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Abstract--This paper serves a dual purpose. It presents a unified framework and terminology for the study 
of computer system dependability. It also surveys the field of dependable computing in light of the 
proposed framework. Specifically, impairments to dependability are viewed from six levels, each being 
more abstract than the previous one. It is argued that all of these levels are useful, in the sense that proven 
dependability assurance techniques can be applied at each level, and that it is beneficial to have distinct, 
precisely defined terminology for describing impairments to, and procurement strategies for, computer 
system dependability at these levels. The six levels are: 

(I) Defect level or component level, dealing with deviant atomic parts. 
(2) Fault level or logic level, dealing with deviant signal values or path selections. 
(3) Error level or information level, dealing with deviant data or internal states. 
(4) Malfunction level or system level, dealing with deviant functional behavior. 
(5) Degradation level or service level, dealing with deviant performance. 
(6) Failure level or result level, dealing with deviant outputs or actions. 

Briefly, a hardware or software component may be defective (hardware may also become defective due 
to wear and aging). Certain system states will expose the defect, resulting in the development of faults 
defined as incorrect signal values or decisions within the system. If a fault is actually exercised, it may 
contaminate the data flowing within the system, causing errors. Erroneous information or states may or 
may not cause the affected subsystem to malfunction, depending on the subsystem's design and error 
tolerance. A subsystem malfunction does not necessarily have a catastrophic, unsafe, or even perceivable 
service-level effect. Finally, degradation of service could eventually lead to system failure. At each of these 
six levels, the complementary approaches of prevention (avoidance or removal) and tolerance are discussed 
in relation to inter-level transitions. 

Key words: Error handling, fail-safe systems, fail-soft systems, fault tolerance, graceful degradation, highly 
available systems, long-life systems, redundancy techniques, safety-critical systems, self-repair. 

1. I N T R O D U C T I O N  

D e p e n d a b l e  compu t ing  is an  ou tg rowth  o f  fau l t - to le ran t  comput ing ,  a focus a rea  bo rn  in the mid  
1960s [8,73] fol lowing a decade  o f  concern  with  digi ta l  system rel iabi l i ty  issues [32,60,93]. F a u l t  
to le rance  is ac tual ly  an  age-o ld  design technique.  Avizienis  [14] quotes  a 1.5-Century o ld  pape r  
advoca t ing ,  in connec t ion  with Char les  Babbage ' s  invent ions ,  the use o f  different compute r s  and  
a lgor i thms  for  checking  c o m p u t a t i o n  errors .  In  the re la ted a rea  o f  fail-safe design,  Babbage  himself  
" b o a s t s  tha t  it  is imposs ib le  to  wilfully de range  or  co r rup t  his machines  . . .  and  tha t  his engines 
will a lways  ei ther  p roduce  the correct  result  o r  j am ,  bu t  never  deceive"  [87]. E. M. Fo r s t e r  [34] 
fancies a c ivi l izat ion con t ro l l ed  by self - repair ing machines  tha t  eventual ly  self-destructs  because  
designers  ignored  the poss ibi l i ty  o f  faul ts  in the ' M e n d i n g  A p p a r a t u s '  itself. 

