
Pergamon
Computers Elect. Engng Vol. 20, No. 4, pp. 347-368, 1994

Copyright © ! 994 Elsevier Science Ltd
0045-7906(93)E0006-N Printed in Great Britain. All rights reserved

0045-7906/94 $7.00 + 0.00

A MULTI-LEVEL VIEW OF DEPENDABLE COMPUTING

BE~mOOZ P ~ M I
Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560, U.S.A.

(Received for publication 5 November 1993)

Abstract--This paper serves a dual purpose. It presents a unified framework and terminology for the study
of computer system dependability. It also surveys the field of dependable computing in light of the
proposed framework. Specifically, impairments to dependability are viewed from six levels, each being
more abstract than the previous one. It is argued that all of these levels are useful, in the sense that proven
dependability assurance techniques can be applied at each level, and that it is beneficial to have distinct,
precisely defined terminology for describing impairments to, and procurement strategies for, computer
system dependability at these levels. The six levels are:

(I) Defect level or component level, dealing with deviant atomic parts.
(2) Fault level or logic level, dealing with deviant signal values or path selections.
(3) Error level or information level, dealing with deviant data or internal states.
(4) Malfunction level or system level, dealing with deviant functional behavior.
(5) Degradation level or service level, dealing with deviant performance.
(6) Failure level or result level, dealing with deviant outputs or actions.

Briefly, a hardware or software component may be defective (hardware may also become defective due
to wear and aging). Certain system states will expose the defect, resulting in the development of faults
defined as incorrect signal values or decisions within the system. If a fault is actually exercised, it may
contaminate the data flowing within the system, causing errors. Erroneous information or states may or
may not cause the affected subsystem to malfunction, depending on the subsystem's design and error
tolerance. A subsystem malfunction does not necessarily have a catastrophic, unsafe, or even perceivable
service-level effect. Finally, degradation of service could eventually lead to system failure. At each of these
six levels, the complementary approaches of prevention (avoidance or removal) and tolerance are discussed
in relation to inter-level transitions.

Key words: Error handling, fail-safe systems, fail-soft systems, fault tolerance, graceful degradation, highly
available systems, long-life systems, redundancy techniques, safety-critical systems, self-repair.

1. I N T R O D U C T I O N

D e p e n d a b l e compu t ing is an ou tg rowth o f fau l t - to le ran t comput ing , a focus a rea bo rn in the mid
1960s [8,73] fol lowing a decade o f concern with digi ta l system rel iabi l i ty issues [32,60,93]. F a u l t
to le rance is ac tual ly an age-o ld design technique. Avizienis [14] quotes a 1.5-Century o ld pape r
advoca t ing , in connec t ion with Char les Babbage ' s invent ions , the use o f different compute r s and
a lgor i thms for checking c o m p u t a t i o n errors . In the re la ted a rea o f fail-safe design, Babbage himself
" b o a s t s tha t it is imposs ib le to wilfully de range or co r rup t his machines . . . and tha t his engines
will a lways ei ther p roduce the correct result o r j am , bu t never deceive" [87]. E. M. Fo r s t e r [34]
fancies a c ivi l izat ion con t ro l l ed by self - repair ing machines tha t eventual ly self-destructs because
designers ignored the poss ibi l i ty o f faul ts in the ' M e n d i n g A p p a r a t u s ' itself.

Fo l lowing the ini t ial emphas i s on faul t to lerance th rough fau l t -masking and self-repair , it was
real ized tha t to le ra t ing faults is bu t one way o f achieving high rel iabil i ty. Hence, testing, testabi l i ty ,
verif icat ion, main ta inab i l i ty , design methodologies , and o ther fault avo idance / remova l techniques
were in tegra ted into the p r o g r a m s o f the In te rna t iona l Fau l t -To l e r an t C o m p u t i n g Sympos ia [36],
held annua l ly since 1971. This b roaden ing o f scope shifted the focus to rel iable comput ing , a var ian t
o f which had been used as far back as 1963 to complemen t rel iable communica t i on [98]. But the
sympos ia con t inued with the or ig inal restr ict ive title. To avo id confus ion between rel iabi l i ty as a
precisely defined stat is t ical measure and rel iabi l i ty as a qual i ta t ive a t t r ibu te o f systems and
compu ta t ions , use o f dependab i l i ty was suggested for conveying the second meaning [52].
D e p e n d a b l e compu t ing deals wi th impa i rmen t s to dependab i l i ty (defects, faults, errors , mal func-

347

348 BEHROOZ PA~'~MI

tions, degradations, failures, and crashes), means for coping with them (fault avoidance, fault
tolerance, design validation, failure confinement, etc.), and measures of success in the pursuit of
dependability (reliability, availability, safety, etc.).

As computers are used for more critical applications by less sophisticated users, the dependability
of computer hardware and software assumes even greater importance. Highly dependable computer
systems have been in widespread use for almost three decades [28] and have been commercially
marketed for about half as long [47]. The trend towards 'intelligent' computers and the expectation
of higher safety levels with advanced technology [95] will make computer system dependability an
integral part of the design and implementation process for future generation systems.

2. D E P E N D A B L E S Y S T E M S : I D E A L VS R E A L

2.1. Defining dependability
Dependability has been defined briefly as "the probability that a system will be able to operate

when needed" [43]. This simplistic view, which subsumes both of the well-known notions of
reliability and availability, is only useful for systems that are either completely operational or totally
failed. Since what we are really interested in is task accomplishment rather than system operation,
the following is more appropriate: " . . . the ability of a system to accomplish the tasks (or
equivalently, to provide the service[s]) which are expected from it" [52]. A weakness of this
definition is that it is based on expected rather than specified behavior, in order to accommodate
possible specification slips. However, if expectations are realistic and precise, they can be viewed
as simply another form of specification (perhaps a higher-level one). But if we expect too much,
then this definition is an invitation to blame our misguided expectations on the system's
undependability. Carter's " . . . trustworthiness and continuity of computer system service such that
reliance can justifiably be placed on this service" [21] has two positive aspects: It takes the time
element into account explicitly (continuity) and stresses the need tbr dependability validation
(justifiably). Laprie's version of this definition [53] can be considered a step backwards in that it
substitutes quality for trustworthiness and continuity. The use of quality and quality assurance,
as in other engineering disciplines, is a welcome trend [16,30]. But precision need not be sacrificed
for compatibility.

To formulate a more useful definition of dependable computing, one must examine the various
aspects of undependability. To a user, undependability shows up in the form of late, incomplete,
inaccurate, or incorrect results or actions [64]. The two notions of trustworthiness (correctness,
accuracy) and timeliness can be abstracted from the above; completeness need not be dealt with
separately since any missing result or action can be considered to be infinitely late. Actually,
dependability should not be considered an intrinsic property of a computer system. A physically
unreliable system might become quite dependable by virtue of algorithmic dependability procure-
ment mechanisms, applied in different ways to various computations and/or interactions, given
their specified correctness and timeliness requirements [66,67]. However, the ideal of associating
dependability with individual data objects or actions is presently impractical.

Hence, depend/tbility of a computer system may be defined as justifiable confidence that it will
perform specified actions or deliver specified results in a trustworthy and timely manner. Note that
the above definition does not preclude the possibility of having various levels of importance for
different (classes of) user interactions or varying levels of criticality for situations in which the
computer is required to react. Such variations simply correspond to different levels of confidence
and dependability. This new definition retains the positive elements of previous definitions, while
presenting a result-level view of the time dimension by replacing the notion of service continuity
by timeliness of actions/results.

2.2. Impairments to dependability
Impairments to dependability are often described as hazards, defects, faults, errors, malfunctions,

failures, and crashes. There are various definitions for these terms, causing different and sometimes
conflicting usages. In this subsection, I review two major proposals on how to view and describe
impairments to dependability and present my own model.

Members of the Newcastle Reliability Project [83], led by Professor Brian Randell, advocate a

A multi-level view of dependable computing 349

hierarchic view [4]: a (computer) system is a set of components (themselves systems) that interact
according to a design (another system). System failure is defined as deviation of its behavior from
that predicted/required by the system's authoritative specification. Such a behavioral deviation
results from an erroneous system state. An error is a part of an erroneous state which constitutes
a difference from a valid state. The cause of the invalid state transition which first establishes an
erroneous state, is a faulty component or design. Similarly, component or design failure can be
attributed to an erroneous state within the corresponding (sub)system resulting from a component
or design fault, and so on. At each level of the hierarchy, "the manifestation of a fault will produce
errors in the state of the system, which could lead to a failure". Hence, failure and fault are simply
different views of the same phenomenon. This is quite elegant and enlightening but gives rise to
a need for continual establishment of frames of reference when talking about the causes (faults)
and effects (failures) of deviant system behavior at various levels of abstraction.

While it is true that a computer system may be viewed at many different abstraction levels, it
is also true that some of these levels have proved more useful in practice. Aviziens [11] takes four
such levels and proposes distinct terminology for impairments to dependability (undesired events,
in his words) at each level. His proposal is summarized in the following cause-effect diagram:

Abstraction level Undesired event
Physical Failure

U
Logical Fault

U
Informational Error

V
External Crash

There are some problems with the above choices of names for undesired events. The term 'failure'
has traditionally been used both at the lowest and the highest abstraction levels; viz. failure rate,
failure mode, and failure mechanism used by engineers/physicists alongside system failure, fail-soft
operation, and fail-safe system due to computer architects. To comply with the philosophy of
distinct naming for different levels, Avizienis retains failure at the physical level and uses crash for
the other end. However, minor inaccuracies or delays can hardly be considered 'crashes' in the
ordinary sense of the term. Again, this usage emphasizes system operation rather than task
accomplishment and ignores the fact that an 'operational' system can yield erroneous results.

