manipulation, or interpretation) and explicates the
optimal allocation of resources for dealing with various
error sources. It also allows the designer to view varied
redundancy features or techniques, from data and design
diversity to re-ry and replication, as instances of a general
data reliability enhancement process, thus facilitating
comparisons and tradeoff studies.



2. Multi-Sensor Data Fusion

The sensor data fusion community, which has grown
tremendously since the emergence of early rudimentary
systems in the late 1970s, is fragmented and in search of a
unified approach [HALL92]. One segment of this
community is concerned with military applications and
communicates primarily through the Tri-Service Data
Fusion Conference and meetings on automated target
recognition. Within this segment, the need to interrelate
and understand diverse activities carried out under data
fusion led to the formation of the Data Fusion Sub-Panel
of the Joint Directors of Laboratories Technical Panel for
C3 in 1984 [WALT90]. The non-military segment, on
the other hand, has a more theoretical bent and
communicates via journals on control or robotics and the
SPIE Conference on Sensor Fusion, among others.

Research in data fusion is multidisciplinary and uses
techniques from signal processing, statistics, pattern
recognition, and information theory, among others. Hence,
“data fusion is not a discipline in the same sense as ...
signal processing or numerical methods. ... Well-defined
techniques, terminology, and a professional community do
not yet exist” [HALL92). A variety of results/techniques
from decision or detection theory (e.g., Bayes’ method),
estimation theory (least-squares, max-likelihood),
association or correlation, and uncertainty management
(evidence/belief theory, Shafer-Dempster reasoning, fuzzy
calculus) provide the theoretical bases for system
implementations [WALT90]. In view of the above, it is
quite difficult to characterize multi-sensor data fusion in
order to focus on the common underlying properties.

Fig. 1 represents an attempt to capture the main elements
of a multi-sensor data fusion system. The multiple
sensors used may be similar/competitive (e.g., the two
eyes in a human) or diverse/complementary (e.g., visual,
tactile, and auditory sensors). If the sensor data have no
common feature, fusion is clearly impossible. At the
other extreme, if all features of the multiple sensors are
common, then fusion reduces to filtering out the variations
in measurement [ROTH91]. In general, multi-sensor data
fusion may be done in a hierarchical manner, with fused
data from one level forming the raw data for the next level.
However, in this paper, we will focus only on one level of
integration as depicted in Fig. 1. Each of the elements in
Fig. 1 is briefly described below.

Sensors have been classified based on their decision
strategies into hard- and soft-decision sensors. The former
process their incident signal data and utilize decision rules
to declare target identity while the latter may provide
partial evidence for identity upon detection of signals.
Soft-decision sensors “accumulate and integrate evidence,
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reporting partial evidence and associated uncertainty (via
probabilities, fuzzy membership functions, confidence
factors, or evidential intervals)” (HALL92]. Data provided
by a sensor comes in varying forms (waveform, integer
designating a class, numerical vector, image), and usually
includes information about the sensor itself; current state
(e.g., pointing angle), configuration, health, etc.
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Fig. 1. Simplified view of multi-sensor data fusion.

Pre-processing or filtering is often needed to reduce the
volume of data which may otherwise overwhelm the data
processing part, but its presence is optional. The low-
level processing stage, labeled “alignment & correlation”,
consolidates the data by using spatial and temporal
references, unit conversions, pairwise association of
observations (a quadratic-time process), and
position/fidentity determination. The high-level processing
stage, labeled “assessment & detection” in Fig. 2,
interprets the output of the previous stage and makes
inferences in the context of system structure and goals
(e.g., threat assessment in a battlefield).

Finally, the output of a multi-sensor data fusion system is
presented in the form of a decision which may be further
processed externally, used to directly control some system
components (e.g., adjust or reorient the sensors), or tied to
other systems (€.g., warning or response units). ‘

3. Multi-Channel Computation

Muiti-channel computation is an established method of
ensuring reliable results despite the occurrence of failures
in computational elements. The method has its roots in
an early paper by von Neumann [VONNS6], with many
extensions, enhancements, and implementation strategies
reported since (see, e.g., [PARH94] for a survey of fault-
tolerant computing and [PARH94a] for background on
replication and voting). Results in this and other aspects
of reliable computation are reported in the annual
Symposia on Fault-Tolerant Computing [FTCSyr], now
in the 25th year, and several other computer conferences.
Of particular relevance to multi-sensor data fusion are the



symposia on (reliable) distributed systems in which topics
such as tolerating site and link failures, and reaching
consistent decisions in the presence of such failures, are
prominently featured.

