Variations on Multi-Operand Addition for Faster
Logarithmic-Time Tree Multipliers

Behrooz Parhami

Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
E-mail: parhami@ece.ucsb.edu

ABSTRACT

A carry-free addition process for radix-2 numbers with the digit
set [0, 3] is introduced and applied to the synthesis of tree
multipliers using multi-operand adders built as binary trees.
Such binary trees are more regular than standard carry-save
adder (Wallace or Dadda) trees and thus offer advantages in
terms of VLSI realization. We show that certain designs derived
from binary stored-double-carry numbers with digit set [0, 3]
compare favorably with previously proposed multipliers using
binary-tree multi-operand addition schemes based on reducing
pairs of carry-save numbers with (4, 2) counters or combining
pairs of borrow-save numbers using binary signed-digit adders.
The advantages are particularly pronounced for word lengths
that are at or close to halfway between consecutive powers of 2
(e.g., around 12, 24, or 48 bits).

1. Introduction

Over the years, many parallel multiplication schemes have
been proposed based directly or indirectly on the concept of
“stored” or “saved” carries/borrows, With the standard carry-
save or Wallace-tree approach, each carry-save adder in the
first level converts three conventional binary numbers into
a BSC (binary stored-carry) number which can be viewed as
using the digit set [0, 2] in radix 2. In subsequent stages,
each carry-save adder combines 1.5 BSC (or equivalently 1
BSC and 1 conventional binary) numbers into a new BSC
result, with the final BSC output converted to binary by a
fast carry-propagate adder.

It is possible to add two (rather than 1.5) BSC numbers to
obtain a BSC sum by using BSC adders. This forms the
basis for Vuillemin’s proposal to convert the irregular
structure of 3-to-2 reduction trees to more regular binary
trees [Vuil83]. For VLSI realization, the more regular
layout of a binary tree compared to irregular carry-save adder
trees is quite important because the area saved translates
into lower cost and higher speed. However, if such BSC
adders are implemented by using 2 carry-save adder levels,
the advantage gained from the more regular layout may be
partially, or even totally, lost to the increase in the number
of logic levels on the critical path. These observations also
apply to the use of BSD (binary signed-digit or stored-borrow)
representation [Taka85], [Taka87], [Hara87].

We present a unified view of the parallel multiplier designs
of Vuillemin and Takagi, Harata, et al cited above and show
that their binary-tree reduction feature is provided by other
redundant representations as well [Parh89]. Additionally, we
demonstrate that one such alternate representation, that uses
the digit set [0, 3] in radix 2, results in faster parallel
multipliers for certain word lengths and that others provide
potential advantages with certain design parameters and/or
technological constraints.

1058-6393/97 $10.00 © 1997 IEEE

899

II. GSD Arithmetic

Generalized signed-digit (GSD) number systems [Parh90]
use the digit set [-a, f] in radix » with 20, 20, and
p = a+B+1-r, where p 2 1 is the redundancy index of the
number system. Any GSD number system with r > 2 and
p 23 (or with p = 2, provided that a#1 and S#1) supports
carry-free addition. In all other cases (i.e., for =2, p=1, or
p=2 with a=1 or f=1) a limited-carry addition algorithm is
applicable which yields the ith sum digit s; as a function of
the six diglts a; bi' i1,y b"_ 1 8;_2, bi-2 of the Operaﬂds a
and b [Parh90] Exampl‘es of1 GSD systems in limited-carry
category are the stored-carry (SC), stored-borrow (SB), and
stored-carry-or-borrow (SCB) representations corresponding
to redundant radix-r digit sets [0, 7], [-1, r-1], and {-1, r].
Extending these results to borrow-free and limited-borrow
subtraction [Parh93), yields Algorithms 1 and 2, both of
which begin with computing a position result p;= a; % b;
and then proceeding as follows:
Algorithm 1 (propagation-free add/subtract): Break p;
into transfer digit t;,, and interim result w;= p;— (trt;,;).
The final result digit is z; = w;+ ¢; (with no new transfer).
Algorithm 2 (limited-propagation add/subtract): Use p;to
generate a range estimate e, for the transfer digit ¢, ;.
Then, based on both p; and ¢;, compute a transfer digit t;,,
and an interim result w.= p;— (rt;,,). The final result digit
is 2;= w; t t; (again with no new transfer).
In both cases, #;,; can be restricted to the minimal range

