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Abstract

We describe several approaches for performing multi-
operand addition. Our constructions are regular and mod-
ularized, and their required circuit size and depth compare
favorably with previously proposed schemes. We show that
the sum of n k-bit integers can be found using pipelined cir-
cuits of size nk/d + O(k(logn + logk)), latency O(logn +
logk +d), and a feedback loop with a single full-adder de-
lay, where d can be any positive integer. We also develop
several techniques to fine-tune the constructions in order
to obtain circuits that are adaptive to application require-
ments. In particular, we generalize the block-save technique
and obtain competitive constructions for multi-operand ad-
dition by combining the technique with that of ripple adder
trees. we also demonstrate how to apply multi-operand
adders to the computation of several useful functions.

1. Introduction

Multi-operand addition is a fundamental problem in
arithmetic and algebraic computations. Because of its im-
portance, many researchers have dealt with multi-operand
addition in general or in specific application contexts [2, 4,
10, 11, 12, 17].

In 1964, Wallace proposed the well-known “Wallace
tree,” which is built of carry-save adders and performs the
(n,n) multi-operand addition in O(logn) time, where the
(n,k) multi-operand addition is the problem of computing
the sum of » k-bit integers. Dadda extended Wallace’s idea
to obtain multi-operand addition circuits based on parallel
counters [15], while Ho and Chen [4] devised circuits for
multi-operand addition using column compressors. All of
the above schemes first perform an (n,k) sum reduction, to
reduce the number of operands from » to 2, and then use a
carry-propagate adder to compute the final sum.

We introduce a unifying scheme that achieves high-
throughput and low latency at the same time. We show
that by using the notions of accumulative compression [9]
and merged arithmetic [16], we can obtain a pipelined
(n,k) multi-operand adder that has size nk/d + O(k(logn +
logk)), latency O(logn + logk +d), a feedback loop with a
single full-adder delay, and constant fan-in, where d can be

1058-6393/97 $10.00 © 1997 IEEE

894

any positive integer. These constructions achieve asymptot-
ically optimal latency, size, and throughput at the same time
and provide effective tradeoffs between these parameters.
The resulting design can operate at a higher throughput than
similar-sized pipelined partial CSA trees [3, 6] which have
a feedback loop with 2 full-adder delays. We also demon-
strate that these results can be applied to the computation of
several useful functions.

2 Low latency multi-operand adders

Given n one-bit numbers, an (n, [log,(n+ 1)]) counter
is a circuit that produces the [log, (n - 1)]-bit binary repre-
sentation of the sum of the 7 bits [15, 9]. In our construction
we first use parallel counters to compress each column and
then use the block-save technique to complete the (n,k) sum
reduction. Finally, a carry propagate adder is employed to
compute the final sum.

2.1 Outline of the basic scheme

Our proposed design scheme consists of 3 phases and is
illustrated by the example in Fig. 1.

e Phase 1: The number of 1s in each of the k posi-
tions is computed using an (n,m) counter, where m =
[log,(n+1)].

Phase 2: The k+ m — 1 positions are partitioned into
[(k+m—1)/1] blocks, each containing ! positions
(except possibly for the block containing the most sig-
nificant positions), where I = [log,(m — 1)]. Each
block of the outputs from Phase 1 is added separately
using an (m, ) multi-operand adder.

Phase 3: The sums obtained from blocks 0, 2, 4,...
are concatenated into a (k 4 m + [ — 2)-bit number
Seven and the sums obtained from blocks 1, 3, 5,... are
concatenated into a (k4 m + [ — 2)-bit number S,4q,
whose least significant / bits are filled with 0s. The
sum of Seven and S,qq is computed using a binary
carry-propagate adder.

Phase 1 is the same as an iteration of column compres-
sion, while Phase 2 uses the block-save technique [13].



