Robust Shearsort on Incomplete Bypass Meshes

Behrooz Parhami and Ching Yu Hung

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

ABSTRACT

An incomplete 2-D bypass mesh is a rectangular mxn grid
of p processing elements (PEs) in which faulty PEs have
been bypassed in their respective rows and columns.
Thus, two PEs that are separated only by faulty PEs in
the same row or column become neighbors. We show
that given O(log m) PE faults in each column, a robust
version of the sorting scheme known as shearsort has the
same O(m + nlog m) asymptotic time complexity on such
an incomplete mesh as on a complete mesh. We also
demonstrate how the ability to compute on incomplete
meshes is relevant to fault tolerance by presenting
reconfiguration schemes to convert meshes with faulty
PEs into incomplete bypass meshes.

Keywords: Algorithm complexity, Defect tolcrance,
Fault tolerance, Mesh with row and column buses,
Mesh-connected parallel computers, Parallel sorting,
Separable row and column buses, sorting algorithms.

I. INTRODUCTION

A two-dimensional mesh-connected computer, or
2-D MCC, consists of p = mn processing elements
(PEs) arranged in an mxn grid (m rows, n
columns), where horizontally and vertically
adjacent processors are connected via local
communication links (E, W, N, S). Because of
their potential for dense VLSI realizations, 2-D
MCCs have become popular and numcrous
researchers have studied their properties pertaining
to efficient algorithm implementation and fault
tolerance. With the notable exception of adaptive
routing algorithms [LIND91], the two issues of
algorithm design and fault tolerance are dcalt with
separately in that algorithm developers assume a
complete (fault-free) mesh and fault tolerance
techniques aim at restoring such a complete mesh
by reconfiguring a faulty one.

With respect to algorithm implementation,
researchers have shown how basic building-block
computations and data routing primitives can be
programmed through efficient (pipelined) use of
the E, W, N, S connections [LEIG92], [CYPH94].

1063-7133/95 $4.00 © 1995 IEEE

304

It has also been observed that the primary
disadvantage of a standard mesh or torus is that the
number of steps required by most algorithms is
lower-bounded by its diameter; i.e., any non-trivial
algorithm has time complexity Q(m + n).
Consequently, many authors have proposed
meshes augmented with broadcast buses and other
global communication facilities (e.g., [PRAS87],
[SERR93]) or algorithms that take advantage of
the less distance-sensitive wormhole routing
scheme [KIMD94].

As for fault tolerance, the main focus has been on
methods that can salvage a smaller working mesh
from a larger one that contains faulty PEs or links
[NEGR86], [DAVI94]. Usually, an mxn mesh with
spare rows/columns is converted to an m'X n’ mesh
(where m’ < m and n' < n) using embedded
switching mechanisms, although certain low-
redundancy architectures and more efficient
shared-spare schemes have also been considered.
The main reason for the focus on restoring a
complete mesh has been that both main
application areas, viz defect tolerance and systolic
numerical computation, have traditionally required
the availability of a complete working mesh.

In this paper, we take a different approach and
investigate how much fault tolerance can be
achieved through regular mechanisms in MCCs
such as separable row/column buses, originally
added to improve their performance for certain
global computations, or bypass mechanisms
included to reduce the data routing latency. We
do this by focusing on a particular “robust”
sorting algorithm (adapted from shearsort
[SCHES6], [SCHES89]) and showing that it runs
with the same asymptotic time complexity on
incomplete bypass meshes as on complete MCCs.
Our ultimate goal is to characterize the extent of
fault tolerance available and the corresponding
performance/dependability tradeoffs.

A key assumption throughout the paper is that a
fault-free PE can detect if any of its neighbors has
failed and that a link fault is detected by a fault-
free PE at either end. Faults are assumed to be
permanent and diagnosis off-line. While we do
not wish to discount the difficulty of complete and
prompt fault detection and diagnosis, a
comprehensive treatment of this problem is
beyond our scope here [HOSS89], [SOMA92].