~Tafr-1)1==-2 <45, Sp=[B/(r-1)] §))
and its selection based on comparing p;to some known
comparison constants. We need A+4 comparison constants
to divide the range of p; into A+u+1 intervals. The range
estimate e;,; € {low, high) is a binary indicator (selected
by comparing p; to a constant) which restricts the transfer
digit ¢;,, into one of two subintervals; the low subinterval
[-A, i’} or the high subinterval [-A’, 4], where:

~A<=-A" Sy <u @)
‘We now briefly review the implications of these results for
practical hardware realizations [Parh94]. A propagation-free
adder/subtractor based on Algorithm 1 can be implemented
in 4 logic levels: 2 levels for generating the transfer digits
t;,, and interim results w; and 2 more levels for computing
the final result digits z;. Algorithm 2 may require. two
additional logic levels on top of the above four levels to
establish the initial range estimates e;, ;. In either case, the
number of levels may be reducible through optimization
and use of clever coding techniques. For example, the work
of Takagi et al [Taka85] contains a limited-carry binary
signed-digit adder in which the generation of e; and z; each
requires a single level of OR/NOR gates, thus leading to
only 4 logic levels for the entire adder.

III. CSA vs Binary Trees

Carry-save adder trees used in some parallel multipliers tend
to be quite irregular and thus difficult to lay out in VLSI,
This led Vuillemin [Vuil83] to the proposal for pairwise
combination of BSC numbers to gain structural regularity.
Vuillemin essentially suggests a 2-level carry-save adder to
reduce two BSC numbers into one. Thus, for his scheme,
each BSC level has twice as many gate levels as a simple
carry-save adder. The main advantage gained is that it is
structured as a binary tree which can be designed and laid
out recursively. The greatest advantage is gained when the
number of operands n is a power of two.

Table I contrasts the depth of camry-save reduction trees with
that of binary-tree reduction circuits for different number n
of operands. If the multiple-operand reduction is used for
multiplication, the parameter n represents the length of
multiplier (or half of multiplier length if Booth’s encoding
is used). Table I suggests that Vuillemin's scheme never
reduces the number of gate levels compared to a Wallace-
tree carry-save circuit. At best, when n is a small power of
two, the number of gate levels remains the same, For some
other values of n that are of practical significance in
floating-point or sign-magnitude integer formats (e.g., 24,
48, 53, 56, 63) an increase of up to 14% in the number of
gate levels is observed. The advantage of his scheme,
however, result from the regularity of interconnections
which affects both the cost (area) and signal delays in VLSI
implementation. Takagi et al [Taka85], [Taka87], [Hara87]
also use the same principle, but replace the stored-carry
intermediate values of Vuillemin with stored-borrow (aka
binary signed-digit or BSD) numbers.

Table I
Number of Adder Levels in Wallace Trees vs Binary Trees
for Reducing n Operands to 2 Binary or 1 BSC Number

Number n Wallace-Tree Binary-Tree Reduction
of Inputs Full Adders BSC Adders Factor
3 1 1 1.00
4 2 1 2.00
5 - 6 3 2 1.50
7- 8 4 2 2.00
9 4 3 1.33
10 - 13 5 3 1.67
14 - 16 6 3 2.00
17 - 19 6 4 1.50
20 - 28 7 4 1.75
29 - 32 8 4 2.00
33 - 42 8 5 1.60
43 -~ 63 9 5 1.80
64 10 5 2.00
65 - 94 10 6 1.67
95 -128 11 6 1.83

We will see, in subsequent sections of the paper, that there
are other ways of affecting the reduction of » input operands
using a binary tree structure. Any such binary-tree reduction
scheme in which each adder requires 4 logic levels is
potentially competitive with the above-mentioned designs.
If the number of levels per adder can be reduced to 3 or 2
without complicating the interconnections, then a
significant gain may result.