Another problem is that there are at least three external views. The maintainer's external view
consists of interacting subsystems that must be monitored for detecting possible malfunctions in
order to reconfigure the system or, alternatively, to guard against consequences such as total system
crash. The operations manager's external view consists of a more abstract black box capable of
providing certain services. In this view, isolated malfunctions are acceptable as long as they do not
lead to serious degradation of service availability and/or quality. Finally, the end user is mainly
concerned with triggered actions and computation results and thus his/her external view is shaped
by the system's reaction to particular situations or commands. The following six-level view of
impairments to dependability rectifies the problems [65]:

Abstraction level Impairment
Component Defect

U 0
Logic Fault

U
Information Error

V
System Malfunction

U U
Service Degradation

U
Result Failure

350 BEHROOZ PAgrtA~

Taking into account the fact that a non-atomic component is itself a system, usage of the term
'failure' in failure rate, failure mode, and failure mechanism can be justified by noting that a
component is its designer's end product (system). Therefore, we can be consistent by associating
the term 'failure' with the highest and the term 'defect' with the lowest level of abstraction. The
component designer's failed system is the systems architect's defective component.

2.3. Dependable computing
The field of dependable computing deals with the procurement, forecasting, and validation of

computer system dependability. As discussed in Subsection 2.2, impairments to dependability can
be viewed from six levels. Thus, subfields of dependable computing can be thought of as dealing
with some aspects of one or more of these levels. Specifically, I take the view that a system can
be in one of seven states: Ideal, Defective, Faulty, Erroneous, Malfunctioning, Degraded, or Failed.
Initially, a system may start up in any of the seven states, depending on the appropriateness and
thoroughness of validation efforts. Once in the initial state, the system moves from one state to
another as a result of deviations and remedies. Deviations are events that take the system to a lower
(less desirable) state, while remedies are measures that enable a system to make the transition to
a higher state. As shown in Fig. 1, each state can be entered through the sideways transitions
initially, from above due to a deviation, or from below as a result of a remedy. Associated with
each transition, are five attributes that can be regarded as transition labels or tags:

c: (natural) cause of the transition
i: (natural) impediment to the transition
f: techniques for facilitating the transition
a: techniques for avoiding the transition
m: tools for modeling the transition.

Recognized subfields of dependable computing deal with one or more of these attributes and some
attributes can be the basis of new studies and subfields. In addition, such transition attributes can
be used for classifying or indexing of techniques and research studies in the field of dependable
computing. For example, a research project or proposed redundancy technique may be described
as dealing with a[~ faulty] and i[faulty ~ erroneous].

Detailed discussions of the non-ideal states and their related transitions appear in Sections 3-8
of the paper. Here, I present some general observations on the various system states. First, note

IDEAL

T

T

T

T

Fig. 1. System states and state transitions in the multi-level model of dependable computing.

A multi-level view of dependable computing 351

Wall heights represent Inlet valves represent
Inter-level latencles avoidance techniques

A / f k ['q

Concentric
analogues of the six model Drain. valves represent
levels (defect is innermost) tolerance techniques

Fig. 2. A simple analogy for the multi-level model of dependable computing. Pouring water represents
defects, faults, errors, malfunctions, degradations, and failures.

that the observability of the system state (ease of external recognition that the system is in a
particular state) increases as we move downward in Fig. 1. For example, the inference that a system
is 'ideal' can only be made through formal proof techniques; a proposition that is impractical for
modern computer systems in view of their complexity. At the other extreme, a failed system can
usually be recognized with little or no effort. As examples of intermediate states, the faulty state
is recognizable by extensive off-line testing, while the malfunctioning state is observable by on-line
monitoring with moderate effort. It is therefore common practice to force a system into a lower
state (e.g. from defective to faulty, under torture testing) in order to deduce its initial state.

2. 4. An analogy

Figure 2 provides an interesting analogy for clarifying the states and state transitions in my
six-level hierarchical model, using a system of six concentric water reservoirs. Pouring water from
above corresponds to defects, faults, and other impairments, depending on the layer(s) being
affected. These impairments can be avoided by controlling the flow of water through valves or
tolerated by the provision of drains of acceptable capacities for the reservoirs. The system fails if
water ever gets to the outermost reservoir. This may happen, for example, by a broken valve at
some layer combined with inadequate drainage at the same and all outer layers. Wall heights
between adjacent reservoirs correspond to the natural inter-level latencies in my model. Water
overflowing from the outermost reservoir into the surrounding area corresponds to a computer
failure adversely affecting the larger physical, corporate, or societal system.

3. D E F E C T - L E V E L OR C O M P O N E N T - L E V E L V I E W

3. I. Causes and consequences of defects

Defects are caused in two ways, corresponding to the sideways and downward transitions into
the defective state in Fig. 1: (1) physical design slip which results in defective system components,
by improper design or inadequate screening; (2) development of defects due to component wear
and aging or operating conditions that are harsher than those originally envisaged. An inadequately
shielded device, for example, becomes defective when used in a high-noise environment and a
real-time system assumes the defective state when the volume of input data exceeds its capacity.
Wear and aging are only meaningful for hardware components, although it has been argued that
software also 'ages' in a certain sense (due to changes in the environment or user expectations).

The causes of defects in computer hardware are quite varied and technology-dependent.
Experimental data on the relative frequencies of defect types for different technologies are gathered
by component manufacturers and some governmental organizations concerned with reliability

352 BEHROOZ PARaAm

evaluation and validation [99]. The ultimate goal of these efforts is to facilitate the development
and validation of defect models that enable us to predict the occurrence of defects without resorting
to extensive independent experimentation. Defects in software components can also be experimen-
tally observed and analyzed. The field of software science [42] deals with proposing plausible defect
models for computer software (actually, error models in the prevailing terminology) and validating
the models through the use of empirical data.

The frequency of defect occurrence is usually modeled by a defect rate parameter 2 (t), defined
as the expected number of defect occurrences or, equivalently, as the probability of having some
defect over a short, unit-length interval of time. For hardware components, the change in defect
rate with time follows the so-called bathtub curve (there are also arguments against this
characterization). During the burn-in period, high defect rates are common. This is followed by
a long interval of relatively constant defect rate, constituting the component's useful life. Finally,
in the wear-out period, rapid deterioration causes a corresponding surge in component defect rates.
Assuming a constant component defect rate 2, the probability of no defect from time 0 to t in a
system with n identical parts is g (t) = e -n~t. This is known as the exponential reliability law [7,29].
Equating the probability of no defect with reliability (probability of no failure) is a simple, but
pessimistic, reliability estimation method that is widely used.

Three reliability enhancement techniques are suggested by e -nat . Design simplicity, or reducing
n, is an important paradigm for dependability. However, for a given overall functionality, a penalty
will often be paid at some higher level where the design becomes more complex. Defect avoidance,
or reducing 2, implies the use of low-defect-rate components that are quite expensive due to higher
manufacturing and/or screening costs. Hence, the third approach of defect removal, or reducing
t, is the most common component-level dependability procurement technique. Defect removal
strategies include careful initial screening and frequent test/replacement of system components.
This is further elaborated in Subsection 3.2. A more radical technique would be to attempt to
change the probability expression altogether so that its value is less affected by 2 and/or t. This
is the aim of defect tolerance methods to be discussed in Subsection 3.3.

3.2. Defect avoidance and removal

A defect may be dormant or ineffective long after its occurrence. During this dormancy period,
external detection of the defect is impossible or, at the very least, extremely difficult. If, despite
efforts to avoid or remove them, defects are nevertheless present in a product, nothing is normally
done about them until they develop into faults. Periodic replacement of sensitive parts is one way
of removing defects before they develop into faults. Similarly, burn-in of components [63] and
scheduled preventive maintenance of computer hardware tends to remove most dormant defects.
Component modifications and improvements, motivated by the analyses of data pertaining to
degraded or failed systems, are other major ways of hardware and software defect removal.

Avizienis has suggested the term 'fault intolerance' for the spectrum of techniques dealing with
defect avoidance and removal [10]. In my terminology, defect intolerance would be the complemen-
tary approach to tolerance methods (discussed in Subsection 3.3). Fault intolerance, error
intolerance, malfunction intolerance, degradation intolerance, and failure intolerance are actually
implied by defect intolerance but may be considered separately if tolerance techniques are used at
the lower levels of abstraction. Frequently, a mixture of intolerance and tolerance may provide the
most cost-effective design for given dependability requirements.

3.3. Defect tolerance

Defect tolerance is achieved through component-level redundancy techniques in one of three
forms:

(1) redundancy in the form of stronger components (safety factor)
(2) redundancy in the form of alternate components (defect bypassing)
(3) redundancy in the form of load-sharing components (defect masking).

The first strategy actually reduces the component's defect rate and may thus be viewed as a defect
avoidance technique. The second alternative can be used along with selection or reconfiguration
logic for bypassing defective components recognized under extensive testing. Yield enhancement

A multi-level view of dependable computing 353

for semiconductor components is the most important application of this method [50,61]. The third
approach dampens the effect of deviant components by providing additional components that share
the load during normal operation and completely take over when a defect develops. The classic
hardware example of this technique, first used in connection with the Orbiting Astronomical
Observatory satellite [33], is the replacement of a diode by four diodes connected as two parallel
branches each having two diodes in series in order to tolerate diode short- and open-circuits.
Another example is the provision of the electrical resistance R by using three parallel resistors each
having the resistance 2.4R, thus tolerating one open resistor with moderate change in circuit
characteristics (variation from 0.8R to 1.2R).

Defect tolerance and removal are conflicting strategies in the sense that the provision of
mechanisms to tolerate defects tends to make defect removal more difficult. If defect tolerance is
employed as a yield enhancement technique, with the resulting components adequately tested prior
to being used, then defect tolerance has no external manifestation except that it makes the testing
more difficult. However, if defect tolerance is incorporated into component designs as a reliability
improvement measure, serious problems may be encountered in validating reliability models and
predictions. Experience shows that defect (or fault) masking methods can produce catastrophic
effects when the masking capability of the mechanism is exceeded. Also, modeling becomes very
difficult due to complex interactions between masked and non-masked defects (or faults).