The remainder of this paper is organized as
follows. In Section II, we consider abstract MCCs
in which faulty PEs can be detected and bypassed
without worrying about how the bypassing is
actually accomplished. We describe the robust
shearsort algorithm in Section III and prove its
convergence in Section I'V. Next, we discuss the
worst-case and average-case performance of robust
shearsort in Sections V and VI, respectively. Fault
tolerance implications of the parallel sorting results
and hardware issues are dealt with in Section VII.
Section VIII contains our conclusions and
recommendations for further research.

II. INCOMPLETE BYPASS MESHES

Certain applications do not need the complete
connectivity of 2-D MCCs for efficient handling
but rather treat the mesh as a logical 1-D array
with better communication latency characteristics
than a physical 1-D array. For example, if data is
to be sorted, it is not essential that a complete mxn
mesh be available. As long as the faulty PEs are
detected, disabled, and bypassed, it may be
possible to perform the required data comparisons
and movements that would eventually lead to
sorted order. Many geometric problems on point
sets [AKLS93] also fall in this class.

Accordingly, we assume that any faulty PE can be
bypassed in its respective row/column by setting
certain routing switches. As an example, in the
4x4 MCC containing 3 faulty processors shown in
Figure 1, bypassing of the faulty PEs along the
rows and columns leads to the configuration of
Figure 2. Note that in Figure 2, bypassing is
assumed to have occurred only in horizontal or
vertical direction. Thus, the faulty PE in the
upper-right comer of Figure 1 is not bypassed to
connect PEs 2 and 7, even though this would have
been quite feasible. The reason is that such
horizontal-to-vertical bypass connections add
complexity to the PEs and to most algorithms and
would thus tend to nullify the gains resulting from
shorter graph-theoretic distances.

Figure 1. A 2-D mesh-connected computer
with 3 faulty processors.

Figure 2. Incomplete bypass mesh
corresponding to Figure 1.

In all cases, we will assume that the incomplete
mesh remains connected. Thus degenerate cases,
such as the one in which processors 1, 3, 4, 6, 9, 11,
12, and 14 in the 4x4 mesh of Figure 1 are faulty,
will not be allowed. However, we do not limit the
number of faulty PEs a priori. Thus, extreme
cases with a large number of faults, such as the one
shown in Figure 3, will be allowed. We will see that
our sorting algorithm runs correctly on such
unlikely configurations, albeit at highly reduced
performance. A variant of the incomplete bypass
mesh model (Figure 4) leads to higher efficiency
for our robust shearsort algorithm. This variant is
obtained through our normal bypassing scheme if
the original mesh contains “snakelike” edge
links. Since this variation does not increase the
node complexity, we will use it freely in the
remainder of this paper.

It is interesting to note that regardless of the
number of bypassed (faulty) PEs, the diameter of
an incomplete mxn bypass mesh does not exceed
m +n — 2 [PARH94]. This result is non-trivial in
view of extreme cases such as the one depicted in
Figure 3. Due to the above upper bound, the
possibility of efficient O(m + n)-time algorithms

305

on incomplete meshes is not ruled out by its
diameter. In fact, it can be shown that semigroup
and parallel prefix computations can be performed
in asymptotically optimal time on such incomplete
meshes and that robust data routing algorithms can
be devised that suffer virtually no performance
degradation compared to those running on a
complete mesh [PARH94].

Figure 3. An extreme case of an incomplete
bypass mesh.

Figure 4. Incomplete bypass mesh with
snakelike edge links.

Here we focus on sorting data on incomplete
bypass meshes. Clearly, a standard mesh sorting
algorithm is inapplicable because all of its required
comparisons and swaps cannot be performed
directly. An attempt {0 simulate a complete mesh
on an incomplete bypass mesh through load
redistribution and establishment of multi-link
“virtual channels” among nodes that previously
contained neighboring elements leads 10 excessive
overhead and unbounded deterioration of
performance for certain fault patterns. Thus, we
opt for developing a robust algorithm that would
run directly on an incomplete bypass mesh. We
assume, for the sake of efficiency, that the
incomplete bypass mesh is augmented with
“snakelike” edge links, as shown in Figure 4.