Fo l lowing  the ini t ial  emphas i s  on  faul t  to lerance  th rough  fau l t -masking  and  self-repair ,  it  was 
real ized tha t  to le ra t ing  faults  is bu t  one way  o f  achieving high rel iabil i ty.  Hence,  testing, testabi l i ty ,  
verif icat ion,  main ta inab i l i ty ,  design methodologies ,  and  o ther  fault  avo idance / remova l  techniques 
were in tegra ted  into  the p r o g r a m s  o f  the In te rna t iona l  Fau l t -To l e r an t  C o m p u t i n g  Sympos ia  [36], 
held annua l ly  since 1971. This  b roaden ing  o f  scope shifted the focus to rel iable comput ing ,  a var ian t  
o f  which had  been used as  far  back  as 1963 to complemen t  rel iable communica t i on  [98]. But the 
sympos ia  con t inued  with  the  or ig inal  restr ict ive title. To  avo id  confus ion  between rel iabi l i ty  as a 
precisely defined stat is t ical  measure  and  rel iabi l i ty  as a qual i ta t ive  a t t r ibu te  o f  systems and  
compu ta t ions ,  use o f  dependab i l i ty  was suggested for  conveying  the second meaning  [52]. 
D e p e n d a b l e  compu t ing  deals  wi th  impa i rmen t s  to dependab i l i ty  (defects, faults,  errors ,  mal func-  
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tions, degradations, failures, and crashes), means for coping with them (fault avoidance, fault 
tolerance, design validation, failure confinement, etc.), and measures of success in the pursuit of 
dependability (reliability, availability, safety, etc.). 

As computers are used for more critical applications by less sophisticated users, the dependability 
of computer hardware and software assumes even greater importance. Highly dependable computer 
systems have been in widespread use for almost three decades [28] and have been commercially 
marketed for about half as long [47]. The trend towards 'intelligent' computers and the expectation 
of higher safety levels with advanced technology [95] will make computer system dependability an 
integral part of the design and implementation process for future generation systems. 

2. D E P E N D A B L E  S Y S T E M S :  I D E A L  VS R E A L  

2.1. Defining dependability 
Dependability has been defined briefly as "the probability that a system will be able to operate 

when needed" [43]. This simplistic view, which subsumes both of the well-known notions of 
reliability and availability, is only useful for systems that are either completely operational or totally 
failed. Since what we are really interested in is task accomplishment rather than system operation, 
the following is more appropriate: " . . .  the ability of a system to accomplish the tasks (or 
equivalently, to provide the service[s]) which are expected from it" [52]. A weakness of this 
definition is that it is based on expected rather than specified behavior, in order to accommodate 
possible specification slips. However, if expectations are realistic and precise, they can be viewed 
as simply another form of specification (perhaps a higher-level one). But if we expect too much, 
then this definition is an invitation to blame our misguided expectations on the system's 
undependability. Carter's " . . .  trustworthiness and continuity of computer system service such that 
reliance can justifiably be placed on this service" [21] has two positive aspects: It takes the time 
element into account explicitly (continuity) and stresses the need tbr dependability validation 
(justifiably). Laprie's version of this definition [53] can be considered a step backwards in that it 
substitutes quality for trustworthiness and continuity. The use of quality and quality assurance, 
as in other engineering disciplines, is a welcome trend [16,30]. But precision need not be sacrificed 
for compatibility. 

To formulate a more useful definition of dependable computing, one must examine the various 
aspects of undependability. To a user, undependability shows up in the form of late, incomplete, 
inaccurate, or incorrect results or actions [64]. The two notions of trustworthiness (correctness, 
accuracy) and timeliness can be abstracted from the above; completeness need not be dealt with 
separately since any missing result or action can be considered to be infinitely late. Actually, 
dependability should not be considered an intrinsic property of a computer system. A physically 
unreliable system might become quite dependable by virtue of algorithmic dependability procure- 
ment mechanisms, applied in different ways to various computations and/or interactions, given 
their specified correctness and timeliness requirements [66,67]. However, the ideal of associating 
dependability with individual data objects or actions is presently impractical. 

Hence, depend/tbility of a computer system may be defined as justifiable confidence that it will 
perform specified actions or deliver specified results in a trustworthy and timely manner. Note that 
the above definition does not preclude the possibility of having various levels of importance for 
different (classes of) user interactions or varying levels of criticality for situations in which the 
computer is required to react. Such variations simply correspond to different levels of confidence 
and dependability. This new definition retains the positive elements of previous definitions, while 
presenting a result-level view of the time dimension by replacing the notion of service continuity 
by timeliness of actions/results. 