3.4. The defect-to-fault transition

A system makes the transition from the defective state to the faulty state when a dormant defect
is awakened and gives rise to fault. Designers try to impede this transition by providing adequate
safety margins for the components and/or by using defect tolerance methods. Ironically, one may
occasionally try to facilitate this transition for the purpose of exposing defects, since faults are more
readily observable than defects. To do this, the components are usually subjected to loads and
stresses that are much higher than those encountered during normal operation. This burning in
or torture testing of components results in the development of faults in marginal components which
are then identified by fault testing methods (see Subsection 4.2.) To be able to deduce the underlying
defect from an observed fault, we need to establish a correspondence between various defect and
fault classes. This is referred to as fault modeling and is discussed in Subsection 4.1. Alternatively,
if the criticality of various fault classes has been established, fault modeling allows us to deduce
the criticality of various defect classes and to establish priorities for dealing with them.

4. F A U L T - L E V E L OR L O G I C - L E V E L VIEW

4. I. Causes and symptoms o f faults

A hardware fault may be defined as any anomalous behavior of logic structures or substructures
that can compromise the correct signal values within a logic circuit. As usual, the reference behavior
is provided by some form of specification. If the anomalous behavior results from implementing
the logic function g rather than the intended function f, then the fault is due to a logical design
or implementation slip. The alternative cause of faults is the implementation of the correct logic
functions with defective components. Defect-based faults can be classified according to duration
(permanent, intermittent/recurring, or transient), extent (local or distributed/catastrophic), and
effect (dormant or active). Only active faults produce incorrect logic signals. An example of a
dormant fault is a line stuck on logic-value 1 that happens to carry a 1. If incorrect signals are
produced as output or stored in memory elements, they cause errors in the system state.

Over the years, logic designers have developed fault models [1] that accurately reflect the
logic-level consequences of defects and/or lend themselves easily to mathematical analysis. The
single stuck-at fault model is the most popular. It assumes that a single line within the logic circuit
has taken on a constant logic value independent of the inputs applied. A stuck-at-1 or stuck-at-0
fault may result from several classes of physical defects (e.g. open-connection or short-to-ground),
depending on technology. The multiple stuck-at fault model, covering multiple unidirectional faults
as a submodel, assumes that an arbitrary number of lines within the circuit may have become stuck.
As a final example, the bridging fault model takes into account the possibility of short circuits in

354 BEHROOZ PARFIAMI

the logic circuit. For certain technologies, switch-level fault models have been developed to
overcome the problems resulting from the unavailability of accurate gate-level models.

4.2. Fault avoidance and removal

The two basic fault avoidance strategies relate directly to the two types of causes for faults.
Logic design and implementation slips can be avoided by following rigorous design
methodologies and by automating some of the more error-prone implementation steps. Faults
that are caused by defects can be avoided by defect avoidance and tolerance methods
discussed in Section 3. At present, complete fault avoidance is an unattainable goal. Thus, fault
detection and removal techniques are integral parts of all logic design and implementation
methodologies.

Fault detection through fault testing [37] is used for the validation of engineering prototypes,
screening of manufactured devices, and maintenance (corrective or preventive) of operational
systems. The fault testing effort is a combination of test generation, test validation, and test
application (Fig. 3). Tests are preset or adaptive depending on the strategy for deciding which tests
and in what sequence are to be applied. They can also be classified as functional or structural. Good
fault models combined with exhaustive or analytic test generation methods usually allow for
theoretical test validation, but most common validation methods are experimental, using simu-
lation as the primary tool. Test application is categorized according to the type of control
mechanism used for test initiation and analysis (external or internal to the entity being tested) and
based on whether or not testing can proceed with normal circuit operation (on-line/concurrent or
off-line). To reduce the cost of testing, which grows exponentially with circuit complexity, much
attention has been given to design for testability [37,97] and built-in self-test (BIST) techniques.

FAULT TESTING
(Engineering, Manufacturing, Maintenance)

TEST GENERATION

FUNCTIONAL STRUCTURAL
(Exhaustive/ (Analyt ic/
Heuristic) Heuristic)

FAULT F A U L T DIAG- ALGO-
MODEL COVER- NOSIS RITHM
switch- AGE EXTENT D-algo-
or gate- none rithm,
level (check- boolean
(single/ out, go/ differ-
multiple no-go) ence,
stuck-at, to full etc.
bridging, resolu-
etc.) tion

TEST VALIDATION

THEORETICAL EXPERIMENTAL

/
SIMULA- FAULT
TION INJEC-
software T/ON
(parallel,
deductive,
concur-
rent) or
hardware
(simulation
engine)

Fig. 3. Classification of fault testing methods.

TEST APPLICATION

EXTERNALLY iNTERNALLY
CONTR31 k-n GONTFEXt.ED

MANUAL AUTO- TEST CONCUR-
MATIC ~ RENT
(ATE) (BIST) on-line

. testing
. ' (self-

off-line testing checked
design)

A multi-level view of dependable computing 355

4.3. Faul t tolerance

My use of the term 'fault tolerance' is quite restricted in scope; this contrasts with some uses
of the term to denote the entire field of dependable computing [62,74]. Fault tolerance is usually
achieved through redundancy applied in hardware, software, or time domains. Hardware and
software redundancy are of two types:

(1) static or masking redundancy to prevent faulty components from producing errors
(2) dynamic or standby redundancy to detect and circumvent faults before they lead to errors.

It is also possible to combine the two approaches in hybrid methods.
Masking redundancy techniques date back to the mid 1950s when Moore and Shannon [61]

showed how to synthesize reliable contact networks using 'crummy' relays and von Neumann [93]
proposed voting on multiple signal versions. Later, Tryon [92] introduced quadded logic, the
simplest example of interwoven redundant logic, which takes advantage of the natural masking
capability of AND and OR gates; and AND (OR) gate masks an incorrect 0 or 1 if at least one
of its other inputs is 0(1). Practical applications of these methods remained quite limited [51] due
to the high cost of redundancy with discrete components. The integrated-circuit technology brought
with it the possibility of cost-effective redundant implementations. However, the proposed
techniques were still not widely applicable for a different reason: The fact that independence of
faults in the multiple copies of a component or circuit could no longer be guaranteed.

Redundancy techniques based on voting have found some applications [68,69]. In the simplest
case, each circuit is triplicated with the three output signals reduced to the final output by a majority
voter. Ignoring faults in the voter, the correct output is produced if at least two of the circuits
function properly. If rc is the probability of fault-free operation of a circuit independent of others,
the reliability of the voted output is R = r 3 + 3r ~ (1 - re). Denoting the voter's reliability by rv, the
overall reliability is no lower than rv(3r 2 - 2 r 3) . Thus, reliability improvement is achieved iff:

3 - x /9 - 8/r~ 3 + 4 9 - 8/r~
4 < r e < 4

For example, if rv = 0.95, we must have 0.56 < r~ < 0.94 in order for the triplicated voting scheme
to be more reliable than a single non-redundant circuit.

Extensions to the basic replicated voting arrangement with replication factor N = 2n + 1 include
TMR or triple modular redundancy [57] and its generalization to NMR, which replicates tile voters
in an attempt to tolerate voter as well as circuit failures, use of adaptive voters [72] with a capability
to adjust the weights assigned to input signals that have proved unreliable in the past, and hybrid
redundancy [58], which combines the advantages of masking and standby redundancy techniques.
Majority-voted redundancy has also been proposed for the tolerance of software imperfections.
This technique will be dealt with in Subsection 6.3.

4. 4. The f a u l t - to -error transit ion

Transition from a faulty to erroneous state occurs when a fault affects the state of some storage
element or output. Designers try to impede this transition by using fault tolerance methods.
Another approach is to control this transition so that it leads to an incorrect but safe state. An
example is the provision of internal fault detection mechanisms (e.g. comparators, activity
monitors, or consistency checkers) that can disable a given module or system, assuming of course
that the disabled state is safe.

Ironically, one may also try to facilitate this transition for the purpose of exposing system faults,
since errors are more readily observable than faults. This is precisely the objective of all fault-testing
schemes. With off-line test application methods (see Fig. 3), special input patterns are applied to
the circuit or system under test, while observing possible errors in its outputs or internal state. To
deduce underlying faults from observed errors, we need to establish a correspondence between
various fault and error classes. This is referred to as error modeling and is discussed in Subsection
5.1. With on-line or concurrent test application, faults must be exposed during normal system
operation and without disrupting its service. As such a self-checked mode of operation relies heavily
on informational coding techniques, it is treated in Subsection 5.2.

356 Bm,IROOZ PARHAMI

5. E R R O R - L E V E L O R I N F O R M A T I O N - L E V E L V I E W

5. I. Causes and symptoms of errors

An error is any deviation of a system's state from the reference state as defined by its
specification. Errors are either built into a system by improper initialization (e.g. incorrect ROM
contents) or develop as a result of fault-induced deviations. Assuming that the system's state is
encoded as a binary vector, an error consists of a set of 0 ~ 1 (read 0-to-l) and/or 1 ~ 0 inversions.
With this view, errors can be classified according to the multiplicity of inversions (single vs
multiple), their directions (symmetric if both 0 ~ 1 and 1 ---. 0 inversions are considered at the same
time, asymmetric if, for example, the inversions can only be of the 1 ~ 0 type, and unidirectional
if multiple inversions are of the same type), and their dispersion (random vs correlated). There are
finer subdivisions in each category. For example byte errors and bursts confined to a number of
adjacent bits are frequently studied instances of correlated multiple errors.

Actually, inversion is not the only type of error that one can consider. When there is a proiri
or external information that a bit or group of bits may be erroneous or when an invalid symbol
or signal is observed, the situation can be dealt with as an erasure error.