306

III. ROBUST SHEARSORT

The shearsort algorithm [SCHE86], [SCHE89] is
an elegant, but suboptimal, sorting algorithms for
2-D MCCs that works on the basis of alternating
row and column sorts. Assuming a single data
item per PE, the sequence row-sort (in alternating
or snakelike order) followed by_column-sort (top-
to-bottom) is repeated |-logz m | times and at the
end, a row-sort step, in left-to-right or snakelike
order, completes the process. This leads to O((m +
n) log m)-time complexity. A more efficient
version, that replaces the ith column sort by m/2i
steps of odd-even transposition (slightly more if m
is not a power of 2) results in O(m + n log m)
complexity. The original proof of shearsort’s
convergence and time complexity are based on the
zero-one principle [KNUT73] and the fact that
with each pair of row/column sorts, half of the
remaining “dirty” rows (containing both 0 and 1
elements) are “cleaned up” (contain either only 0
or 1 elements, but not both types). It is easy to see
that the proof does not extend to an incomplete
bypass mesh in general.

An adaptation of shearsort, dubbed “robust
shearsort” for its ability to work in the presence of
faulty PEs and links, works on incomplete bypass
meshes of the type shown in Figure 4 (i.e., with
snakelike edge links). As in ordinary shearsort,
rows and columns are alternately sorted without
regard to the presence of faulty PEs. In Section
IV, using the zero-one principle, we will prove that
in O(log m) steps, this process converges to an
almost sorted array of Os and 1s, the unsorted
portion being confined to a subarray of small
height h, where k is related to the maximum
number of faults in any given column. This hxn
subarray is then sorted by odd-even transposition
along the snake spanning the entire mesh in time
O(hn). If h is O(log m), the overall O(m + nlog m)
complexity of Shearsort is preserved.

The exact worst-case complexity of optimized
shearsort is 2m + n(log, m + 1) + log, m. Thus, for
a given number p = mn of processors, the optimal
mesh architecture with regard to optimized
shearsort is non-square, with m selected to satisfy p
= m¥log, m. Similarly, robust shearsort has worst-
case time complexity 2m + n(log,m+ h) + hlog, m
(see Section V) and has a corresponding optimal
non-square architecture whose aspect ratio
depends on the expected number of faults. When
no fault exists in the processor array, we have 2=1
and robust shearsort performs exactly as ordinary

shearsort. With O(1) faults in each column, we
have h = O(1) and robust shearsort is only slightly
slower than ordinary shearsort. The slowdown
factor remains bounded by a small constant as
long as there are O(log m) faults in each column,
leading to A = O(log m).

Thus, robust shearsort is very efficient in the most
common cases and offers graceful degradation as
the number of faults grows. With a constant
failure rate, the number of faults in each column,
and thus A, is actually O(m). With O(m) faults, the
time complexity of robust shearsort deteriorates to
O(mn). However, this drawback is only of
theoretical significance in view of the extremely
small constants involved.

IV. CONVERGENCE OF ROBUST
SHEARSORT

In this section, we look at one iteration of
shearsort, consisting of a row sort step and the
subsequent column sort step. Using the zero-one
principle, we demonstrate how the number of dirty
rows is reduced from d to 4’ in one iteration (and
thus from m to some small quantity £ over many
iterations), hence establishing the convergence and
allowing us to deduce the worst-case performance
in Section V.

For now, let the number d of dirty rows before the
iteration be even. The row sort does not affect the
number of dirty rows so it remains d right before
the column sort. Let us consider only the d dirty
rows of the mxn mesh, numbered 0 to d - 1, for
the moment. This dxn dirty submesh is
partitioned into two planes. The even plane
consisting of all even-numbered rows and the odd
plane consisting of all odd-numbered rows; each is
of size df2xn.