2.2. Impairments to dependability 
Impairments to dependability are often described as hazards, defects, faults, errors, malfunctions, 

failures, and crashes. There are various definitions for these terms, causing different and sometimes 
conflicting usages. In this subsection, I review two major proposals on how to view and describe 
impairments to dependability and present my own model. 

Members of the Newcastle Reliability Project [83], led by Professor Brian Randell, advocate a 
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hierarchic view [4]: a (computer) system is a set of components (themselves systems) that interact 
according to a design (another system). System failure is defined as deviation of its behavior from 
that predicted/required by the system's authoritative specification. Such a behavioral deviation 
results from an erroneous system state. An error is a part of an erroneous state which constitutes 
a difference from a valid state. The cause of the invalid state transition which first establishes an 
erroneous state, is a faulty component or design. Similarly, component or design failure can be 
attributed to an erroneous state within the corresponding (sub)system resulting from a component 
or design fault, and so on. At each level of the hierarchy, "the manifestation of a fault will produce 
errors in the state of the system, which could lead to a failure". Hence, failure and fault are simply 
different views of the same phenomenon. This is quite elegant and enlightening but gives rise to 
a need for continual establishment of frames of reference when talking about the causes (faults) 
and effects (failures) of deviant system behavior at various levels of abstraction. 

While it is true that a computer system may be viewed at many different abstraction levels, it 
is also true that some of these levels have proved more useful in practice. Aviziens [11] takes four 
such levels and proposes distinct terminology for impairments to dependability (undesired events, 
in his words) at each level. His proposal is summarized in the following cause-effect diagram: 

Abstraction level Undesired event 
Physical Failure 

U 
Logical Fault 

U 
Informational Error 

V 
External Crash 

There are some problems with the above choices of names for undesired events. The term 'failure' 
has traditionally been used both at the lowest and the highest abstraction levels; viz. failure rate, 
failure mode, and failure mechanism used by engineers/physicists alongside system failure, fail-soft 
operation, and fail-safe system due to computer architects. To comply with the philosophy of 
distinct naming for different levels, Avizienis retains failure at the physical level and uses crash for 
the other end. However, minor inaccuracies or delays can hardly be considered 'crashes' in the 
ordinary sense of the term. Again, this usage emphasizes system operation rather than task 
accomplishment and ignores the fact that an 'operational' system can yield erroneous results. 

Another problem is that there are at least three external views. The maintainer's external view 
consists of interacting subsystems that must be monitored for detecting possible malfunctions in 
order to reconfigure the system or, alternatively, to guard against consequences such as total system 
crash. The operations manager's external view consists of a more abstract black box capable of 
providing certain services. In this view, isolated malfunctions are acceptable as long as they do not 
lead to serious degradation of service availability and/or quality. Finally, the end user is mainly 
concerned with triggered actions and computation results and thus his/her external view is shaped 
by the system's reaction to particular situations or commands. The following six-level view of 
impairments to dependability rectifies the problems [65]: 

Abstraction level Impairment 
Component Defect 

U 0 
Logic Fault 

U 
Information Error 

V 
System Malfunction 

U U 
Service Degradation 

U 
Result Failure 
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Taking into account the fact that a non-atomic component is itself a system, usage of the term 
'failure' in failure rate, failure mode, and failure mechanism can be justified by noting that a 
component is its designer's end product (system). Therefore, we can be consistent by associating 
the term 'failure' with the highest and the term 'defect' with the lowest level of abstraction. The 
component designer's failed system is the systems architect's defective component. 