‘We next present a new multi-operand addition scheme in
Section IV and then discuss its application in designing
high-speed tree multipliers in Section V.

900

IV. BSDC Numbers

A limited-propagation adder/subtractor requiring six logic
levels is clearly not competitive with the 4-level realization
resulting from two cascaded carry-save adders. If we can
somehow break the sequential relationship between
computing the range estimates and the actual transfer digits,
then other 4-level realizations may become possible. To do
this, we note that the range estimate e;,; is a mechanism
by which the operand digits in position i affect the sum
digit in position { + 2 (through modifying the transfer digit
t;,, generated by Stage i + 1). Thus if some information is
sent directly from position i to position i + 2, the need for
propagation through position i + 1 may be eliminated.

For binary stored-double-carry (BSDC) numbers, with the
digit set {0, 3] in radix 2, this can be easily accomplished.
Each position sum p; is in the range 0 to 6 and can be
broken into an interim sum w, a carry c;,{, and a double-

carry d;,, which will go directly to position i + 2 (Fig. 1).
Thus, the addition process involves two steps:
a;+b; = p; =4d; ., +2c; .1 +W; (3a)
si= e vdivwy e (3b)

In these arithmetic equations, w;, ¢;, and d; are single-bit
values while a;, b;, and s5; are stored-double-carry digits with
values in [0, 3]. ‘Computing p; in binary as (dis2Cie1Wi)2
directly determines the values of dii2 Cippr and wy,

a; b;
Ll |l { }
- 1
i+2 1agd] J-
i

T Ciat <7 —

I R e

Fig. 1. BSDC adder with parallel wansfers c;,, and 4, ,.

The actual design of a BSDC adder will depend on the
encoding used for a;, b;, and 5;. In Subsections A through
D below, we examine 4 possible encodings and their
associated designs. Subsequently, we will refer to these
encodings as “Encoding A”, “Encoding B”, etc.

A, Two-Bit Binary Encoding

First, assume that we encode each BSDC digit in [0, 3] by
its two-bit binary representation; i.e., by using the (2, 1)
Zveigl:ited tc)eocée Iset ?}e two-bi(t1 t(nnasy representations 'I(‘)lf a;,

» and §; be (Xx),, (Y;y)),, and (Z:2)),, respectively. Then,
the com‘putatig; %eed%c)lzconsists‘zo a 2-bit addition to
determine the sum of q; and b; and a full adder to compute
the sum digit s;. The following logic expressions specify
our BSDC adder stage which requires 4 logic levels:

diy=XY; + Xxy; + xY; (4a)

cloXxid Y, it =‘X)-)f’,-’x-’+X,-'x~’Y,~ (@b)
+XYy, +X; D+ XxY ¥ Xixx)y,

wi=x 8 ¥ = xy/ + 7y, (40)

X
Zi=cdi+cw; + é,-w-
Z;=¢C; é d" é w;= c‘d‘-w‘- + c‘-'d‘-wi' + Cidilwi' + ci’dilwi (40)

B. Three-Bit Unary Encoding

Another possible scheme is to encode the digits in {0, 3] as

unary numbers; i.e., by using a (1, 1, 1) weighted code.

Thus 0 and 3 will have unique representations (000 and

111), while 1 and 2 will each have 3 representations (001,

010, 001, and 011, 101, 110, respectively). The position

sum p; = (d;,5¢;,1W;), is obtained by a 6-input parallel
counter, and s; has the 3-bit unary representation (cd;w,);;
i.e., it implies no further computation.