We define f,(i) as the number of 1s in Column i of
the even plane and g,({) as the number of 1s in
Column i of the odd plane. Similarly f,(i) and
g.(i) are defined as the number of faulty PEs in
Column i of the even and odd planes, respectively.

When there is no fault in the dxa submesh, after
the row sort according to snake-like ordering, f,(i)
is a nondecreasing function of i and g,(i) is a
nonincreasing function of i. These are also true
after the column sort, since the column sort does
not change the count of 1s in any column. With
faulty PEs, the above may not hold. However,
since it is always possible to replace all Xs (values
in faulty PEs) with Os and 1s in such a way that the

sorted order of rows is preserved, there must exist
functions (i) and g’.(i), satisfying 0 < f".() < f.(i)
and 0 < g°,(i) < g,(i), such that () + f () is a
nondecreasing function of {, and g,() + g'.({) is a
nonincreasing function of i. Intuitively, f’ and g’
denote the number of Xs that were replaced by 1Is
in the even and odd planes, respectively.

These observations lead to the following result.

Lemma 1: With some faulty PEs present in the
submesh, we have for a < b, f(a) < f,(b) + f(b) and
8:(b) < g,(a) + g(a).

Proof: Immediate from the four inequalities fi(a)
+f4a) Sfi(b) + b)), fub) S[Ab), 8(b)+g'.(b)
< gi(a) + g'Aa), and g',(a) < g.(a). §

The following lemma relates the number d’ of
dirty rows remaining after the column sort to f,(i)
and g,(¥) that we have defined.

Lemma 2: The number of clean 1 rows after the
column sort is at least min,{f,({) + g,(i)]. The
number of clean 0 rows after the column sort is at
least d - max[f,(i) +£.() + g,(i) + g.()].
Consequently, the number d’' of dirty rows
remaining after an iteration satisfies d’ < max;[f,(i)
+ £ + &) + £,0)] — miny[£,(i) + g,(D].

Proof: The first statement clearly holds true;
min,[f,(i) + g,(i)] is the minimal number of 1s
present in any column. If we have no fault in the
last min,[f,(i) + g,(i)] rows, then there would be
exactly this many clean 1 rows. If there are faulty
PEs in these rows, 1s in some of the columns stack
higher and we may end up with more clean 1 rows.
Similarly, the number of clean 0 rows is derived as
min[(d/2 - /() - D)) + (42 - g,(i) - g.(D))] =
d - max;[f,(i) + £,() + g,()) + g.(i)]. The third
statement follows from the first two. il

Theorem 1: Let x = max(max; f,(i), max; g,(i)) be
the maximum number of faults in one column of
the even or odd plane. Then, the number d’ of
dirty rows remaining after one iteration of
shearsort is related to the initial number 4 of dirty
rows by d’'<d/f2 + 2x.

Proof: Assume that the maximum of f,({) + f,({) +
£:()) + g.() occurs in Column g and the minimum
of £,(i) + g,(i)) occurs in Column b. There are two
cases to consider:

Case 1: a<b. By Lemma 1, fi(@) - fi(b)<x. In
addition, g,(a) + g,(a) is the number of nonzeros
in Column a, so 0 < g,(a) + g(a) <d/2, and
similarly 0 < g,(b) < df2. Their difference g,(a) +
g.a) — g,(b) is thus at most d/2.

307

Case 2. a>b. By Lemma 1, we have g,(a) - g,(b)
S x. Also we have f,(a) + f.(a) - f.(b) S df2.

In either case, the theorem follows. §

The following example illustrates that the bound
given in Theorem 1 for the number of remaining
dirty rows after one iteration is tight. Here we have
d=6,x=1,andd’ = 5.

Afterrow sort After column sort

0001 0000
1100 0100
0X 01 0X00
1100 1101
01 X1 1 1 X1
1100 1101

Theorem 1 supplies information on the number of
clean rows gained after each iteration of Shearsort.
If x is small compared to d, say x = O(1), then the
number of dirty rows is roughly halved with each
iteration. On the other hand, when x 2 d/4, the
number of dirty rows may remain unchanged.
Thus, as discussed in Section III, some other
sorting method, e.g. odd-even transposition sort,
has to take over. In this case, dxn is the required
number of odd-even transposition steps along the
overall snake needed to complete the sorting.
Hence, the proof of convergence is complete.