2.3. Dependable computing 
The field of  dependable computing deals with the procurement, forecasting, and validation of 

computer system dependability. As discussed in Subsection 2.2, impairments to dependability can 
be viewed from six levels. Thus, subfields of dependable computing can be thought of  as dealing 
with some aspects of  one or more of these levels. Specifically, I take the view that a system can 
be in one of  seven states: Ideal, Defective, Faulty, Erroneous, Malfunctioning, Degraded, or Failed. 
Initially, a system may start up in any of the seven states, depending on the appropriateness and 
thoroughness of  validation efforts. Once in the initial state, the system moves from one state to 
another as a result of  deviations and remedies. Deviations are events that take the system to a lower 
(less desirable) state, while remedies are measures that enable a system to make the transition to 
a higher state. As shown in Fig. 1, each state can be entered through the sideways transitions 
initially, from above due to a deviation, or from below as a result of  a remedy. Associated with 
each transition, are five attributes that can be regarded as transition labels or tags: 

c: (natural) cause of  the transition 
i: (natural) impediment to the transition 
f: techniques for facilitating the transition 
a: techniques for avoiding the transition 
m: tools for modeling the transition. 

Recognized subfields of dependable computing deal with one or more of  these attributes and some 
attributes can be the basis of  new studies and subfields. In addition, such transition attributes can 
be used for classifying or indexing of techniques and research studies in the field of  dependable 
computing. For  example, a research project or proposed redundancy technique may be described 
as dealing with a[ ~ faulty] and i[faulty ~ erroneous]. 

Detailed discussions of  the non-ideal states and their related transitions appear in Sections 3-8 
of  the paper. Here, I present some general observations on the various system states. First, note 

IDEAL 

T 

T 

T 

T 

Fig. 1. System states and state transitions in the multi-level model of dependable computing. 
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Wall heights represent Inlet valves represent 
Inter-level latencles avoidance techniques 

A / f k  ['q 

Concentric 
analogues of the six model Drain. valves represent 
levels (defect is innermost) tolerance techniques 

Fig. 2. A simple analogy for the multi-level model of dependable computing. Pouring water represents 
defects, faults, errors, malfunctions, degradations, and failures. 

that the observability of the system state (ease of external recognition that the system is in a 
particular state) increases as we move downward in Fig. 1. For example, the inference that a system 
is 'ideal' can only be made through formal proof techniques; a proposition that is impractical for 
modern computer systems in view of their complexity. At the other extreme, a failed system can 
usually be recognized with little or no effort. As examples of intermediate states, the faulty state 
is recognizable by extensive off-line testing, while the malfunctioning state is observable by on-line 
monitoring with moderate effort. It is therefore common practice to force a system into a lower 
state (e.g. from defective to faulty, under torture testing) in order to deduce its initial state. 

2. 4. An analogy 

Figure 2 provides an interesting analogy for clarifying the states and state transitions in my 
six-level hierarchical model, using a system of six concentric water reservoirs. Pouring water from 
above corresponds to defects, faults, and other impairments, depending on the layer(s) being 
affected. These impairments can be avoided by controlling the flow of water through valves or 
tolerated by the provision of drains of acceptable capacities for the reservoirs. The system fails if 
water ever gets to the outermost reservoir. This may happen, for example, by a broken valve at 
some layer combined with inadequate drainage at the same and all outer layers. Wall heights 
between adjacent reservoirs correspond to the natural inter-level latencies in my model. Water 
overflowing from the outermost reservoir into the surrounding area corresponds to a computer 
failure adversely affecting the larger physical, corporate, or societal system. 

3. D E F E C T - L E V E L  OR C O M P O N E N T - L E V E L  V I E W  

3. I. Causes and consequences of defects 

Defects are caused in two ways, corresponding to the sideways and downward transitions into 
the defective state in Fig. 1: (1) physical design slip which results in defective system components, 
by improper design or inadequate screening; (2) development of defects due to component wear 
and aging or operating conditions that are harsher than those originally envisaged. An inadequately 
shielded device, for example, becomes defective when used in a high-noise environment and a 
real-time system assumes the defective state when the volume of input data exceeds its capacity. 
Wear and aging are only meaningful for hardware components, although it has been argued that 
software also 'ages' in a certain sense (due to changes in the environment or user expectations). 