Research in multi-channel computation is highly focused,
with the underlying theoretical framework and the needed
terminology firmly in place. Early research in this area
assumed identical, replicated computation channels, and
was aimed primarily at the tolerance of operational
hardware faults. This limited the role of the data
combining unit (the voter) to bitwise comparison of data
and the resolution of minor timing differences. More
recently, with the higher emphasis placed on software-
based redundancy methods and the introduction of diversity
in multiple computation channels, in an attempt to deal
with design flaws as well as operational faults, use of
complex voters has become quite common. Such voters
deal with higher-level data objects and thus require
attention to differences in accuracy, partial errors, and
incompleteness of data. The problems faced by such
complex voters are almost identical to those in data fusion.

Fig. 2 captures the main elements of a reliable multi-
channel computation scheme. The multiple processing
channels used may be similar or diverse, with consistency
checking and voting becoming more complex if they are
diverse. Acceptance tests are optionally applied to
computation results in order to filter out clearly incorrect
results. This testing, if present, may then be followed by
data compression to obtain a signature for each channel in
an attempt to reduce the complexity of the subsequent
phases. Consistency checking is again optional but is
frequently found in modem voting schemes in an attempt
to remove non-conforming results prior to combining
them by methods such as averaging, e.g., in which a
single input that is “way off” may greatly influence the
output. The voting block is the heart of this system and
is the element whose internal design and operation most
distinguishes the particular scheme used. Thus, the study
of voting methods has become a prime focus in this area.

Data Astributes System Parts
Processing
Suspect
Acceptance
Testing
Reasonable
Consistency
K Checking
Consistent
Voting or
Selection
Reliable
ut

Fig. 2. Elements of multi-channel computation.
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The output of a multi-channel computation scheme is
frequently used as input for another computation phase.
Thus, to prevent the consistency checker and voter from
becoming the weak links whose failure would interrupt
correct system operation, replication of these parts has
been suggested. Such a system would yield the results in
multi-channel format and would thus allow the cascading
of several computations without the danger of catastrophic
propagation of single-point errors.

4. A Unified View

Researchers in both multi-sensor data fusion and reliable
multi-channel computation are becoming increasingly
aware of the need for unifying theories. For example, it
has been observed that “while the term data fusion is
widely used, its meaning is subject to varying
interpretations”, but “data fusion has a common basis in
theory, which is independent of application” [WALT90].
On the other side of the fence, the need for a generalized
formulation of voting to cover the wide variety of methods
in current use has been duly noted [LORC89]. It is our
contention that we should go beyond separate unification
on each side and aim instead for unifying theories that
would remove the fence. A superficial glance at Figs. 1
and 2 (which are admittedly drawn to highlight the
similarities) should be sufficient to convince the reader that
in-depth comparison of such systems is worth the effort
and may lead to advances in both areas. Fig. 3 is a merged
version of Figs. 1 and 2, using more neutral terminology.
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Human Data Sink
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Fig. 3. Unified model of multi-sensor data fusion and
reliable multi-channel computation.

Perhaps the most important system component in Fig. 3
from the point of view of unifying the two areas is the
box labeled “adjudication”. This term was coined by some
researchers in fault-tolerant computing in order to avoid the
restrictive meaning often associated with “voting”. Others
have preferred to use “generalized voting”. The human
interface, which is absent in Fig. 2 has been added to
account for the fact that advanced voting techniques often
involve adjustable parameters.



5. Example Applications

In this section, we take two example applications from the
multi-sensor data fusion literature and formulate them in
terms of generalized voting. Our goal is to show that
some techniques from one area can be useful in the other.
In addition, we discuss an example application where both
techniques are applied in a complementary manner.

The first example is from p. 93 of [WALT90]. Two
sensors produce ambiguity sets following their attempt to
recognize the class of a target. Sensor 1 supplies the
ambiguity set {4, 5, 12, 18} while the second sensor
provides {12, 21, 32, 33}. Combined, the two sensors
unambiguously identify the target as being in class 12.
This type of fusion is actually a special case of approval
voting [PARH92], [PARH94a). Each of the multiple
computation channels provides as output a set of approved
values (e.g., system states that are deemed safe following a
detected fault). The approved values, with each item or
each set perhaps having an associated weight or confidence
level, are combined through an approval voting algorithm
to identify the best value or set of values.