V. WORST-CASE PERFORMANCE

Armed with the results of Section IV, we can now
analyze the worst-case performance of robust
shearsort. We will see in Section VI that the worst-
case analyses are highly pessimistic and that
simulation results predict much better average-case
performance with randomly distributed faults. In
the analyses that follow, both k and log, m stand
for the integral value [log, m1.

Relaxing the assumption that d is even leads to the
recurrence d,,, S (d, + 1)/2 + 2x instead of the
inequality stated and proved in Theorem 1. This
leads to the condition d > 4x + 1, instead of d > 4x,
for achieving a guaranteed reduction in the
number of dirty rows.

Lemma 3: The condition d < 4x + 1 is guaranteed
to hold after log, m iterations of row-column sorts.

Proof: We can write:
d, <@+ DR +2x =df2 + 4x+1)2
Unfolding the recurrence, we get:
asd 2+@x+1)2s ...
Sdyf2t+ (1284124 + .+ 12)(4x + 1)

Since dy2t = m/2's* < 1 and the coefficient of 4x+1
on the right-hand side is strictly less than 1, we
must have d, <4x+ 1. 1

Theorem 2: Robust shearsort has worst-case
complexities m log, m + n(log, m + 4x + 1) and
2m + n(log; m + 4x + 1) + (4x + 1)(log, m - 1) for
its simple and optimized versions, respectively.
Proof: The time complexity of the simple version
of shearsort is obtained by observing that each of
the log, m pairs of row/column sorts takes m + n
steps and that odd-even transposition sorting of the
remaining 4x + 1 dirty rows takes (4x + I)n
additional steps. Just as in optimized shearsort, the
column sort in the ith iteration requires at most d;
steps of odd-even transposition. From the
recurrence d,,, S (d; + 1)/2 + 2x and the initial
conditio& d, = m, we obtain the upper bound

gd,5m+ [(m+ 1)/2 + 2x]) + [(m + 3)/4 + 3x]
+[(m+7)/8+Tx2) + ...
+ [(m + 241 = 1)/2% 4+ 4x — x/249)
= [m+mf2+...+m/2“]:l[l/2+3/4
et QM -DRM]+ 3 (dx- 22
<2m + (4x+ 1)dog, m-1)

for the total number of steps during column sorts.
Including the log,m row sorts and the final odd-
even transposition sort of length at most (4x + 1),
the total complexity is upper bounded by 2m +
n(log,m +4x + 1) + (4x + 1)(log, m — 1). 4

10 + Slowdown

0 4 8 12 16

Figure 5. Worst-case slowdown factor of robust
shearsort as a function of the maximum number
x of faults in a column of the odd or even plane.

The upper bound on relative slowdown of robust
shearsort on square nxn meshes of different sizes,
and with various maximum number of column
faults, is plotted in Figure 5. Recall that x is the
maximum number of faults in the odd-numbered

308

or even-numbered elements of a column. Hence,
for example, x = 16 represents an unrealistically
large number of faults for the smaller 32x32 or
64x64 meshes considered. In the more realistic
region, the worst-case slowdown is much smaller
(typically below 2 or 3). The average-case
performance is even better (see Section VI).

Thus far, we have ignored the effect of the
reduction of the number of PEs from p = mn to p’
due to faults. Essentially, we have assumed that
once faults occur, the problem size is reduced
from p to p’. However, to be fair in our
performance comparisons, we must keep the
problem size constant. In practice, each PE in the
complete mesh may have been assigned a “load”
of N/p data items. After an initial sorting phase of
length O(N/p log(N/p)) locally within each PE,
mesh sorting would then be performed with a
slowdown factor of N/p compared to a mesh of size
N, as each PE successively “emulates” each of the
N/p “virtual” PEs assigned to it.