The causes of defects in computer hardware are quite varied and technology-dependent. 
Experimental data on the relative frequencies of defect types for different technologies are gathered 
by component manufacturers and some governmental organizations concerned with reliability 
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evaluation and validation [99]. The ultimate goal of these efforts is to facilitate the development 
and validation of defect models that enable us to predict the occurrence of defects without resorting 
to extensive independent experimentation. Defects in software components can also be experimen- 
tally observed and analyzed. The field of software science [42] deals with proposing plausible defect 
models for computer software (actually, error models in the prevailing terminology) and validating 
the models through the use of empirical data. 

The frequency of defect occurrence is usually modeled by a defect rate parameter 2 (t), defined 
as the expected number of defect occurrences or, equivalently, as the probability of having some 
defect over a short, unit-length interval of time. For hardware components, the change in defect 
rate with time follows the so-called bathtub curve (there are also arguments against this 
characterization). During the burn-in period, high defect rates are common. This is followed by 
a long interval of relatively constant defect rate, constituting the component's useful life. Finally, 
in the wear-out period, rapid deterioration causes a corresponding surge in component defect rates. 
Assuming a constant component defect rate 2, the probability of no defect from time 0 to t in a 
system with n identical parts is g (t) = e -n~t. This is known as the exponential reliability law [7,29]. 
Equating the probability of no defect with reliability (probability of no failure) is a simple, but 
pessimistic, reliability estimation method that is widely used. 

Three reliability enhancement techniques are suggested by e -nat . Design simplicity, or reducing 
n, is an important paradigm for dependability. However, for a given overall functionality, a penalty 
will often be paid at some higher level where the design becomes more complex. Defect avoidance, 
or reducing 2, implies the use of low-defect-rate components that are quite expensive due to higher 
manufacturing and/or screening costs. Hence, the third approach of defect removal, or reducing 
t, is the most common component-level dependability procurement technique. Defect removal 
strategies include careful initial screening and frequent test/replacement of system components. 
This is further elaborated in Subsection 3.2. A more radical technique would be to attempt to 
change the probability expression altogether so that its value is less affected by 2 and/or t. This 
is the aim of defect tolerance methods to be discussed in Subsection 3.3. 

3.2. Defect avoidance and removal 

A defect may be dormant or ineffective long after its occurrence. During this dormancy period, 
external detection of the defect is impossible or, at the very least, extremely difficult. If, despite 
efforts to avoid or remove them, defects are nevertheless present in a product, nothing is normally 
done about them until they develop into faults. Periodic replacement of sensitive parts is one way 
of removing defects before they develop into faults. Similarly, burn-in of components [63] and 
scheduled preventive maintenance of computer hardware tends to remove most dormant defects. 
Component modifications and improvements, motivated by the analyses of data pertaining to 
degraded or failed systems, are other major ways of hardware and software defect removal. 

Avizienis has suggested the term 'fault intolerance' for the spectrum of techniques dealing with 
defect avoidance and removal [10]. In my terminology, defect intolerance would be the complemen- 
tary approach to tolerance methods (discussed in Subsection 3.3). Fault intolerance, error 
intolerance, malfunction intolerance, degradation intolerance, and failure intolerance are actually 
implied by defect intolerance but may be considered separately if tolerance techniques are used at 
the lower levels of abstraction. Frequently, a mixture of intolerance and tolerance may provide the 
most cost-effective design for given dependability requirements. 

3.3. Defect tolerance 

Defect tolerance is achieved through component-level redundancy techniques in one of three 
forms: 

(1) redundancy in the form of stronger components (safety factor) 
(2) redundancy in the form of alternate components (defect bypassing) 
(3) redundancy in the form of load-sharing components (defect masking). 