The needed 6-input parallel counter can be synthesized in
several different ways. Each of the three outputs d;, 5, ¢;,,
and w;is a symmetric function of six logic variables.
At one extreme is the two-level AND-OR realization which
is perhaps too complex. Computation of d,,, involves 4-
out-of-6 majority decision on the inputs. "ﬁle two-level
circuit realizing this function needs 15 four-input AND
§ates followed by a 15-way OR circuit (the complement
unction requires the same number of gates, but with fewer
input lines). The least significant sum bit is the odd parity
over the 6 input bits and its generation by a two-level
circuit implies 32 six-input AND gates plus a 32-way OR.
At the other extreme is the use of half- and full-adder
building blocks leading to 3 full adders, one half adder, and
a 6-level logic circuit.

Neither of the above extremes is likely to be acceptable.
We are thus led to a compromise solution with 4 logic
levels. Here-is one possible design. Two full adders (2 gate
levels) convert the two groups of 3 inputs into 2-bit binary
numbers (X;x;), and (¥;y,),. A 2-level circuit then
computes d;,,, ¢;,1, and w; as specified for Encoding A.
Thus whereas Encoding A requires a 2-bit adder plus a
single-bit full adder per BSDC adder stage, Encoding B
implies 2 full adders followed by a 2-bit adder. Thus we
have both more gates and more wires here.

C. Unary Encoding with Unique Codes

Here the code vectors 000, 001, 011, and 111 are used to
represent, 0, 1, 2, and 3, respectively. The interpretation of
bit i in the three-bit code vector vav,v, is that it is 1 if the
digit being represented is at least i. 1l’he: required logic,
again assuming that the inputs a; and b; and the sum digit s;
are encoded as EXx;, viY iy, and $iZz;, respectively, is:

dipy = Eyi+ W+ XY, (5a)
spla e @
‘ +5Z: 3 .-‘xlﬁ pATRH KA 4

§=cdw; (5)

Zi=cdi+ e+ dpw,; (5¢)

;= C"+dl-+wi (50
D. Three-Bit Weighted Encoding

Yet another variation is to use the (3, 2, 1) weighted code
with code vectors 000, 001, 010, and 100 representing 0, 1,
2, and 3, respectively. Then the position sum is obtainable
by a circuit that is much simpler and/or faster than a 6-
input parallel counter. The required logic, assuming that
the inputs a; and b; and the sum digit s; are encoded as
§Xxi, WYy and {Zz,, respectively, is:

Gz = EW % EY, + Ey o YR, + ym + XY, (60
Cint =xi)"i, :‘, &y y;‘ + VXX + léi'xi, i+ VXY (6b)
wi= EVYS ¥ B + 8y + WXy, (6c)

j=Caw; (6d)
Zi=cdw; + c{dw;+ cdiw, (60)
Z;=C; d:-w‘-' + C"d‘- W"' + c,-'d,-'w‘- (6f)

Strong error checking capability is provided if one uses the
1-out-of-4 code 0001, 0010, 0100, 1000 to represent 0-3.
This complicates the logic and also increases the number of
wires. Thus, unlike the 1-out-of-3 or “three-rail” encoding
of Takagi et al [Taka87], this “four-rail” encoding is not
worthy of further consideration.