Since the sum of a block in Phase 2 is no more than m- (2 —
1) € 2% —1, itcan be represented by a 2/-bit number and the
binary representations of all odd blocks (or even blocks) will
not overlap with each other (see Fig. 1). As a result, Seven
and S,,4q can be obtained by simply concatenating the 2/-bit
sums of even and odd blocks, respectively, during Phase 3.
Phases 1 and 2 perform the (n,k) sum reduction and Phase
3 completes the multi-operand addition process.
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Figure 1. lllustrating the basic scheme for
(31,15) multi-operand addition.

2.2 Complexity analysis

Itis well known that an (n, m) parallel counter can be im-
plemented using a bounded fan-in AND-OR circuit of size
O(n) and depth O(logn). Various designs can be found in
the literature [1, 5, 7,9, 15]. As aresult, Phase 1 can be done
using a circuit of size O(nk) and depth O(logn) for all the k
positions. This phase usually dominates the size of the en-
tire circuit except when n < logk.

Phase 2 requires O(k/logn) copies of an (m,!) multi-
operand adder, each implemented using either a tree of rip-
ple adders or a CSA tree followed by a carry-propagate
adder [15, 6] and requiring depth O(loglogn) and size
O(lognloglogn). As aresult, Phase 2 needs a circuit of size
O(klogn) and depth O(loglogn) for all the O(k/!) blocks.
This phase does not dominate the circuit complexity.

Phase 3 can be done using a wide variety of binary
adders, such as carry-lookahead, conditional-sum, or carry-
skip adders. The required circuit size is O((k + logn)
log(k +logn)) and the depth is O(log(k + logn)).

As aconsequence, the required size is O(nk+ klogk) and
the depth is O(logn + logk) for an (n,k) addition problem
using this scheme.

2.3 Comparison with previous work

Compared with CSA trees for the (n,k) sum reduction
problem, the construction used in this paper is more regu-
lar and modularized; compared with trees of ripple adders
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and the schemes proposed in [2], the latency of the previous
construction is considerably smaller when k is not small.
The column compression scheme proposed in [4] for the
(n,k) sum reduction problemrequires O(log* n) iterations of
column compression, where log* N is defined as the small-
est integer k satisfying log---logN < 1. The construction
N e’

k
for (n,k) sum reduction presented in [11] uses two itera-

tions of column compression followed by O(k/loglogn)
parallel copies of the circuit computing an arbitrary Boolean
function with O((loglogn)?) input bits, which requires
size O(2loglogk)?/logloglogky and depth O((loglogn)?). Our
method only requires one iteration of column compression
followed by O(k/ loglogn) parallel copies of the circuit per-
forming (O(logn), O(loglogn)) sum reduction. In fact, us-
ing arguments similar to those used for the partitioning of
the block-save technique, the O(k/loglogn) circuits, each
computing Boolean functions with O((loglogn)?) input
bits, required in [11] can be reduced to O(k/logloglogn)
simpler circuits, each computing Boolean functions with
O(loglognlogloglogn) input bits.

3 Compact accumulative or pipelined designs

In this section, we modify our construction to obtain cir-
cuits with comparable latency and considerably smaller size
based on accumulative parallel counters [9].

3.1 Accumulative parallel counters

An accumulative parallel counter (APC) is a true gener-
alization of serial counters, and can be used to replace the
parallel counters in the previous algorithm in order to ob-
tain size-efficient multi-operand adders with small latency.
An (n,q) APC is defined as a sequential circuit with a single
g-bit word of memory holding, at the end of each counting
cycle, the sum of its previous content and its n single-bit in-
puts. Anexample (16,6) APC is shown in Fig. 2. The exam-
ple (16,6) APC uses a pipelined (15,4) counter followed by
several stages of latches and a pipelined 6-bit ripple adder.
The latches following the parallel counter schedule its out-
puts so that they arrive at the ripple adder at the same time.
Sixteen single-bit signals xg, X1, ..., X5 can be supplied to the
APC at each clock cycle, and the sum of these inputs accu-
mulates and is stored in the accumulative registers in carry-
save form. At any cycle, the sum of the two output numbers
in carry-save form is equal to the sum of all inputs that have
arrived at the ripple adder. We refer the reader to [9] for de-
tails.