The first strategy actually reduces the component's defect rate and may thus be viewed as a defect 
avoidance technique. The second alternative can be used along with selection or reconfiguration 
logic for bypassing defective components recognized under extensive testing. Yield enhancement 
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for semiconductor components is the most important application of this method [50,61]. The third 
approach dampens the effect of deviant components by providing additional components that share 
the load during normal operation and completely take over when a defect develops. The classic 
hardware example of this technique, first used in connection with the Orbiting Astronomical 
Observatory satellite [33], is the replacement of a diode by four diodes connected as two parallel 
branches each having two diodes in series in order to tolerate diode short- and open-circuits. 
Another example is the provision of the electrical resistance R by using three parallel resistors each 
having the resistance 2.4R, thus tolerating one open resistor with moderate change in circuit 
characteristics (variation from 0.8R to 1.2R). 

Defect tolerance and removal are conflicting strategies in the sense that the provision of 
mechanisms to tolerate defects tends to make defect removal more difficult. If defect tolerance is 
employed as a yield enhancement technique, with the resulting components adequately tested prior 
to being used, then defect tolerance has no external manifestation except that it makes the testing 
more difficult. However, if defect tolerance is incorporated into component designs as a reliability 
improvement measure, serious problems may be encountered in validating reliability models and 
predictions. Experience shows that defect (or fault) masking methods can produce catastrophic 
effects when the masking capability of the mechanism is exceeded. Also, modeling becomes very 
difficult due to complex interactions between masked and non-masked defects (or faults). 

3.4. The defect-to-fault transition 

A system makes the transition from the defective state to the faulty state when a dormant defect 
is awakened and gives rise to fault. Designers try to impede this transition by providing adequate 
safety margins for the components and/or by using defect tolerance methods. Ironically, one may 
occasionally try to facilitate this transition for the purpose of exposing defects, since faults are more 
readily observable than defects. To do this, the components are usually subjected to loads and 
stresses that are much higher than those encountered during normal operation. This burning in 
or torture testing of components results in the development of faults in marginal components which 
are then identified by fault testing methods (see Subsection 4.2.) To be able to deduce the underlying 
defect from an observed fault, we need to establish a correspondence between various defect and 
fault classes. This is referred to as fault modeling and is discussed in Subsection 4.1. Alternatively, 
if the criticality of various fault classes has been established, fault modeling allows us to deduce 
the criticality of various defect classes and to establish priorities for dealing with them. 

4. F A U L T - L E V E L  OR L O G I C - L E V E L  VIEW 

4. I. Causes and symptoms o f  faults 

A hardware fault may be defined as any anomalous behavior of logic structures or substructures 
that can compromise the correct signal values within a logic circuit. As usual, the reference behavior 
is provided by some form of specification. If the anomalous behavior results from implementing 
the logic function g rather than the intended function f, then the fault is due to a logical design 
or implementation slip. The alternative cause of faults is the implementation of the correct logic 
functions with defective components. Defect-based faults can be classified according to duration 
(permanent, intermittent/recurring, or transient), extent (local or distributed/catastrophic), and 
effect (dormant or active). Only active faults produce incorrect logic signals. An example of a 
dormant fault is a line stuck on logic-value 1 that happens to carry a 1. If incorrect signals are 
produced as output or stored in memory elements, they cause errors in the system state. 

Over the years, logic designers have developed fault models [1] that accurately reflect the 
logic-level consequences of defects and/or lend themselves easily to mathematical analysis. The 
single stuck-at fault model is the most popular. It assumes that a single line within the logic circuit 
has taken on a constant logic value independent of the inputs applied. A stuck-at-1 or stuck-at-0 
fault may result from several classes of physical defects (e.g. open-connection or short-to-ground), 
depending on technology. The multiple stuck-at fault model, covering multiple unidirectional faults 
as a submodel, assumes that an arbitrary number of lines within the circuit may have become stuck. 
As a final example, the bridging fault model takes into account the possibility of short circuits in 
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the logic circuit. For certain technologies, switch-level fault models have been developed to 
overcome the problems resulting from the unavailability of accurate gate-level models. 