901

V. New Tree Multipliers

Application of the BSDC number system defined in
Section IV to implement a high-speed tree multiplier for
unsigned numbers is straightforward if one specifies how
the standard binary multiples of the multiplicand are
combined to form the initial BSDC numbers and how the
final BSDC result is converted to standard binary. In the
following discussion, the circuit and time complexity
associated with the final high-speed adder will be ignored
since this is shared by all the schemes under consideration.
Circuit complexity is measured in terms of gate count.
This is a suitable approximation since all the circuits being
considered have a binary-tree topology and all the gates
(with very few exceptions) have fan-ins of 2 to 4. Time
complexity is measured by the number of gate levels which
is appropriate for the same reasons. However, in comparing
the two-bit encoding A to three-bit encodings B, C, and D,
the larger wire area of the latter must also be considered.
As a point of reference, Vuillemin’s design [Vuil83] has
the following cost and delay parameters

xy(n)=18 y(n/2l,n+1,2) (7a)

Sy(n) = 4 Mog, Tn/2T] (Tb)
where y(1, m, 6) =0 and

Yk,m,0)=k/2lm+ y(k/2l,m+ o + 1, 20) @)
The function Yy provides the total number of BSC adder
digit slices required in the design, with each digit slice
needing two full adders or 18 gates. The recursive definition
of y reflects the fact that to add ¥ BSC numbers each
having m digits and shifted to the left by o digits with
respect to the previous one, we must first add L/2] pairs to
get a set of [k/21 (m+o0+1)-digit BSC numbers whose
relative shift distance is 20 (see Fig. 2).

~{ofe—m —] g-ﬂzal‘- m1o+1 —f

Fig. 2. Parameters for recursive binary reduction.

Actually, Eq. (8) is slightly pessimistic since it assumes
the expansion of operand lengths by one digit with every
addition. Referring to Fig. 2, we note that the addition of
two m-digit operands, one of which is shifted by 622 digits
with respect to the other, creates an (m+o+1)-digit resuit.
The extra digit comes from the carry generated by the
Ieftmost digit. If a double-carry were possible at the left
end, the length expansion would have been by two digits.
For 022 double carry is impossible and the “single” carry
will generate a new leftmost digit that is 0 or 1. Hence, in
the next step, length expansion does not occur at all, as the
digit 1 produces no carry. Accordingly, a more accurate
version of (8), with the recurrence unfolded twice, is

®

Yk, m, 0) =Lk/2Im + [k/212m + o+ 1)
+ y(Tk/2V2Y, m + 30 + 1, 40)

where 7(1, m, 0) =0 and (2, m, o) = m. The difference
of the two versions is insignificant and the inaccuracy
affects all designs virtually uniformly. Thus, we use the
simpler Eq. (8) in our subsequent analyses.
The design of Takagi et al [Taka85], when used without
Booth’s encoding, has the following parameters:

Kp(n) =13 v(n,n, 1)
8r(n) =4llog, nl

(10a)
(10b)

A. Two-Bit Binary Encoding

Clearly, three standard binary numbers can be combined by
a set of full adders into a BSDC number with two-bit
binary encoding of digits if the sum and carry bits are kept
in the same digit position. This requires two logic levels.
With this encoding, the final BSDC result can be converted
to standard binary by a conventional carry-propagate adder if
the more significant bit in each position is shifted to the
next higher adder position. Thus given # operands, the total
gate count and delay (excluding the contribution of the final
high-speed adder that converts a BSDC number into a
standard binary number) are given by:

K, (n) = 9(n-DL(n+1)/3] + 23 y([n/3], n+2, 3) (11a)

() =2+ 4Tlog, (/371 (i1b)

The expression for x, is based on the fact that L(n + 1)/3]
(n — 1)-bit carry-save adders are needed in the initial stage,
followed by a (possibly incomplete) tree of BSDC adders to
combine the [n/31 BSDC numbers each with n+2 digits.
B. Three-Bit Unary Encoding
Given the (1,1,1) unary encoding of each BSDC digit, three
binary numbers directly define a BSDC number. As for the
final conversion, a row of full adders is needed to convert
the single BSDC number into a BSC number before the
final carry-propagate addition. Here we have:

Ky(n) =32 y(n/31, n+2,3) + 18n (12a)

So(n) =4 log, [n/3T + 2 (12b)
The expression for K is based on the fact that 2a full
adders are needed in the final stage yielding the product in
BSC form. These full adders are preceded by a binary tree
of BSDC adders to combine the [n/3] BSDC numbers each
with n+2 digits. We note that the delays 8,(n) and 8(n) are
equal whereas the gate counts K,(n) and' xy(n) cannot be
compared in a straightforward manner. More on this later.