3.2 High throughput accumulative adders

The construction introduced in Section 2 can be easily
pipelined by adding latches at each level if maximum band-
width is desired, or after every two (or more) levels to reduce
the number of latches and the pipeline latency.
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Figure 2. A pipelined (16,6) APC with “end”
signal for counting the bits in one position
for Phase 1 of the basic scheme.

|
é)-J

Although the previous design achieves competitive la-
tency and size compared to previous designs, the circuit cost
is prohibitively high when n and k are very large, and the
very high throughput after being pipelined may not be re-
quired. In this subsection, we show that by increasing the
latency by d — O(logd), where d can be any positive inte-
ger, the overall circuit size can be reduced by a factor of d.

For any integer d > 1, we partition the » input numbers
into [n/d]| groups. Phase 1 of the basic scheme is imple-
mented using ([n/d], [log,(n+1)]) APCs with proper con-
trol mechanism. At cycle 1, the first group of numbers is in-
put, at cycle 2, the second group is input, at cycle 3 the third
group, and so on. From cycle 1 (ifd > 1) tocycle d — 1, the
input “end” signal (see Fig. 2) is 0 and at cycle d, the input
“end” single is 1.

The “end” signal goes through the same pipeline levels as
the other data bits of the multi-operand adder circuit. When
the “end” signal propagates to the “readout” registers and
the “accumulative” registers, the outputs from the last level
of FAs and HAs are loaded into the “readout” registers and
the “accumulative” registers are cleared.

During Phase 2, the data bits in the readout registers
are partitioned into odd and even blocks and added us-
ing pipelined (2[log,(n + 1)] — 1, [log, [log(n + 1)]] + 1)
multi-operand adders. Note that the number of operands
during Phase 2 is approximately doubled compared to that
in the non-pipelined construction since they are now stored
in carry-save form. Phase 3 requires a pipelined carry-
propagation adder to find the final sum.

If Phases 2 and 3 are pipelined with the same cycle time
as that of Phase 1, we can select any integer 1 < g < d as
required to perform the (¢{n/d],k) multi-operand addition.
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In fact, the multi-operand adder can be used for any number
of operands not exceeding 2/°22("+D1 _ 1, When the “end”
signal propagates to the last stage, the result of the multi-
operand addition is available at the output register of the cir-
cuit. Note that the next multi-operand addition can be ini-
tialized after one idle cycle, following the last input group
of the previous execution.

The construction can be improved in several ways. When
many multi-operand additions are usually queued up and ¢
is small on the average, it is desirable to eliminate the idle
cycle between two executions of multi-operand additions.
This can be done by inserting an AND gate following each
of the outputs of accumulative registers. The complemented
“end” signals ANDed with the uncleared accumulative reg-
isters serves to supply zero inputs to the full and half adders.
When the “end” signal is 0, the accumulative register con-
tents are passed to the adders unmodified.

When the minimum possible g is not 1, we can improve
the subcircuits for Phases 2 and 3 by using fewer pipelin-
ing stages. The load signals for these stages can be easily
provided by the propagated “end” signal. The numbers of
latches required for Phases 2 and 3 are reduced by a factor
of Guin, Where g, is the minimum possible number of groups
that will be used. The latency is also improved.

An alternative method is to accumulate the sum at the end
of Phase 2. The subcircuits between the Phases may also be
improved. Details of these modified constructions are omit-
ted in this paper.

3.3 Comparison with previous work

Hallin and Flynn [3, 6] proposed a pipelined partial CSA
tree to perform multi-operand addition with high through-
put and small size. This method considerably improves the
throughput of the naive partial CSA tree whose feedback
path traverses the entire tree by limiting the feedback loop to
only two levels of FAs. Our method further reduces the feed-
back loop to only one level of FAs based on APCs, increas-
ing the throughputin [3, 6] significantly. Moreover, our con-
structions are more regular.