Error models reflect the information-level consequences of logic faults. They enable us to analyze
error probabilities for given fault classes and distributions. In addition, error models help in the
establishment of design techniques that force fault classes of interest to produce detectable and/or
correctable errors. Whereas some faults may be transient or intermittent, I view errors as being
permanent. Errors seldom disappear on their own and must be corrected before they result in a
malfunction. Thus, in my model and terminology, there is no such thing as a transient or
intermittent error. Rather, we have transient faults leading to errors in some state variables or
outputs which are then either corrected by explicit invocation of the system's error correction and
recovery mechanism or propagate to higher levels and are treated there.

5.2. Error detection and location

All error detection schemes use informational redundancy. The differences appear in the level
at which redundancy is applied (bit-string/word level, data-structure level, algorithm/application
level) and in the classes of errors dealt with.

Classical coding theory deals almost exclusively with the bit-string or word level. This is because
coding theory was developed primarily for communication systems that are characterized by
randomness and locality of errors (usually induced by random noise) and lack of reliance on
structural properties and semantic contents of the encoded data (again reasonable because of
generality requirements and secrecy concerns). Coding theory has provided a theoretical foun-
dation and a vast repertory of error codes having particular detection/correction properties.
Unfortunately, there is no unified theory to help a designer in selecting the best code for a given
set of requirements. Thus, one must rely on detailed knowledge of various important code classes
and subclasses (linear, cyclic, BCH, Reed-Solomon, Berger, etc.) and make the final selection on
the basis of error detection capability, redundancy level, and encoding/decoding cost and delay.

Historically, the application of informational redundancy to computing systems has followed the
path of classical coding theory [38,80]. Several developments in coding theory, such as byte-oriented
codes, unidirectional error codes [55], and arithmetic error codes [9,79], can be directly attributed
to the requirements of computing applications. Even though coding theory was born at about the
same time as electronic digital computers [82], systematic application of informational redundancy
at the higher levels of data structures and algorithms did not start until the 1980s.

If data manipulation circuits can be assumed to be much more reliable than storage and
transmission facilities, the strategy shown in Fig. 4 can be used. This is in fact the approach taken
in most current commercially available computers. For certain data manipulation functions, it may
be possible to design circuits that accept encoded data and produce encoded results directly. Where
this has not been possible with known error codes, computer designers have devised new ones (e.g.
arithmetic error codes mentioned above). A significant innovation in this area is the concept of
a totally self-checking (TSC) functional unit designed in such a way that its internal faults either
do not affect the correct output or manifest themselves as invalid outputs [94]. Use of such circuits,
with self-checking checkers and suitable recovery mechanisms, can lead to ultrareliable and resilient

A multi-level view of dependable computing 357

C
Protected

by Encoding

(

(

INPUT)

ENCODE ~-

SEND 3

STORE 3

SEND

OUTPUT

Fig. 4. A common way of using information

Unprotected

C MANIPULATE 3

3
coding techniques for dependable computing.

computing systems. An important application of error codes is in the design of malfunction-safe
(or fail-safe in the prevailing terminology) sequential circuits (see Subsection 5.4).

At the data structure level, multiple words are encoded collectively to provide a higher degree
of error protection at lower cost. Two simple examples are the provision of a checksum word at
the end of a vector and the addition of row and column checksums to a matrix. Semantic
information if available, can also be exploited for error detection. For example, the sorted order
of a vector or symmetry of a matrix provide additional clues for error detection/correction.
Concern for protecting structure data such as pointers has resulted in the investigation of robust
data structures [88].

There are two approaches to error detection at the algorithm level. A fairly general language-
based approach is the intermixing of annotations and assertions with program statements [56] for
specifying expected data properties at certain execution points, so that any deviation can be
detected. A second approach is the use of consistency checks guided by special properties of the
algorithms being implemented. Techniques in this category are highly application-dependent.
Published results include matrix operations [44] and hardware FFT processors [22,46].

5.3. Error tolerance

Error tolerance is achieved by the application of error-correcting codes (ECCs) or through an
error detection/recovery procedure. ECCs are used extensively in data transmission and storage
systems. They usually involve a high degree of informational redundancy if applied to short words.
Thus, except for single-error-correcting codes used for semiconductor random-access memories, the
use of such codes usually involves encoding of large blocks of data. An impressive application area
for such ECCs is in digital recording on compact audio discs (detection/recovery is inapplicable
due to the real-time nature of sound production). The technique employed relies on sophisticated,
highly redundant ECCs leading to the tolerance of extensive information loss from scratches on
the disc surface. Similar schemes have been proposed for optical computer disks [41].

The best know ECCs belong to the classes of linear separable codes (also referred to as systematic
or separable parity check codes) and polynomial cyclic codes. A codeword in a linear separable
code consists of a number of information bits and several separate check bits, each obtainable as
a certain linear combination of the information bits, Linear separable codes contain the Hamming
single-error-correcting codes as a special subclass. Polynomial cyclic codes, which overlap with

358 BEHROOZ PARHAMI

linear separable codes and also contain Hamming single-error-correcting codes as special cases,
derive their name from the fact that they are based on polynomial algebra and that any cyclic
(end-around) shift of their codewords are also codewords. Polynomial cyclic codes have relatively
simple encoders and decoders that are based on linear feedback shift registers. Important subclasses
of these codes are the BCH and Reed-Solomon codes.

The theory of ECCs is well developed [6,71] and a wide variety of such codes are known. ECCs
can be classified in the same way as error-detecting codes. Here also, there is no unified theory to
help the computer system designer with the selection process. The more a designer knows about
various subclasses of error-correcting codes and their properties, the closer his or her choice is likely
to be to the optimal design.

Recovery from errors detected at the bit-string/word level can take several forms. The simplest
form is retransmission or recomputation of the erroneous data. The instruction retry facility of
some computers is an example that is effective against errors caused by transient logic faults.
Automatic hardward-controlled switchover to a standby circuit in the event of a detected error is
a technique that has been suggested but not widely used. Instead, the switching normally takes place
at the higher level of functional units (modules) if and when the error leads to a detectable
malfunction. Because structural and semantic information are application-dependent, recovery
from errors detected at the data structure or algorithm level is usually software-controlled. A recent
development in this respect is that of data diversity [2] which in its simplest form is based on retrying
an erroneous computation by providing it with a logically equivalent set of input data.

5.4. The error-to-malfunction transition

A system moves from erroneous to malfunctioning state when an error affects the functional
behavior of some component subsystem. This transition can be avoided by using error tolerance
techniques. An alternative is to control the transition so that it leads to a safe malfunction. This
latter technique has been extensively applied to the design of malfunction-safe (fail-safe) sequential
circuits. The idea is to encode the states of the sequential circuit in some error code, specify the
transitions between valid states (represented by codewords) in the normal way, and define the
transitions for erroneous states in such a way that they never lead to a valid state. Thus, an invalid
state persists and is eventually detected by an external observer or monitor. In the meantime, the
output logic produces safe values when the circuit is in an invalid state.

One may also try to facilitate this transition for the purpose of exposing latent system errors.
For example, a memory unit containing incorrect data is in the erroneous state. It will operate
correctly as long as the erroneous words are not read out. Systematic testing of memory can result
in a memory malfunction that exposes the errors.

6. M A L F U N C T I O N - L E V E L O R S Y S T E M - L E V E L V I E W

6.1. Causes and symptoms of malfunctions

A malfunction is any deviation of a system's operation from its expected behavior according to
the design specifications. For example, an arithmetic/logic unit computing 2 + 2 = 5 can be said
to be malfunctioning, as is a processor executing an unconditional branch instead of a conditional
one. Malfunctions (like defects, faults, and errors) may have no external symptoms, but they can
be made externally observable with moderate effort. In fact, malfunction detection (complemented
by a recovery mechanism) constitutes the main strategy in the design of today's general-purpose
dependable computer systems. Even though such systems are called fault-tolerant in the prevailing
terminology [25], I will use the adjective 'malfunction-tolerant' for consistency. Many such systems
are built from standard off-the-shelf building blocks with little or no fault and error handling
capabilities and use higher-level hardware and software techniques to achieve malfunction
tolerance at the module or substystem level.

Malfunctions can be classified as being related to timeliness or correctness of the subsystem
responses. Malfunctions of the first type are easier to deal with (e.g. using a time-out mechanism
and rescheduling the computation on a different processor in the event of unacceptable delays).
In fact, it has been suggested that dependability assurance would become much simpler if the
processors were of the malfunction-stop (fail-stop) type [81]; i.e. they either produce correct

A multi-level view of dependable computing 359

responses or produce no response at all. It is worth noting that the malfunction-stop property is
actually a special case of the malfunction-safe mode of operation where the lack of output is the
only safe output state. In contrast to this highly controlled malfunction mode, arbitrary or
Byzantine malfunctions [27] are extremely difficult to handle, even for fairly trivial computations.

Like faults, malfunctions can be classified as being transient, intermittent/recurring, or perma-
nent. Permanent malfunctions (e.g. a module producing incorrect results for every input) are very
rare and a recurring malfunction is of course easier to detect than a transient one.

6.2. Malfunction detection and diagnosis

There are two methods for detecting malfunctions: internal monitoring and external observation.
Internal monitors are built-in checkers that detect various irregularities and produce an external
'malfunction' indication. To implement this scheme with standard off-the-shelf components and
a small amount of specialized hardware, one can use straight (non-reconfigurable) duplication. For
example, the Univac 1100/60 has duplicated subprocessors communicating over a pair of buses.
At the end of each microcycle, values on the buses are compared to identify a possible processor
malfunction [18]. In this scheme, the two subprocessors and the added monitoring hardware can
be considered as parts of a single processor with internal malfunction detection capability.