4.2. Fault avoidance and removal 

The two basic fault avoidance strategies relate directly to the two types of causes for faults. 
Logic design and implementation slips can be avoided by following rigorous design 
methodologies and by automating some of the more error-prone implementation steps. Faults 
that are caused by defects can be avoided by defect avoidance and tolerance methods 
discussed in Section 3. At present, complete fault avoidance is an unattainable goal. Thus, fault 
detection and removal techniques are integral parts of all logic design and implementation 
methodologies. 

Fault detection through fault testing [37] is used for the validation of engineering prototypes, 
screening of manufactured devices, and maintenance (corrective or preventive) of operational 
systems. The fault testing effort is a combination of test generation, test validation, and test 
application (Fig. 3). Tests are preset or adaptive depending on the strategy for deciding which tests 
and in what sequence are to be applied. They can also be classified as functional or structural. Good 
fault models combined with exhaustive or analytic test generation methods usually allow for 
theoretical test validation, but most common validation methods are experimental, using simu- 
lation as the primary tool. Test application is categorized according to the type of control 
mechanism used for test initiation and analysis (external or internal to the entity being tested) and 
based on whether or not testing can proceed with normal circuit operation (on-line/concurrent or 
off-line). To reduce the cost of testing, which grows exponentially with circuit complexity, much 
attention has been given to design for testability [37,97] and built-in self-test (BIST) techniques. 

FAULT TESTING 
(Engineering, Manufacturing, Maintenance) 

TEST GENERATION 

FUNCTIONAL STRUCTURAL 
(Exhaustive/ (Analyt ic/ 
Heuristic) Heuristic) 

FAULT F A U L T  DIAG- ALGO- 
MODEL COVER- NOSIS RITHM 
switch- AGE EXTENT D-algo- 
or gate- none rithm, 
level (check- boolean 
(single/ out, go/ differ- 
multiple no-go) ence, 
stuck-at, to full etc. 
bridging, resolu- 
etc.) tion 

TEST VALIDATION 

THEORETICAL EXPERIMENTAL 

/ 
SIMULA- FAULT 
TION INJEC- 
software T/ON 
(parallel, 
deductive, 
concur- 
rent) or 
hardware 
(simulation 
engine) 

Fig. 3. Classification of fault testing methods. 

TEST APPLICATION 

EXTERNALLY iNTERNALLY 
CONTR31 k-n GONTFEXt.ED 

MANUAL AUTO- TEST CONCUR- 
MATIC ~ RENT 
(ATE) (BIST) on-line 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  testing 
. . . . . .  ' . . . .  (self- 

off-line testing checked 
design) 
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4.3. Faul t  tolerance 

My use of the term 'fault tolerance' is quite restricted in scope; this contrasts with some uses 
of the term to denote the entire field of dependable computing [62,74]. Fault tolerance is usually 
achieved through redundancy applied in hardware, software, or time domains. Hardware and 
software redundancy are of two types: 

(1) static or masking redundancy to prevent faulty components from producing errors 
(2) dynamic or standby redundancy to detect and circumvent faults before they lead to errors. 

It is also possible to combine the two approaches in hybrid methods. 
Masking redundancy techniques date back to the mid 1950s when Moore and Shannon [61] 

showed how to synthesize reliable contact networks using 'crummy' relays and von Neumann [93] 
proposed voting on multiple signal versions. Later, Tryon [92] introduced quadded logic, the 
simplest example of interwoven redundant logic, which takes advantage of the natural masking 
capability of AND and OR gates; and AND (OR) gate masks an incorrect 0 or 1 if at least one 
of its other inputs is 0(1). Practical applications of these methods remained quite limited [51] due 
to the high cost of redundancy with discrete components. The integrated-circuit technology brought 
with it the possibility of cost-effective redundant implementations. However, the proposed 
techniques were still not widely applicable for a different reason: The fact that independence of 
faults in the multiple copies of a component or circuit could no longer be guaranteed. 