Compared to the method that “accumulates” the sum
at the output of the (n/d,k) multi-operand adder, which
achieves the same throughput using the same technique as
APCs and has latency O(k), our construction has signifi-
cantly smaller latency. If the sum is accumulated by feeding
back the output to the carry-propagate adder, the feedback
loop requires at least O(logk) levels of FAs.

4 Unified design of multi-operand adders

Although the basic algorithm introduced in Subsection
2.1 and its pipelined implementations compare favorably
with previous approaches theoretically, and usually achieve
good performance in practice, the construction of best multi-
operand adders depends heavily on the combination of pa-
rameters n,k,d and the required throughput, latency, and
hardware complexity. As a result, in order to obtain circuits



that fit the need of specific applications, it is desirable to
have flexibility to fine-tune the constructions. In this sec-
tion, we extend the basic algorithm to obtain a unified ap-
proach for the design of multi-operand adders and present
several efficient special cases.

4.1 Extending the basic scheme

The basic algorithm can be easily extended as follows:

o Phase 1: If the number of operands is not small
enough, each column is compressed using a parallel
counter.

Phase 2: The positions are partitioned into [£'/I']
blocks, each containing !’ positions, where k' is the
maximum length of operands, m' is the number of
operands, and ' = [log,(m' — 1)]. The 2/’-bit sum of
each block is computed separately.

Phase 3: The sums obtained from even and odd
blocks are concatenated into Seven and Sy44, respec-
tively. The sum of Seven and Syq4q is computed using
a binary carry-propagate adder.

Using this extended scheme, Phase 1 can be skipped to
obtain the block-save-tree (BST) adder, while Phase 2 can
apply the scheme recursively to compute the sum of a block.
We illustrate the algorithm with several special cases in the
following subsections.

4.2 Block-save-tree adders

When the number of operands is not very large, or for
some specific combinations of parameters » and k, directly
applying Phase 2 can lead to efficient designs.

An efficient design for this special case uses the tree of
ripple adders to compute the sum of each block. Since the
maximum length of the sums is O(logn), latency of Phase
2is O(logn). Thus, the overall circuit size is O(nk) and the
depth is O(logn + logk) for (n,k) multi-operand addition.
Note that directly applying a single tree of ripple adders to
perform the (n, k) multi-operand addition will result in a cir-
cuit of size O(nk) and depth O(logn + k). The improve-
ment offered by our approach is achieved via combining the
block-save technique and the tree of ripple adders.

4.3 Generalizing the block-save technique

In this subsection, we generalize the block-save tech-
nique to provide further flexible design parameters.

The basic idea of the original block-save technique is to
partition the positions into blocks of width small enough so
that the sums of even (or odd) blocks will not overlap. We
first observe that the positions can be partitioned into more
than two classes of blocks. For example, the positions can
be partitioned into 3 classes of blocks of width /. If the sum
of a block is no more than 3/, then the sums of the blocks
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can be concatenated into 3 numbers, which can then be re-
duced to 2 numbers using O(k) FAs, adding 1 level to circuit
depth. Then Phase 3 will generate the correct result. Actu-
ally the length of the blocks can be arbitrarily chosen, and
the block-save reduction is followed by one or more circuit
stages performing further reduction if required. This algo-
rithm can thus be fine-tuned to obtain efficient designs for
particular requirements.

BST adders and their variants based on the generalized
block-save technique can be pipelined using approaches
similar to those used in section 3. All these accumula-
tive adders have size O(nk/d + k(logn + logk)), latency
O(logn + logk + d), and a feedback loop with a single
full-adder delay. When d = Q(logn + logk) and d =
O(n/logn+n/logk), the circuit size is O(nk/d) and latency
is O(d).