The second example is somewhat more complex and has
been the subject of extensive research in multi-sensor data
fusion [MARZ90], [IYEN94], [IYER95]. Assume that
multiple sensors provide real-valued scalar data. A non-
faulty sensor §; provides the real-valued output x;. With
knowledge of sensor accuracy, one can define an interval
[xi. — Ax;, x;. + Ax;)] as containing the correct or intended
sensor data. The objective is then to obtain a value or an
interval of values that represent the best estimate of the
sensed quantity. Again, the multiple intervals can be
viewed as sets of values approved by the sensors, with
simple or weighted voting used to fuse the data. Faulty
sensors are properly handled as their intervals likely do not
overlap with those of correct sensors (correct conclusion is
reached with very high probability even if they do). Itis
interesting to note that many of the results published in
the above references can be obtained directly and simply
from the approval voting interpretation. Conversely,
some of the bounds derived in these references on the width
of the fused interval can be applied to analyze the precision
and fault diagnosability in interval voting applications.

Consider now either of the above problems in a situation
where the processing part of the sensor fusion system is
also subject to unavailability or failure. This motivates
distributed multi-channel processing of sensor data, with
the outcome being multiple fusion results for use/
interpretation by humans or another reliable multi-channel
system. In this context, voting and fusion become
indistinguishable, as it is difficult to differentiate between
sensor failures/inaccuracies and computation errors.
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6. A Data-Centered Approach

In this section, a data-centered or data-driven methodology
is introduced that can be used as a framework for dealing
with both multi-sensor data fusion and reliable multi-
channel computation. The desirability of associating a
confidence level with each data item has been noted in both
communities [PARR91], [PARH91]. Even though
obtaining or assigning confidence levels is a non-trivial
problem, this difficulty should not discourage us from
seeking appropriate methodologies.

Our proposed data-driven methodology places the focus on
data correctness/accuracy rather than the reliable operation
of the subsystems producing or handling the data. To
obtain the correctness probability for a given data object at
particular points along a given data path, a history of
transformations and operations (with attendant reliabilities)
leading from known input conditions to that object is
needed. A convenient way to keep such histories in a
readily accessible form is to associate a dependability tag
(d-tag) with each data object as an indicator of its
correctness probability and to manipulate such d-tags to
reflect the changing histories. Thus, a data object D and
its d-tag d will comprise a tagged object <D, d> which is
transformed, in both the data and tag parts, as it is
processed or moved within the system.

We can essentially classify operations performed on data
objects into those that lower and those that raise the
dependabilities. Normal manipulations are dependability-
lowering in the sense that given dependability levels " and
d” for two data objects D" and D", the dependability level d
that can be associated with the result D of the binary
operation b(D’, D") is no more than min(d’, d"”) and is
often lower. Dependability-raising operations . are
mechanisms built into the system in order to restore the
gradually deteriorating dependability values to acceptable
levels for external use or to enable computations to
proceed beyond certain dependability checkpoints that are
strategically placed along the computation path(s).

I Lependability level

Tnput

d ------------- A- (.;c- e.p- t; ‘; lle l: .
- - t: .
Progress of
- : : computation
START Maiched Passing of END
comparison acceptance[
o voling tes
Fig. 4. Examples of dependability variation.



The challenge in such a dynamic approach is to judiciously
intermix dependability-lowering and dependability-raising
operations in a way that guarantees a specified level of
dependability for computation results with minimal cost.
The author has studied issues that are important in this
optimization task and shown how such a data-driven
methodology facilitates the formulation and solution of
problems in multi-channel computation. It is our belief
that the same method is applicable to data fusion, which
can be viewed simply as a dependability-raising operation.
Once the two problems are cast in the same framework,
optimal resource allocation for data quality enhancement
becomes possible [BALL89]. This in itself would be
adequate motivation to pursue unifying methods.

7. Conclusion

We have reviewed multi-sensor data fusion and reliable
multi-channel computation in order to point out their
similarities and the benefits of a unified approach to their
treatment. Clearly, this preliminary work can be extended
in many directions (see, e.g., [PARH95], [PARH95a])).
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