If faults leave us with only p’ PEs, each PE must
deal with the higher load of N/p’ data items. Thus,
on top of the slowdown resulting from modified
connectivity as discussed before, the initial sorting
takes O(N/p’ log(N/p") steps and a slowdown factor
of p/p’, relating to the increased load, will be
experienced in the subsequent mesh sorting phase.

Denoting the fraction (p — p*)/p of faulty or
otherwise unusable PEs by ¢, the latter slowdown
factor becomes 1/(1 — ¢), which is 1 + ¢/(1 - ¢), or
approximately 1+ ¢ if ¢ is small. The former
slowdown factor (p/p°) log(N/p)/log(N/p) = (1 + ¢)
(1 -1og(1 - ¢)log(N/p) = (1 + ¢)(1 + ¢/log(N/p)) is
only marginally higher than 1+ ¢. For large
meshes, ¢ is unlikely to exceed 0.01 (say). Thus,
these additional slowdowns are not worrisome.

VI. AVERAGE-CASE PERFORMANCE

Note that x is associated with faulty processors in
the dirty rows, not in the entire mesh. Suppose
there are m/10 faulty PEs in a column. The
analysis offered in Section IV is based on the
highly pessimistic assumption that x =m/10
throughout the required log, m iterations, leading
to up to 4m/10 + 1 dirty rows at the end. However,
x will become smaller and smaller in the latter part
of the iterations and it is very likely that the
algorithm converges to O(1) dirty rows; it
converges to O(m) dirty rows only if most of the
faults are clustered tightly together, which is very
unlikely. Moreover, faults that are near the top

Percent of

309

and the bottom of the dirty subarray might
increase the number of clean rows. Thus, when x
is comparable to 4, the bounds in Theorem 2 are
pessimistic with high probability.

Before presenting our results on the average-case
behavior, we discuss an improvement of robust
shearsort that can be incorporated into the
algorithm with some computation at system
reconfiguration time. Whenever a new fault is
detected, the system enters a reconfiguration phase
in which the appropriate bypass connections are
established and fault information is propagated.
We assume that this phase includes a global
computation that establishes the successive number
of dirty rows in the worst case based on the
knowledge of the fault patten. This information
is then used to guide the number of iterations and
the number of odd-even transposition steps carried
out during the column sort steps. We stress that
this improvement is relatively minor and that much
of what follows applies, with small adjustments, to
the version discussed earlier.

To get a feel for the average-case behavior of
robust shearsort, we have developed a simulation
program that given a mesh size and the total
number fof faults (within a range), simulates the
robust shearsort algorithm (improved as discussed
in the preceding paragraph) and returns the
distribution of the number of steps needed to sort
the data with a prespecified number of runs.

As an example, using 10,000 runs on a 32x32
mesh having f randomly distributed faults (for f e
{2, 4, 8, 16, 32}), we have obtained the results
depicted in Figure 6. We observe from Figure 6
that for up to 16 faults, the expected slowdown
factor does not exceed 2 and that even with 32
faults, it remains well below 2.5.

28 26 24 22 20 18 16 14 12
Slowdown Factor with Respect to Complete Mesh

1.0

Figure 6. Distribution of the actual slowdown
factor for robust shearsort as a function of the
total number f of faults in a 32x32 mesh.

VII. FAULT TOLERANCE IMPLICATIONS

In this section, we will discuss a way to assure that
faulty PEs can be bypassed using broadcast
mechanisms, typically provided for improved
performance in MCCs. Numerous other ways can
be contemplated to implement the bypass links.

A separable row/column bus is a broadcast
mechanism to which all PEs in a particular
row/column are connected and which can be
sectioned into several local buses via PE-controlled
switches. If a switch is inserted after each PE, then
any sectioning pattern is realizable. This is the
ideal case with regard to our fault tolerance
scheme. If a switch were placed after a block of /
PEs on each row/column, an entire block of [PEs
would have to be bypassed as a result of a single
PE failure. This would lead to poor performance
for robust shearsort as the parameter x, used in the
analyses of Section V, could become large with
only a few actual faults.