As f o r external observation, we distinguish two malfunction detection strategies: concurrent
checking and periodic diagnosis. With concurrent checking, external monitors check the outputs
of various subsystems for reasonableness and consistency. In a bus-based system, monitors may
be attached to system buses in order to check all inter-module data transfers. In software systems,
external monitors may take the form of acceptance tests performed on various results. The design
of reasonableness checks and acceptance tests is problem-dependent, with time and cost overheads
varying greatly from one application to another. For example, it is relatively easy to validate the
computed inverse of a matrix by performing matrix multiplication. It is much harder to
authenticate the result of a scheduling or simulation routine with the same level of confidence.

The periodic diagnosis version of external monitoring has received much attention, but practical
applications lag far behind the strong theoretical developments. In this approach, each module is
periodically subjected to special tests. The test, which is usually a built-in self-test procedure, is
initiated by an external module and its results are evaluated by the same or a different external
module. The theory of external malfunction diagnosis (or system-level fault diagnosis [48]) is based
on a directed graph model of module testing capabilities (i.e. there is an arc from module i to
module j if module i can test module j) . Practical applications are much more modest and do not
require sophisticated design and analysis theories. For example, the Japanese COMTRAC railroad
traffic computer [45] runs identical diagnostic programs on two CPUs. Each program exercises
most parts of the CPU in the course of computing a single value. The two values obtained are then
compared to a stored constant for determining the malfunctioning CPU.

The COMTRAC approach, which is similar to that of Bell System's local ESS processors [90],
is known as reconfigurable duplication, with its pessimistic reliability equation being

R = r,[r 2 + 2crm(1 - rm)]

where r, is the reliability of the reconfiguration (switching) mechanism and c is the detection
coverage factor (the probability of detecting a malfunction). This reliability is better than r,, iff:

2c - 1/r,
rm< 2c- -1

For rs = c = 0.9, we need r~ < 0.86 for reconfigurable duplication to be more reliable.

6.3. Malfunction tolerance

The two approaches to malfunction tolerance are similar to the static and dynamic fault tolerance
methods discussed in Subsection 4.3. The static approach is usually based on some form of voting.
For example, three processors may be used and the result taken to be the one provided by at least
two processors. A technique known as N-version programming applies this same principle to the
tolerance of software malfunctions due to residual design slips (more on this later). Three problems

CAEE 20/4--F

360 B~mooz P~HA~n

arise when applying replication at this level. First, it is quite difficult (some would even say
impossible) to assure malfunction independence [31,49]. Second, synchronization is more difficult
compared to voting at the logic circuit level. Third, it is hard to decide on meaningful comparisons
without wasting time on high data volumes; e.g. one unit may be declared the master and if it agrees
on some critical values with another unit, its results are assumed correct, thus avoiding
time-consuming votes on all computed values.

The dynamic approach to malfunction tolerance is based on malfunction detection and recovery.
As a simple hardware example, memory module malfunctions in a bit-slice or byte-slice memory
can be tolerated if a shadow module whose words are the XOR of the contents of all other modules
is provided. When a module malfunctions, it is isolated and its contents reconstructed from the
contents of the other modules [84, p. 157]. Software-oriented examples abound in the field of
distributed computing [25] where data consistency and atomicity of actions must be guaranteed in
the face of interleaved execution of transaction steps and the possibility of malfunctions in
participating sites. Useful tools and techniques such as atomic broadcasting, agreement and commit
protocols, synchronization, global state determination, and various other distributed algorithms
have been devised over the past few years for particular classes of malfunctions and system
topologies. This is still a very active research area.

It has been suggested that by using replicated modules with diverse designs, the protection
against random malfunctions will extend to related or common-cause malfunctions and design
slips. Systematic use of design diversity in computing systems started with the software-related
concepts of recovery blocks and N-version programming [14]. A recovery block [77,78] has the
structure;

ensure acceptance test, e.g. sorted list?
by primary module, e.g. quicksort
else by first alternate, e.g. bubblesort

else by last alternate, e.g. insertion sort
else error

Problems with implementing recovery blocks include the coverage and trustworthiness of the
acceptance test as well as a suitable checkpointing scheme to enable state restoration for error
recovery. For N-version software, assuring independence of failures, consistency of multiple results,
and proper functioning of the required inexact voting scheme are major challenges [12,20]. Several
modem safety-critical systems use a combination of replicated diverse hardware and software
modules (e.g. the Airbus A-310 and the Boeing 737/300 flight control systems).

6.4. The malfunction-to-degradation transition

The recovery block example in Subsection 6.3 shows how a software malfunction can lead to
a degradation in performance. In the case of detected hardware malfunctions, the bad unit can be
isolated from the rest of the system. This reduces the amount of hardware resources (memory,
processing power, I/O bandwidth, etc.) available to computations, thus leading to a corresponding
performance degradation. In fact in the absence of special monitoring facilities, a degraded
performance (e.g. delayed responses) may be the first indication of the underlying impairments.
Provision of backup resources can postpone this transition, as can the ability to replace or repair
the malfunctioning modules without having to shut down or otherwise disturb the system. Whereas
overall system performance may be degraded, individual users or processes need not experience the
same level of service degradation (e.g. due to reassessment of priorities). In fact when degradation
is severe, only critical computations may be allowed to run.

7. D E G R A D A T I O N - L E V E L OR S E R V I C E - L E V E L VIEW

7. I. Causes and effects of degradations
I have defined a dependable computer system as one producing trustworthy and timely results.

Actually, neither trustworthiness nor timeliness is a binary (all or none) attribute. I have already
mentioned that results may be incomplete or inaccurate rather than totally missing or completely

A multi-level view of dependable computing 361

wrong and they may be tardy enough to cause some inconvenience, without being totally useless
or obsolete. Thus, various levels of inaccuracy, incompleteness, and tardiness can be distinguished
and those that fall below particular thresholds might be viewed as degradations rather than failures.
A computer system that is organized such that module malfunctions usually lead to degradations
rather than to failures is gracefully degrading or fail-soft and is usually a multiprocessor system.

Degradations occur in many different ways. A byte-sliced arithmetic/logic unit might lose
precision if a malfunctioning slice is bypassed through recofiguration logic (inaccuracy). A
dual-processor real-time system with one malfunctioning unit might choose to ignore less critical
computations in order to keep up with the demands of time-critical events (incompleteness). A
malfunctioning disk drive in a transaction processing system can effectively slow down the system's
response (tardiness). These are all instances of degraded performance. Performance, of course, is
relatively hard to define and even harder to quantify. Meyer [59] summarizes the arguments
eloquently (remember that faults/failures in the following quotation are malfunctions in my
terminology):

"Evaluations of computer performance and computer reliability are each concerned,
in part, with the important question of computer system 'effectiveness',... perform-
ance evaluations (of the fault-free system) will generally not suffice since structural
changes, due to faults, may be the cause of degraded performance. By the same
token, traditional views of reliability (probability of success, mean time to failure,
etc.) no longer suffice since 'success' can take on various meanings and, in particular,
it need not be identified with 'absence of system failure'"

Meyer then proceeds to suggest performability as a measure that encompasses performance and
reliability and that constitutes a proper generalization of both.

7.2. Degradation management

Assuming that a malfunction is correctly identified, the malfunctioning subsystem is effectively
isolated, and the reconfiguration and recovery processes are successful, several other steps are still
necessary for the system to be able to function in a degraded mode. Figure 5 provides a basis for
the following discussion of performance variations with time in three types of systems:

S~: A fail-hard system with performance P,~x up to the failure time tl and after repair at t '~.
$2: A fail-soft system with degrading performance and off-line repair upon failure at time t 2 .
$3: A fail-soft system with on-line repair which postpones its failure time to t3.

In a fail-hard system, the first malfunction leads to a failure. However, this malfunction may occur

P
m a x

P .

r a i n

Performance

$2, S3

. ~ ° . °

Performance Threshold

$1

..... r

, . , $ 3 ," ," . ~ ~ ~ $3

, S,,, ~ ,~

®I ,, ," la:

0 ; S ~ 1 1 . -

, , - , 1 8
... ~,,,•, •~ ••••• ~. ."' ~ •••••~""*

• % ~ • J
• e • I • • e • t

• • e • t
• • w •

I t , Off-Une Repair.. lb ~ 1 1 T i m e
. ~ I ~ I~-

t 1 t: t 2 t~ t 3 t~ t~

Fig. 5. Performance variations in three different types of computing systems.

362 BEHROOZ P~HAm

at a later time compared to an equivalent fail-soft system due to lower complexity. In a fail-soft
system, some malfunctions lead directly to system failure (as shown for $2 at time t "2). But many
malfunctions only lead to performance degradations. If the system's design is such that malfunc-
tioning modules can be isolated and removed for replacement or repair without disrupting the
operation of other modules, then system failure may be postponed and its down time greatly
reduced. Such an on-line repair capability is essential for high-availability systems.

By degradation management, I mean the capacity of a system to go smoothly from one
performance level to a lower one when a malfunction is detected and properly isolated or to a higher
one when a malfunctioning subsystem is replaced. The two transitions are similar as they both
relate to the ability to function with a fluctuating pool of resources, when individual resources go
in and out of service at essentially unpredictable times. Due to the complex decision and recovery
mechanisms, degradation management is usually a software task that is built into the operating
system.

The malfunction detection phase was discussed in Subsection 6.2. Assuming that the detected
malfunction is not tolerable, the degradation management routine takes over and:

(1) isolates the malfunctioning unit and updates the resource availability information
(2) determines the affected processes and assesses the damage for each
(3) to the extent possible, recovers data and state information from the dead module
(4) initiates appropriate recovery algorithms for each of the affected processes.

Because degradation management can be applied with relatively low hardware and software
overheads, it has found its way into many modern computer systems. Examples include [85]:

(1) deactivating malfunctioning processors, channels, and I/O devices
(2) avoiding bad tracks on disk, contaminated files, and noisy communication lines
(3) removing part of main memory through virtual address mapping facilities
(4) bypassing a malfunctioning cache memory (VAX-11/750)
(5) blocking half of cache via restricted mapping in the good half (VAX-11/780, Univac

1100/60).