C. Unary Encoding with Unique Codes

The BSDC adder in this case is simpler than that required
with Encoding B (25 gates versus 32 gates per digit slice).
Thus, what 1s lost in the initial conversion of binary
numbers to the required encoding may be regained in the
rest of the design. Initially, three n-bit binary numbers can
be converted to a BSDC number with this encoding using 6
ates per bit position, as specified by the expressions for
» Z; ,and z; n (5). Then, we have:
K(n) = 6n L(n+1)/3] + 25 y((n/31, n+2, 3) + 18n (13a)
Oc(n) =2 +40log, [n/3T1+2 (13b)
The expression for k. in (13) is justified as was done for
Ky in (12), except that the first term 6n L(n+1)/3] is due to
the initial converters as explained above. We note that the
delay 8.(n) is greater than §,(n) = 83(n) whereas the gate
count Xo(n) cannot be compared t0 x,(n) and xz(n) in
general terms (see Section VI).

B. Three-Bit Weighted Encoding

For the (3, 2, 1) encoding, a set of n parallel circuits, each
implementing the expressions for {, Z; , and z; in (6), can
convert 3 standard binary numbers to BSDC representation.
At the bottom of the binary tree, a row of logical OR gates
(2 per digit position) can be used to compute the two-bit
representation (b + ¢, a + ¢) of a three-bit (3, 2, 1)-encoded
BSDC digit (c, b, a). Thus we have:

Kp(n) =9n(n+1)/31 + 27 y(n/31, n+2,3) + 4n (14a)

So(n) =2 + 4 log, (/3T + 1 (14b)

902

The expression for K, in (14) is justified as was done for
K¢ in (13), but the Initial converters are slightly more
complex. Note that 8p(n) is 1 unit less than oc(n). The
relationship between the gate counts &,(n) and x(n) is less
obvious. Since x;(n) has larger coetiicients for the first
two terms that are quadratic in n and a smaller coefficient
for its linear term, the benefit of Encoding D, if any, will
materialize for short word lengths.

VI. Comparisons and Discussion

Table II shows the delays of the various implementations
for different word lengths in gate levels. Clearly, the delay
of T is always greater than that of V and the delays of C
and D are always greater than 8, (n) = 8(n). Thus is high-
speed operation is desired, the c‘?loice is always between V
and A/B. As can be seen from Table II, the optimal design
with respect to speed depends on the value of n. When n is
greater than a power of 2 but no more than 1.5 times that
power, the A or B design is faster by 2 gate levels.
Otherwise, V is faster by 2 gate levels. Fig. 3 supplies an
explanation of this result comparing V to A for n = 24,
Each box in Fig. 3 represents 2 CSA (4 logic) levels. The
first circuit level in the bottom diagram of Fig. 3 consists
of simple CSAs with 2 logic levels.
- Table II

The Delays of Various Binary-Reduction Designs
in Gate Levels as a Function of n.

n \ T A,B C D
7~ 8 8 12 10 12 11
9 - 12 12 16 10 12 11

13 - 16 12 16 14 16 15
17 - 24 16 20 14 16 15
25 - 32 16 20 18 20 19
33 - 48 20 24 18 20 19
49 - €4 20 24 22 24 23
65 - 96 24 28 22 24 23
97 -128 24 28 26 28 27
129 -192 28 32 26 28 27

Table III shows that Design V always has the lowest cost.
Thus in cases where it also has the smallest number of gate
levels according to Table II, it is the best design. Design A
reaches its lowest relative complexity where it also has a
speed advantage over V. Thus, Design A is promising for
word lengths that are equal or close to 12, 24, 36, 48, and
72 bits. Designs B, C, and D are always more complex
than A in view of their 3-wire encodings. However, C and
D offer some error detection capability and may be worth
considering for fault-tolerant designs. Design B is always
inferior to A and, unlike C or D, has no redeeming feature.