Consider the column buses and assume that each
PE can control the two switches to its north and
south (Figure 7). To establish vertical bypass
connections going north, a fault-free PE will open
the switch to its south if its north neighbor is
faulty. Similarly, the north switch is opened if the
south neighbor is faulty. An obvious limitation is
that both neighbors should not be faulty at the
same time, since it is impossible for a PE to send to
the north and receive from the south on the same
bus. This isn’t a serious drawback, since a PE
surrounded by two faulty PEs can be assumed to
have failed. When a mesh algorithm calls for
communication with the north neighbor, a sender
(receiver) whose north (south) neighbor is faulty,
puts (gets) the data on (from) the column bus.

Control Local Link
........................ N
3
3]
=
§ PE
]
Q
| S

Figure 7. Configuration of separable row/column
buses to provide bypass links.

The scheme proposed above is somewhat
inefficient in that it involves separate connections
(local links and separable buses) that are never

310

used simultaneously under fault-free and fault
conditions and requires each PE to control 4
switches (2 in each dimension).

Figure 8 shows an alternate architecture that
merges the separable buses with local connections,
thus reducing the number of ports per PE from 6
to 4 and the number of switches controlled by
each PE from 4 to 2. When no fault is present, all
switches are opened to allow local N-S and E-W
communications. With faults present, a scheme
similar to that discussed earlier can be used to
bypass faulty PEs horizontally or vertically. The
main point is that no speed is lost due to the shared
links because their usage was mutually exclusive.

A distinct advantage of this new architecture over
the previous one is that even an isolated PE,
surrounded on all sides by faulty PEs, can be
effectively utilized. This is due to the fact that
each PE has two connections to the row and
column buses and can thus send and receive on the
same bus when its associated bus switch is open.

PE

Column Bus

I| Sw IL
Figure 8. Alternate configuration for separable
row/column buses.

Row Bus

An issue of concern is whether the bypass
connections realized through row/column buses or
the alternate architecture discussed above can be
operated at the same speed as local, nearest-
neighbor connections (otherwise an additional
slowdown will be introduced). Unlike row/column
broadcasts, which may be slowed down by the
large number of switches on a given bus, the delay
through a bypass connection depends only on the
number of switches between the source and
destination PEs which is the same as the grid
distance between the two. Even with highly
pessimistic failure probabilities, it is virtually
impossible to have such large failure clusters as to
render the bypass delay unacceptable. Besides,
one can always bypass an entire row or column if
long failure chains do in fact occur.

VIII. CONCLUSIONS

By adapting the shearsort algorithm to run on an
incomplete bypass mesh, we have shown that
certain computations can be performed efficiently,
and with graceful degradation, on faulty meshes
modeled in this way. This result, combined with
similar algorithms for other building-block
computations (reduction, parallel prefix, data
routing), pave the way for implementing more
complex algorithms on incomplete meshes and
lead to a new fault tolerance strategy based on
robust algorithms. We have also demonstrated
how the logical bypass connections assumed in our
model can be physically realized through the use
of separable row and column buses.

Many interesting problems arise in the study of
such robust algorithms in connection with MCCs
and other architectures. For example, in adapting
the shearsort algorithm, we made no assumption
about the distribution of faults. It is easy to prove
that with a constant failure rate, the existence of n/2
complete columns in a faulty mxn mesh is virtually
guaranteed as long as the mesh is not too small or
too large. This observation may lead to efficient
sorting algorithms or to higher performance for a
more clever adaptation of shearsort. At this point,
it is not clear whether or how other more efficient
O(m + n)-time sorting algorithms can be adapted
to run on incomplete bypass meshes.

Many variations are possible. The underlying
model can be changed. For example a mesh in
which faulty PEs and links create discontinuities or
“holes” can be considered in lieu of the bypass
model assumed here. The robust design style can
be combined with switch-based reconfiguration
schemes and provision of spare units in an effort
to avoid any degradation as a result of the first few
faults, thus resorting to a degraded mode of
operation only when the fault tolerance capacity of
the reconfigurable architecture is exhausted.