Occasionally, in the course of recovery from a malfunction, global reconfiguration may be required.
This can be accomplished by starting from a minimal working configuration that is known to be
trustworthy and systematically expanding to the optimal configuration with the available resources.

7.3. Degradation tolerance

Degradation tolerance has a system component and an application component. Clearly, a
gracefully degrading system must be structured so that it can function with a variable pool of
resources. This system component is usually built into the operating system functions which must
be configuration-independent and table-driven. A degradation is tolerated by the system if Step 4
in the degradation management procedure (discussed in Subsection 7.2) results in complete
recovery for all of the affected processes, with performance remaining at an acceptable level after
the recovery. In a real-time environment, the speed of recovery actions is critical and extensive
hardware support for such actions becomes mandatory. In most practical cases, partial degradation
tolerance is more cost-effective. Only the more critical processes may be scheduled for recovery and
continued execution, while other processes may receive reduced or no support (with appropriate
warnings). In such a case, the system operates in a mixed degradation-tolerant/malfunction-safe
mode.

The application component of degradation tolerance is equally important. Application programs
may be written such that they tolerate temporary reductions in computation accuracy and/or speed.
For example, less important subcomputations may be bypassed, certain periodic computations
performed less often, or double-precision computations replaced by single-precision ones. In many
cases, it may be possible to write application programs in such a way that their successful
completion does not depend on the availability of any particular resource. This is best illustrated
by means of an example [3]. Consider an aircraft collision detection computation that is to be
performed periodically based on radar data. The application software may be written in such a

A multi-level view of dependable computing 363

way that if in a given cycle radar data is not available by a certain time, then an approximate
computation based on the last available position and speed data is performed. In a similar way,
the recovery-block scheme can become a degradation tolerance technique if the alternate modules
are written in such a way that they require fewer resources for their successful execution.

7.4. The degradation-to-failure transition

A failure occurs when the system's degradation tolerance capacity is exhausted and, as a result,
its performance falls below an acceptable threshold. As degradations are themselves consequences
of malfunctions, it is interesting to skip a level and relate system failures directly to malfunctions.
It has been noted that failures in a gracefully degrading system can be attributed to:

(1) isolated malfunction of a critical subsystem
(2) occurrence of catastrophic (multiple space-domain) malfunctions
(3) accumulation of (multiple time-domain) malfunctions beyond detectability/tolerance
(4) resource exhaustion causing inadequate performance or total shutdown.

Analysis of the PRIME gracefully degrading timesharing system (developed at Berkeley in the early
1970s [19] showed that the first two items, i.e. intolerable malfunctions, are the most common
causes of system failures; this conclusion has since been reinforced by other studies. In this context,
a degradation is almost good news in that the mere fact of its occurrence means that the highest
danger of failure has passed! Thus, minimizing the number and size of critical subsystems (the hard
core) and providing strong protection against catastrophic common-cause malfunctions are
important requirements for recovery and continued operation in a degraded mode.

8. F A I L U R E - L E V E L O R R E S U L T - L E V E L V I E W

8. I. Causes and effects of failures
The causes and effects of computer system failures can be analyzed by maintaining failure or

crash logs. One system for which extensive crash data has been reported is the C.mmp
multiprocessor of Carnegie-Mellon University [84]. It is generally acknowledged that human errors
account for a significant fraction of failures and that a majority of system-related crashes are
attributable to software. Studies of human reliability [15,70] are thus quite relevant to the discipline
of dependable computing and dependability assurance for software must be emphasized. A form
of design diversity is occasionally used for avoiding 'infant mortality' failures that result from
serious design slips: several contractors may be asked to build prototypes of a critical system, with
the best implementation then selected by rigorous testing under realistic conditions.

Following Leveson [54], I note that failures (or hazards in her safety-related terminology) are
characterized by severity and probability. The expected loss or risk associated with a particular
failure is a function of both its severity and its probability. Dependability procurement techniques
used in designing a computer system depend on the acceptable risk level which varies from one
application area to another. Factors causing such variations are numerous and can be classified
as:

(1) economic; expected losses versus cost of reducing the risk
(2) functional; required capabilities that cannot be compromised and are in conflict with safety
(3) psychological; e.g. people willing to accept higher risks on highways than in the air
(4) political; e.g. acceptable risk level lowered immediately after a major disaster.

Given that complete failure avoidance or tolerance is not feasible, the next best thing is to be
prepared for the inevitable, as failures tend to cause much greater damage when they take us by
surprise. Therefore, a realistic dependability evaluation scheme, that accurately predicts the failure
probability or that at least establishes an upper bound for it, is particularly important.

8.2. Failure detection and confinement

A prerequisite for containing the damage caused by a failure is the ability to detect it promptly.
In this sense, a catastrophic failure with some obvious external indication (e.g. smoke or explosion)

364 BEHROOZ PARHA~

may be preferable to a subtle one that is not immediately noticeable. Failure detection is generally
achieved by some form of acceptance test applied by the user. In a way, we can view a computer
system as simply a module in a high-level recovery-block architecture. When the outputs or actions
resulting from a computer system are unacceptable, recovery is initiated and alternates (manual
operation, warning system, etc.) are tried. In fact, the larger system, of which the computer is a
module, may similarly experience degraded performance and possibly failure.

Because recovery from computer failures necessarily involves human intervention, and human
reaction tends to be slow and at times unreliable, an additional requirement for the detectable
failure condition in safety-critical systems is that it be safe. On the hardware side, much of the work
reported pertains to fail-safe sequential logic circuits (e.g. [23]) and extension of these ideas to
higher system levels needs further work. Safety aspects of computer software are surveyed by
Leveson [54]. Goldberg [40] argues for the application of safety engineering to computer systems
in general and to software in particular. Here is his compilation of safety engineering principles:

(1) using barriers and interlocks to constrain the access to critical resources or states
(2) performing critical actions incrementally rather than in a single step
(3) dynamically modifying system goals so as to avoid or mitigate the damages of a hazard
(4) managing resources needed to deal with crises so that enough will be available in an

emergency
(5) exercising all the critical functions and safety features to determine their viability
(6) designing the operator interface to provide the information and power to deal with

exceptions
(7) defending the system against malicious attacks.

The last item above presents particularly challenging design problems and is the main source of
concern in certain weapons and defense systems. The operator (or more generally, the human)
interface is quite important, particularly wh~re the credibility and informativeness of warning
messages are concerned. Experience with conventional disaster warning systems (storms, floods,
fires, etc.) indicates that human beings tend to disbelieve and ignore warning messages. Clearly:

"No warning system will function effectively if its messages, however logically arrived
at, are ignored, disbelieved, or lead to inappropriate action" [35].

The paper cited above presents guidelines for designers of disaster warning information systems.
These guidelines are equally applicable to failure warnings in a safety-critical computer system.

I have defined a failure as an impairment for individual results/or computations. It is therefore
important to protect other computations that may be in progress in a computer system when a
failure is detected. This is referred to as failure confinement. Various approaches are possible
depending on the application. In a safety-critical system, one may decide to halt all computations
in the event of a detected failure in order to initiate a complete system checkout. At the other
extreme, computations may be allowed to continue as if nothing had happened, hoping that the
failure was an isolated event with no side effects. In the case of communicating processes, a
reasonable middle ground is to be suspicious of all processes that have sent or received data to/from
the failed process. This strategy sometimes causes a chain reaction in that the suspicious processes
may have communicated with other processes, which in turn may have communicated with others,
etc. It is thus important to coordinate the checkpointing strategy with the process intercommuni-
cation pattern to avoid having to restart everything.

8.3. Failure tolerance

Many malfunction tolerance techniques can be applied at this higher level to achieve failure
tolerance. In fact the distinction between malfunctions and failures is sometimes blurred in that,
for example, abnormal behavior of a computer in a multicomputer or distributed system can be
labeled a computer failure of a subsystem malfunction, depending on our point of view.

The oldest method of failure tolerance is failure detection followed by rollback or restart of the
failed computation (possibly on a backup system). This is clearly not easy to implement. First,
failure detection is never perfect and second, even with perfect failure detection, not all processes

A multi-level view of dependable computing 365

are reversible so that they can be rolled back and their effects undone. This method is essentially
a manually-controlled recovery block scheme. Process outputs or actions are subjected to fuzzy
acceptance tests by human observers. When tests indicate a failure, expert judgement is used to
select the best course of recovery actions (e.g. rollback to a checkpoint). Many computations or
transactions may be declared suspect, with manual or automatic verification requested for them.

The effectiveness of the above failure tolerance method is application-dependent. For example,
a writer will have little trouble resorting to a cut-and-paste style of editing based on the last
hard-copy of a manuscript in the event of a failed word processor. A pilot may be more
inconvenienced by a failed instrumentation computer but can usually bring the aircraft to a safe
landing. A spacecraft may be permanently lost if the control computer for its propulsion system
fails. The ability to detect the failure may not be of much value in this last case. In most practical
cases, partial failure tolerance may be provided, with the higher-level physical or organizational
system operating in a mixed failure-tolerant/fail-safe mode. Thus, failures are detected as usual,
but not all processes are treated identically afterwards. Some processes are transferred to a backup
system while others may be inactivated until the system is repaired or is otherwise judged fit to
resume its operation.

8.4. The failure-to-disaster transition

A tolerated failure, by definition, has negligible negative side effects. Also a detected failure does
not lead to a disaster unless there is something fundamentally wrong with the larger (physical,
societal, or corporate) system into which the computer system is incorporated. Disasters, therefore,
are primarily caused by undetected failures. The best protection against such disasters is to
acknowledge the fact that a computer failure could go undetected and to have an accurate estimate,
or at least a safe upper bound, for its probability. Thus, dependability measures are needed not
only because they allow us to compare competing systems for particular dependability and safety
goals, but also because they prevent unjustified or misguided confidence in computation results.