4.4 Other designs

Phase 2 of the proposed scheme can use any method to
perform the multi-operand addition. If we recursively use
the scheme to compute the multi-operand sums for Phase 2,
the resultant design will be similar to the construction given
in [4] in the extreme case, and can terminate the column
compression operations earlier in general. We can also use
CSA trees followed by a carry-propagate adder for this pur-
pose. Furthermore, either the CSA tree method or the tree
of ripple adders scheme can be generalized to use counters
rather than FAs to reduce the number of operands.

5 Some applications

Multi-operand adders can be used as basic building
blocks for a wide class of important computations. Since
our tradeoff method leads to size-efficient designs for multi-
operand adders, the cost of such computations can be greatly
reduced while keeping the latency small.

5.1 Multiplication

Multiplication of two n-bit numbers can be transformed
into (n,2n — 1) multi-operand addition of the n partial prod-
ucts following a depth-1 subcircuit of n2 AND gates. Thus,
the efficient designs of multi-operand adders result in effi-
cient circuits for multiplication.

5.2 Residue computation (or modular reduction)

Reduction of a k-bit number modulo a known r-bit num-
ber p can be transformed into (k— r+ 1, ) muiti-operand ad-
dition followed by the reduction of the obtained k’-bit sum
mod p, where k' < r+ |logy(k—r+ 1)]. An example is
shown in Fig. 3. If the resultant &’-bit number is not small
enough, we can perform more iterations of multi-operand
addition to further reduce the maximum possible value of
the dividend; if it is small enough, we can find the result by
subtracting p,2p,3p,... from it or with the aid of fast table-
lookup schemes [8].



<t r bits s

X3 X, X1 X,
(x4x 2 mod 11 =) 0 x,0 x
(x2°mod 11=) X6 0 xg 0 b
(%<2 mod 11 =) x50 0 x
(x;x2"mod11=) L 0 x, x, x,

X,X (X X X3 XX Xo mod 11 = sum  mod 11

k bits -

Figure 3. Residue computation based on
multi-operand addition.

5.3 RNS-binary conversion

The conversion from binary to RNS representations can
be done by several modular reduction circuits in parallel.
The conversion from RNS to binary representations can
be performed using Chinese remaindering [6], which can
be implemented using modulo circuits and multi-operand
adders. As a result, we can use RNS arithmetic to compute
various functions utilizing multi-operand adders.

5.4 Computation of other useful functions

Many functions, such as exponentiation, division, and
multi-operand multiplication, sine, logarithm, etc., can be
computed using unbounded fan-in threshold circuits of con-
stant depth, based on RNS arithmetic, multi-operand ad-
dition, multiplication, modular reduction, and the compu-
tation of an arbitrary Boolean function with O(logN) in-
puts [14, 18]. Since all of the above building blocks, ex-
cept for the last one, can be implemented based on multi-
operand addition except for the last one, these functions can
be decomposed into several multi-operand adders and some
glue logic. Moreover, an unbounded f-fan-in AND/OR
gate can be replaced by a O(log f)-depth tree composed of
O(f) bounded fan-in AND/OR gates. Using the accumula-
tive technique, a O(log f + d)-latency pipelined circuit with
O(f/d) AND/OR gates is required.

In our treatment, the threshold logic used in [14, 18] is es-
sentially viewed as an abstract computation model that facil-
itates the initial description of the design. After required re-
placements and minor modifications, O(d + log N)-latency
circuits for these problems can be obtained, where N is the
number of inputs. The details are omitted.

6 Conclusion

We have introduced a unifying scheme for modular con-
struction of multi-operand adders. The resulting designs
achieve high throughput, low latency, small cost, and pro-
vide effective tradeoffs among these parameters. We gener-
alized the block-save technique and presented several effi-
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cient spacial cases. Application to several important prob-
lems was also addressed.

Future research may deal with many issues, including re-
finement of the constructions, detailed comparison of vari-
ous approaches to previous work, application to other prob-
lems, and optimization of the resultant designs.
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