REFERENCES

[AKLS93] Akl, S.G. and K.A. Lyons, Parallel
Computational Geomeltry, Prentice-Hall,
Englewood Cliffs, NJ, 1993.

Cypher, R. and J.L.C. Sanz, The SIMD
Model of Parallel Computation, Springer-
Verlag, New York, 1994.

Davis, N.J., F.G. Gray, J.A. Wegner, S.E.
Lawson, V. Murthy, and T.S. White,
“Reconfiguring Fault-Tolerant Two-
Dimensional Array Architectures”, IEEE
Micro, Vol. 14, No. 2, pp. 60-69, Apr. 1994.

[CYPH94]

[DAVI9%]

311

[HOSS89] Hosseini, S.H., "On Fault-Tolerant Structure,
Distributed Fault-Diagnosis, Reconfiguration,
and Recovery of the Array Processors”, IEEE
Trans. Computers, Vol. 38, No. 7, pp. 932-
942, July 1989.

Kim, D. and S.-H. Kim, “O(log »n) Numerical
Algorithms on a Mesh with Wormhole
Routing”, Information Processing Letters,
Vol. 50, pp. 129-136, 1994.

Knuth, D.E., The Art of Computer
Programming-- Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

Leighton, F.T., Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan-Kaufman, 1992.

Linder, D.H. and J.C. Harden, "An Adaptive
and Fault Tolerant Wormhole Routing
Strategy for k-ary n-cubes", IEEE Trans.
Computers, Vol. 40, pp. 2-12, Jan. 1991.

Maeba, T., S. Tatsumi, and M. Sugaya,
“Algorithms for Finding Maximum and
Selecting Median on a Processor Array with
Separable Global Buses”, Electronics &
Commun. in Japan, Part 3, Vol. 73, No. 6,
pp. 39-47, 1990.

Negrini, R., M. Sami, and R. Stefanelli,
"Fault Tolerance Techniques for Array
Structures Used in Supercomputing,”
Computer, Vol. 19, pp. 78-87, Feb. 1986.

Parhami, B., “Fault Tolerance Properties of
Mesh-Connected Parallel Computers with
Separable Row/Column Buses”, Proc. 36th
Midwest Symp. on Circuits and Systems,
Detroit, M1, Aug. 1993, pp. 1128-1131.

Parhami, B. and C.Y. Hung, *Parallel
Computation on Incomplete Meshes”, revised
for publication in Journal of Computer and
Software Engineering.

Prasanna-Kumar, V.K. and C.S. Raghavendra,
“Array processor with multiple broadcasting”,
Journal of Parallel and Distributed
Computing, Vol. 2, pp. 173-190, 1987.

Scherson, 1.D., S. Sen, and A. Shamir, "Shear
Sort: A True Two-Dimensional Sorting
Technique for VLSI Networks," Proc. Int'l
Conf. Parallel Processing, 1986, pp. 903-908.

Scherson, I.D. and S. Sen, “Parallel Sorting
in Two-Dimensional VLSI Models of
Computation”, IEEE Trans. Computers, Vol.
38, pp. 238-249, Feb. 1989.

Serrano, M.J. and B. Parhami, “Optimal
Architectures and Algorithms for Mesh-
Connected Computers with Separable
Row/Column Buses”, JEEE Trans. Parallel
and Distributed Systems, Vol. 4, No. 10, pp.
1073-1080, Oct. 1993.

Somani, A.K. and V.K. Agarwal, “A
Distributed Diagnosis Algorithm for Regular
Interconnected Structures”, IEEE Trans.
Computers, Vol. 41, pp. 899-906, July 1992.

[KIMD%4]

[KNUT73])

[LEIG92]

[LIND91]

[MAEB90]

[NEGRS86)

[PARH93]

[PARH%]

[PRASS87]

[SCHES86]

[SCHES9]

[SERR93]

[SOMA92}