However, knowing the failure probability is not enough by itself. Humans are generally weak
in properly interpreting small probabilities. It is thus necessary for standards to be set and computer
system quality to be monitored in safety-critical systems in much the same way as other
safety-critical system components in construction, transportation, and nuclear power industries. It
is also necessary to give due attention to the training of operators for safety-critical computer
systems so that they react properly to emergency conditions and do not underestimate the
seriousness of observed deviations from the normal mode of operation.

Two sources of computer system failures, namely malicious attacks and misoperation, are
notoriously difficult to deal with. Systems that have special safeguards against these sources of
failures are sometimes described as tamper-proof and foolproof, respectively. In the first arena,
considerable progress has been made over the past two decades but somehow the attackers always
seem to be a step ahead (e.g. computer viruses). In the second arena, 'fools' appear to be quite
inventive in devising new ways to throw off supposedly foolproof systems. The inability of our most
ingenious designers to make even the simplest systems completely foolproof is very alarming.

9. C O N C L U S I O N S

I have provided a unified framework for the study of dependable computing and have surveyed
the field in light of the proposed framework. My multi-level model clearly exposes the fact that
dependability assurance techniques can be applied at several levels to supplement and strengthen
one another. Such a multi-level view provides a better understanding of both the impairments to
dependability and the consequences of undependability. Over the years, I have observed a shift of
emphasis from dependability procurement techniques at the lower levels of my model (defects,
faults, errors) to the higher levels (malfunctions, degradations, failures). Therefore, I expect
dependable computers of the future to use avoidance and removal techniques at the lower levels
in combination with tolerance techniques at the higher levels to achieve their goals. This, however,
does not mean that researchers will become disinterested in the lower levels altogether. Much work
needs to be done in the areas of defect and fault modeling and interest will probably remain high
in the use of defect and fault tolerance techniques as methods for VLSI yield enhancement.

366 BEHROOZ PARHAMI

In spite o f significant progress in the field o f dependab le comput ing over the pas t three decades,
the field is still full o f interest ing and chal lenging open p rob lems and much work remains to be
done. Dependab i l i t y enhancement features will be rout inely inco rpora t ed in the design o f future
compu te r systems. Thus, an i m p o r t a n t quest ion facing the designers o f such systems will be how
to use a mul t i tude o f seemingly unre la ted techniques in an op t imal and coherent fashion to achieve
given dependab i l i ty goals. Me thodo log ie s for guiding the designers o f ha rdware and sof tware
systems in their search for useful tools and strategies in a vast space o f dependabi l i ty p rocuremen t
techniques are bad ly needed. I hope that the f r amework p roposed in this pape r will con t r ibu te to
clear fo rmula t ion o f such med thodo log ies and their areas o f appl icabi l i ty .

I t is my sincere bel ief tha t dependab le compu t ing can no longer be t rea ted as a separa te discipline.
Ra ther , the useful techniques o f the field mus t be systemat ical ly i nco rpora t ed into the o ther areas
o f c o m p u t e r science and engineering (e.g. tes tabi l i ty into logic design, reconf igurat ion strategies into
c o m p u t e r archi tecture , pe r fo rmabi l i ty analysis into system eva lua t ion methodologies , etc.). Clearly,
this change o f view mus t s tar t with educa t iona l p rograms . Tak ing an isola ted advanced course on
dependab le comput ing encourages our future compu t ing profess ionals to th ink o f dependabi l i ty
as an a d d - o n feature. Indus t r ia l qual i ty con t ro l suffered f rom a s imilar p rob lem unti l it was realized
tha t qual i ty cont ro l and the rest o f manufac tu r ing processes are inseparable .

Acknowledgement--The research reported in this paper was initiated in 1987 at the University of Waterloo, where the author
was a Visiting Professor supported in part by the Natural Sciences and Engineering Research Council of Canada under
Grant Nos Gll40 and A5515.

R E F E R E N C E S
1. J. A. Abraham and W. K. Fuchs, Fault and Error Models for VLSI pp. 639-654, in [76].
2. P. E. Ammann and J. C. Knight, Data Diversity: An Approach to Software Fault Tolerance, pp. 418-425, in [91] (1988).
3. T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice. Prentice-Hall, Englewood Cliffs, N.J. (1981).
4. T. Anderson and P. A. Lee, Fault Tolerance Terminology Proposals. pp. 29-33, in [36] (1982). Also in [83], pp. 6-13.
5. T. A. Anderson, Resilient Computing Systems. Wiley, New York (1986).
6. B. Arazi, A Commonsense Approach to the Theory of Error-Correcting Codes. The MIT Press, Cambridge (1987).
7. J. E. Arsenault and J. A. Roberts (Eds), Reliability and Maintainability of Electronic Systems. Computer Science Press

(1980).
8. A. Avizienis, Design and fault-tolerant computers. AFIPS Conf. Proc. 31, 733-743 (1967).
9. A. Avizienis, Arithmetic Error Codes: Cost and Effectiveness Studies for Application in Digital System Design,

pp. 1322-1331 in [91], 1971. Reprinted in [84], pp. 671-686.
10. A. Avizienis, Fault tolerance and fault intolerance: complementary approaches to reliable computing. Proc. Int. Conf.

Reliable Softw., pp. 458-464. Los Angeles (1975).
11. A. Avizienis, The Four-Universe Information System Model for the Study of Fault Tolerance, pp. 6-13 in [36] (1982).

Reprinted in [89], pp. 27-33.
12. A. Avizienis, The N-version approach to fault-tolerant software. IEEE Trans. Softw. Engng 11, 1491-1501 (1985).
13. A. Avizienis, H. Kopetz and J.-C. Laprie (Eds), The Evolution of Fault-Tolerant Computing (Dependable Computing

and Fault-Tolerant Systems), Vol. I. Springer, New York (1987).
14. A. Avizienis, Software fault tolerance. Proc. IFIP Congr. San Francisco (1989).
15. R. W. Bailey, Human Error in Computer Systems. Prentice-Hall, New York (1983).
16. B. Beizer, Software System Testing and Quality Assurance. Van Nostrand, Princeton (1984).
17. B. K. Bhargava (Ed.), Concurrency Control and Reliability in Distributed Systems. Van Nostrand, Princeton (1987).
18. L. A. Boone, H. L. Liebergot and R. M. Sedmack, Availability, Reliability, and Maintainability Aspects of the Sperry

Univac 1100/60, pp. 3-9, in [36] (1980). Reprinted in [84], pp. 423-433.
19. B. R. Borgerson, A Fail-Softly System for Time-Sharing Use, pp. 89-93, in [36] (1972).
20. S. S. Briniant, J. C. Knight and N. G. Leveson, The consistent comparison problem in N-version software. ACM Softw.

Engng Notes 12, No. I, 29-34 January (1987).
21. W. C. Carter, A Time for Reflection, p. 41, in [36] (1982).
22. Y.-H. Choi and M. Malek, A fault-tolerant FFT processor. 1EEE Trans. Computers 37, 617-621 (1988).
23. H. Chuang and S. Das, Design of fail-safe sequential machines using separable codes. IEEE Trans. Computers 27,

249-251 (1978).
24. Computer, Special Issues on Fault-Tolerant Computing, Vol. 4, No. 1 (1971), Vol. 13, No. 3 (1980), Vol. 17, No. 8

(1984), Vol. 23, No. 7 (1990).
25. F. Cristian, Understanding fault-tolerant distributed systems. Commun. ACM 34, 56-78 (1991).
26. DCCA, Proc IFIP Work. Conf. Depend. Comput. Critic. Applic. Santa Barbara, Calif., August (1989); Tuscon, Arizona,

February (1991); Italy, August (1992); San Diego, Calif., January (1994).
27. D. Dolev, L. Lamport, M. Pease and R. Shostak, The Byzantine Generals, pp. 348-369, in [17].
28. R. W. Downing, J. S. Nowak and L. S. Tuomenoska, No. I ESS maintenance plan. Bell Syst. Tech. J. 43, 1961-2019

(1964).
29. R. F. Drenick, The failure law of complex equipment. J. Soc. Indust. Appl. Math. 8, 125-149 (1960).
30. R. Dunn and R. Ullman, Quality Assurance for Computer Software. McGraw-Hill, New York (1982).
31. D. E. Eckhardt and L. D. Lee, A theoretical basis for the analysis of multiversion software subject to coincident errors.

IEEE Trans. Soft. Engng 11, 1511-1517 (1985).

A multi-level view of dependable computing 367

32. EJCC, Proc. Eastern Joint Computer Conf. (Information Processing Systems-Reliability and Requirements). Washing-
ton, D. C. (1953).

33. R. M. Fasano and A. G. Lemack, A quad configuration-reliability and design aspects. Proc. Nat. Syrup. Reliab. Qual.
Cntrl, pp. 394-407. Washington, D.C. (1962).

34. E. M. Forster, The machine stops. In The eternal moment (collection of short stories). Harcourt, New York (1928).
35. H. D. Foster, Disaster warning systems: learning from failure. Information Systems: Failure Analysis (Edited by J. A.

Wise and A. Debons), pp. 3-13. Springer, New York (1987).
36. FTCS, Proc. Int. Syrup. Fault-Tolerant Comput., held since 1971 (in June, unless noted). Pasadena, Calif., March (1971);

Newton, Mass. (1972); Palo Alto, Calif. (1973); Champaign, Ill. (1974); Paris (1975); Pittsburgh (1976); Los Angeles
(1977); Tolouse, France (1978); Madison, Wis. (1979); Kyoto, Japan, October (1980); Portland, Me (1981); Santa
Monica, Calif. 0982); Milano, Italy (1983); Kissimmee, Fla (1984); Ann Arbor, Mich. (1985); Vienna, Austria, July
0986); Pittsburgh, July (1987); Tokyo 0988); Chicago (1989); Newcastle upon Tyne (1990); Montreal (1991); Boston,
July (1992); Tolouse, France (1993); Austin, Tex. (1994).