Fig. 3. Binary-tree realizations of 24-operand addition.

Our comparisons are based on the requirement for adding »n
operands of length n with relative shifts of 1 bit. If small
g%g building-block multipliers (rather than AND gates) are
used to generate the partial products matrix, then (n/g)2
operands of length g2 and varying relative shifts will have
to be added. The effect of the new group size parameter g
on the relative efficiencies of the various schemes discussed
earlier has not been investigated and constitutes a possible
area for further research. Some results along these lines
have been presented by Wey and Chang {Wey90], although
their approach is quite different.

Table II
The Costs of Various Binary-Reduction Designs
in Number of Gates for Selected Values of n.

n \ T A B C D
8 540 845 741 912 888 896
12 1368 1989 1454 1688 1654 1722
16 2394 3484 3090 3648 3393 3619
20 3960 5577 4670 5192 4975 5417
24 5562 7904 6279 6864 6609 7251
28 7542 10712 9386 10520 9841 10831
32 9720 13871 11970 12960 12363 13745
36 12744 17849 14475 15528 14865 16587
40 15498 21840 18455 20048 19180 21508
44 18630 26312 22043 23384 22402 25178
48 21960 31135 25444 26848 25772 29028
52 25830 36556 31470 33864 32277 36415
56 29736 42211 36062 38096 36367 41093
60 34020 48347 40359 42456 40605 45951
64 38502 54B34 46683 49536 47400 53752

A final point concerns the practical motivation for limited-
carry and parallel-carries addition processes from the point
of view of circuit complexity which affects both the
practicality of certain designs and their speed-cost tradeoffs.
In any redundant number system that does not support
carry-free addition, the sum digit s; can be found directly as
a function of 3 digits from each operand (i.e. ;, a;_,, a;_,,
b;, by, and b, »). In a radix-2 redundant system, each digit
requires at least 2 bits for its representation. This means
that the circuit to generate s; has to compute at least 2 logic
functions of 12 or more variables. For higher radices, the
situation is even worse. Thus the limited-carry process is a
way to systematically reduce the circuit complexity by
condensing the information from a; , and b, , into the
“range estimate” e;_, and then condensing the information
from e, |, @; . and b, , into the transfer digit £;, Use of
parallel carries, as discussed in this paper, breaks the above
sequential chain by allowing the (i — 2)th stage to directly
send a bit of information to the ith stage.

VII. Conclusion

We have presented a unified view of the regular binary-tree
reduction feature of certain VLSI fast multiplier designs.
We have argued that existing designs are stored-carry and
stored-borrow instances of a general paradigm and have
shown that similar advantages can be gained with other
redundant representations. We demonstrated that one of
these alternate representations results in faster parallel
multipliers for certain word lengths and that others provide
potential advantages with certain design parameters and/or
technological constraints. Intuitively, the improvements
result from better utilization of the 2 binary signals needed
to encode a 3-valued digit in [0, 2] or [-1, 1]. This latter
signed digit set is inefficient in 2 ways. First, it utilizes

903

only 3 of 4 possible signal combinations. Second, even the
three values are not fully utilized in that negative weights
appear only in specific patterns in the partial products bit-
matrix obtained from 2’s-complement operands, particularly
if Booth’s encoding is not used.

Our method provides additional design points for fast
multipliers based on binary trees. Clearly, the availability
of a trum of alternatives is beneficial in that even the
most 1ngenious designers cannot foresee all future design
needs or potentials/limitations of emerging technologies.
One technological development that could make our designs
very attractive is the availability of high-speed 4-valued
logic circuits [Etie88], [Kawa94], [Parh96]}, [Smit88]. Our
BSDC carry-free addition scheme is also applicable to the
design of large (accumulative) parallel counters [Parh95],
since the number of levels and the irregularity of
connections in parallel counters are similar to those of
CSA trees used in parallel multipliers.