37. H. Fujiwara, Logic Testing and Design for Testability. MIT Press, Cambridge 0985).
38. H. Fujiwara and D. K. Pradhan, Error-Control Coding in Computers, pp. 63-72 in [24] (1990).
39. L. H. Goldstein, Controllability/observability analysis of digital circuits. IEEE Trans. Circ. Syst. 26, 685-693 (1979).
40. J. Goldberg, Some principles and techniques for designing safe systems. ACM Softw. Engng Notes 12, No. 3, 17-19

July 0987).
41. S. W. (3olomb, Optical disk error correction. Byte No. 5, May (1986).
42. M. H. Halstead, Elements of Software Science. Elsevier, Amsterdam (1977).
43. J. E. Hosford, Measures of dependability. Ops. Res. 8, 53-64 (1960).
44. K. H. Huang and J. A. Abraham, Algorithm-Based Fault Tolerance for Matrix Operations, pp. 518-528, in [91] (1984).
45. H. Ihara, K. Fukuoka, Y. Kubo and S. Yokota, Fault-Tolerant Computer System with Three Symmetric Computers,

pp. 1160-1177, in [75].
46. J.-Y. Jou and J. A. Abraham, Fault-tolerant FFT networks. IEEE Trans. Computers 37, 548-561 (1988).
47. J. A. Katzman, A Fault-Tolerant Computing System. Tandem Computers, Cupertino, Calif. Reprinted in [84],

pp. 435-452 (1977).
48. C. R. Kime, Systems Diagnosis, pp. 577-632, Chap. 8 in [74].
49. J. C. Knight and N. G. Leveson, An experimental evaluation of the assumption of independence in multiversion

programming. IEEE Trans. Softw. Engng 12, 96-109 (1986).
50. I. Koren and A. D. Singh, Fault Tolerance in VLSI Circuits, pp. 73-83, in [24] (1990).
51. R. E. Kuehn, Computer redundancy: design, performance, and future. IEEE Trans. Reliabil. 18, 3-11 (1969).
52. J.-C. Laprie, Dependability: ,4 Unifying Concept for Reliable Computing, pp. 18-21, in [36] (1982).
53. J.-C. Laprie, Dependable Computing and Fault Tolerance: Concepts and Terminology, pp. 2-11, in [36] (1985).
54. N. (3. Leveson, Software safety in embedded computer systems. Commun. ACM 34, 34-46 (1991).
55. D. J. Lin and B. Bose, Theory and Design of t-Error Correcting and d(d > O-Unidirectional Error Detecting (t-EC

d-UED) Codes, pp. 433-439, in [91] (1988).
56. D. C. Luckham and F. W. von Henke, An overview of ANNA, a specification language for Ada. IEEE Softw. 2, 9-22

(1985).
57. R. E. Lyons and W. Vanderkulk, The use of triple modular redundancy to improve computer reliability. IBM J. Res.

Dev. 6, 200-209 (1962).
58. F. P. Mathur and A. Avizicnis, Reliability analysis and architecture of a hybrid-redundant digital system: generalized

triple modular redundancy with self-repair. AFIPS Conf. Proc. 36, 375-383 (1970).
59. J. F. Meyer, On evaluating the performability of degradable computing systems. IEEE Trans. Computers 29, 720-731

(1980).
60. E. F. Moore and C. E. Shannon, Reliable circuits using less reliable relays. J. Frankl. Inst. 262, No. 3, pp. 191-208

(1956) and No. 4, pp.281-297 (1956).
61. W. R. Moore, A Review of Fault-Tolerant Techniques for the Enhancement of Integrated Circuit Yield, pp. 684-698,

in [76].
62. V. P. Nelson and B. D. Carroll (Eds), Tutorial: Fault-Tolerant Computing. IEEE Computer Society Press (1987).
63. D. Pantic, Benefits of integrated circuit burn-in to obtain high reliability parts. IEEE Trans. Reliabil. 35, 3-6 (1986).
64. B. Parhami, Errors in digital computers: causes and cures. Austral. Computer Bull. 2, No. 2, 7-12 March (1978).
65. B. Parhami, From defects to failures: a view of dependa;le computing. ACM Computer Architect. News, 16, No. 4,

157-168 September 0988).
66. B. Parhami, A Data-Driven Dependability Assurance Scheme with Applications to Data and Design Diversity,

pp. 105-112, in [26] 0989). Also in Dependable Computing for Critical Applications, pp. 257-282. Springer, New York
(1991).

67. B. Parhami, A unified approach to correctness and timeliness requirements for ultrareliable concurrent systems. Proc.
Int. Parallel Processing Syrup., pp. 733-747. Fullerton, Calif. (1990).

68. B. Parhami, Voting networks. IEEE Trans. Reliabil. 40, 380-394 (1991).
69. B. Parhami, Optimal Algorithms for Exact, Inexact, and Approval Voting, pp. 404-411, in [36] (1992).
70. K. S. Park, Human Reliability: Analysis, Prediction, and Prevention of Human Errors Elsevier, Amsterdam 0987).
71. W. W. Peterson and E. J. Weldon Jr, Error-Correcting Codes, 2nd Edn. MIT Press, Cambridge (1972).
72. W. H. Pierce, Adaptive Vote-Takers Improve the Use of Redundancy, pp. 229-250, in [96].
73. W. H. Pierce, Failure-Tolerant Computer Design. Academic Press, New York, (1965).
74. D. K. Pradhan (Ed.), Fault-Tolerant Computing: Theory and Techniques, 2 Vols, Prentice-Hall, New York 0986).
75. Proc. of the IEEE, Special Issue on Fault-Tolerant Computing, Vol. 66, No. l0 (1978).
76. Proc. of the IEEE, Special Issue on Fault Tolerance in VLSI, Vol. 74, No. 5 (1986).
77. B. Randell, System structure for software fault tolerance. IEEE Trans. Soft. Engng 1, 220-232 (1975).
78. B. Randell, Design Fault Tolerance, pp. 251-270, in [13].
79. T. R. N. Rao, Error Codes for Arithmetic Processors, Academic Press, New York (1974).
80. T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems. Prentice-Hall, New York (1989).
81. F. B. Schneider, The Fail-Stop Processor Approach, Chap. 13, pp. 370-394, in [17].

368 BEHROOZ PARI-tAMI

82. C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423 and 623-656 (1948).
83. S. K. Shrivastava (Ed.), Reliable Computer Systems: Collected Papers of the Newcastle Reliability Project. Springer,

New York 0985).
84. D. P. Siewiorek and R. S. Swarz, The Theory and Practice of Reliable System Design. Digital Press (1982).
85. D. P. Siewiorek, Fault Tolerance in Commercial Computers, pp. 26-37, in [24] (1990).
86. D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design and Evaluation, 2nd Edn. Digital Press (1992).
87. D. Swade, Charles Babbage's engines: the genius of failure. Computer Bull. 3, Pt. 5, 12-14 June (1991).
88. D. J. Taylor and J. P. Black, Principles of Data Structure Error Correction, pp. 602-608, in [91] (1982).
89. C. C. Timoc (Ed.), Selected Reprints on Logic Design for Testability. IEEE Computer Society Press (1984).
90. W. N. Toy, Fault-Tolerant Design of Local ESS Processors, pp. 1126-1145, in [75], Reprinted in [84], pp. 461-496.
91. IEEE Trans. Computers, Special Issues or Sections on Fault-Tolerant Computing Vol. 20, No. 1 l, November (1971);

Vol. 22, No. 3, March (1973); Vol. 23, No. 7, July (1974); Vol. 24, No. 5, May (1975); Vol. 25, No. 6, June (1976);
Vol. 27, No. 6, June (1978); Vol. 29, No. 6, June (1980); Vol. 31, No. 7, July (1982); Vol. 33, No. 6, June (1984); Vol. 35,
No. 4, April (1986); Vol. 37, No. 4, April (1988); Vol. 39, No. 4, April (1990); Vol. 41, No. 5, May (1992).

92. J. G. Tryon, Quadded Logic, pp. 205-228, in [96].
93. J. von Neumann, Probabilistic logics and the synthesis of reliable organisms from unreliable components. In Automata

Studies (Annals of Mathematics Studies, No. 34) (Edited by C. E. Shannon and J. McCarthy), pp. 43-98. Princeton
University Press (1956).

94. J. F. Wakerly, Error Detecting Codes, Self-Checking Circuits and Applications, North-Holland, Amsterdam (1978).
95. G. F. Watson (Coordinator), Faults & failures: when speed enforcement didn't work. IEEE Spectrum. 28, No. I l, 76

November (1991).
96. R. H. Wilcox and W. C. Mann (Eds), Redundancy Techniques for Computing Systems. Spartan, New York (1962).
97. T. W. Williams, Design for testability, in VLSI Testing, Chapter 4, pp. 95-160. North-Holland, Amsterdam (1986).
98. S. Winograd and J. D. Cowan, Reliable Computation in the Presence of Noise. MIT Press, Cambridge (1963).
99. M. H. Woods, MOS VLSI reliability and yield trends. Proc. IEEE 74, 1715-1729 (1986).

A U T H O R ' S B I O G R A P H Y

Behrooz Parhami--B. Parhami (Ph.D. UCLA, 1973) was affiliated with Sharif (Arya-Mehr) University of Technology,
Tehran, Iran. Since 1988, he has been Professor of Computer Engineering at University of California, Santa Barbara, with
research interests in dependable computing, computer arithmetic, and parallel processing. He has also published on
Farsi-language computing and informatics education. He was the Founding President of Informatics Society of Iran
(1978-1983), Chair of IEEE Iran Section (1977-1986), and a recipient of the IEEE Centennial Medal (1984).