References

Etiemble, D. and M. Israel, “Comparison of Binary
and Multivalued ICs According to VLSI Criteria”,
Computer, Vol. 21, No. 4, pp. 2842, Apr. 1988.
Harata, Y. et al, “A High-Speed Multiplier Using a
Redundant Binary Adder Tree”, /[EEE }) Solid- State
Circuits, Vol. 22, No. 1, pp. 28-34, Feb. 1987.
Kawahito, S. et al, “High-Speed Area-Efficient
Multiplier Design Using Multiple-Valued Current-
Mode Circuits”, IEEE Trans. Computers, Vol. 43,
No. 1, pp. 34-42, Jan. 1994.
Parhami, B., “A New Method for Designing Highly
Parallel Binary Muliixliers”. Proc. 3rd Int'l Parallel
Processing Symp., Mar. 1989, pp. 176-185.
Parhami, B., “Generalized Signed-Digit Number
Systems: A Unifying Framework for Redundant
umber Representations”, IEEE Trans. Compulers,
Vol. 39, No. 1, pp. 89-98, Jan, 1990.
Parhami, B., “On the Implementation of Arithmetic
Support Functions for Generalized Signed-Digit
Number Systems”, IEEE Trans. Computers, Vol. 42,
No. 3, pp. 379-384, Mar. 1993.
Parhami, B., “Implementation Alternatives for
Generalized Signed-Digit Addition”, Proc. Asilomar
Conf. Signals, Systems, and Computers, Oct./Nov.
1994, pp. 157-161.
Parhami, B. and C.-H. Yeh, “Accumulative Parallel
Counters”, Proc. Asilomar Cogf. Signals, Systems,
and Computers, Oct./Nov. 1995, pp. 966-970.
Parhami, B., “Comments on .‘HiiI-Speed Area-
Efficient Multiplier Design Using Multiple-Valued
Current Mode Circuits’ ”, IEEE Trans. Computers,
Vol. 45, No. 5, pp. 637-638, May 1996.
Smith, K.C., "Multiple-Valued Lo§ic: A Tutorial and
A‘Ppreciation", Computer, Vol. 21, No. 4, pp. 17-
27. Apr. 1988.

[Etie88]
[Hara87]}

[Kawa94]

{Parh89)

[Parh90}
[Parh93]
[Parh94]

[Parh95]

{Parh96]

[Smit88]

Swartzlander, E.E. Jr., Computer Arithmetic, Vol. 1,
IEEE Computer Society Press, 1990 (Reprints of key
papers on tree multipliers, parallel counters, etc.).
Takagi, N., H. Yasuura, and S. Yajimsa, “High-Speed
VLSf Mult(}?lication Algorithm with a Redundant
Binary Addition Tree”, IEEE Trans. Computers,
Vol. 34, No. 9, pp. 1310-1317, Sep. 1985.

Takagi, N. and S. Ya'imai “On-Line Error-Detectable
B

[Swar90}

[Taka85)

(Taka87] Ta jima, *Or :
ngh-§lgeed VLSI Multiplier Using Redundant
inary Representation and Three-Rail ic”, IEEE
Trans. Computers, Vol. 36, pp.789-796, Nov.1987.
Vuillemin, J., “A_Very Fast Multiplication
Algorithm for VLsI Imglementauon", Integration:
the VLSI J., Yol. 1, pp. 39-52, 1983,
Wea C.-L. and T.-Y. Chang, “Design and Analysis
of VLSI-Based Parallel Mulupliers”, IEE Proc. Pi. E,
Vol. 137, No. 4, pp. 328-336, July 1990.

[Vuil83]

[Wey90]