Redundancy techniques based on voting have found some applications [68,69]. In the simplest 
case, each circuit is triplicated with the three output signals reduced to the final output by a majority 
voter. Ignoring faults in the voter, the correct output is produced if at least two of the circuits 
function properly. If  rc is the probability of fault-free operation of a circuit independent of others, 
the reliability of the voted output is R = r 3 + 3r ~ (1 - re). Denoting the voter's reliability by rv, the 
overall reliability is no lower than rv(3r 2 - 2 r 3 ) .  Thus, reliability improvement is achieved iff: 

3 - x /9  - 8/r~ 3 + 4 9  - 8/r~ 
4 < r e <  4 

For example, if rv = 0.95, we must have 0.56 < r~ < 0.94 in order for the triplicated voting scheme 
to be more reliable than a single non-redundant circuit. 

Extensions to the basic replicated voting arrangement with replication factor N = 2n + 1 include 
TMR or triple modular redundancy [57] and its generalization to NMR, which replicates tile voters 
in an attempt to tolerate voter as well as circuit failures, use of adaptive voters [72] with a capability 
to adjust the weights assigned to input signals that have proved unreliable in the past, and hybrid 
redundancy [58], which combines the advantages of masking and standby redundancy techniques. 
Majority-voted redundancy has also been proposed for the tolerance of software imperfections. 
This technique will be dealt with in Subsection 6.3. 

4. 4. The f a u l t  - to -error transit ion 

Transition from a faulty to erroneous state occurs when a fault affects the state of some storage 
element or output. Designers try to impede this transition by using fault tolerance methods. 
Another approach is to control this transition so that it leads to an incorrect but safe state. An 
example is the provision of internal fault detection mechanisms (e.g. comparators, activity 
monitors, or consistency checkers) that can disable a given module or system, assuming of course 
that the disabled state is safe. 

Ironically, one may also try to facilitate this transition for the purpose of exposing system faults, 
since errors are more readily observable than faults. This is precisely the objective of all fault-testing 
schemes. With off-line test application methods (see Fig. 3), special input patterns are applied to 
the circuit or system under test, while observing possible errors in its outputs or internal state. To 
deduce underlying faults from observed errors, we need to establish a correspondence between 
various fault and error classes. This is referred to as error modeling and is discussed in Subsection 
5.1. With on-line or concurrent test application, faults must be exposed during normal system 
operation and without disrupting its service. As such a self-checked mode of operation relies heavily 
on informational coding techniques, it is treated in Subsection 5.2. 
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5. E R R O R - L E V E L  O R  I N F O R M A T I O N - L E V E L  V I E W  

5. I. Causes and symptoms of  errors 

An error is any deviation of  a system's state from the reference state as defined by its 
specification. Errors are either built into a system by improper initialization (e.g. incorrect ROM 
contents) or develop as a result of fault-induced deviations. Assuming that the system's state is 
encoded as a binary vector, an error consists of  a set of 0 ~ 1 (read 0-to-l) and/or 1 ~ 0 inversions. 
With this view, errors can be classified according to the multiplicity of inversions (single vs 
multiple), their directions (symmetric if both 0 ~ 1 and 1 ---. 0 inversions are considered at the same 
time, asymmetric if, for example, the inversions can only be of the 1 ~ 0 type, and unidirectional 
if multiple inversions are of  the same type), and their dispersion (random vs correlated). There are 
finer subdivisions in each category. For  example byte errors and bursts confined to a number of 
adjacent bits are frequently studied instances of correlated multiple errors. 

Actually, inversion is not the only type of  error that one can consider. When there is a proiri 
or external information that a bit or group of  bits may be erroneous or when an invalid symbol 
or signal is observed, the situation can be dealt with as an erasure error. 

Error models reflect the information-level consequences of  logic faults. They enable us to analyze 
error probabilities for given fault classes and distributions. In addition, error models help in the 
establishment of  design techniques that force fault classes of interest to produce detectable and/or 
correctable errors. Whereas some faults may be transient or intermittent, I view errors as being 
permanent. Errors seldom disappear on their own and must be corrected before they result in a 
malfunction. Thus, in my model and terminology, there is no such thing as a transient or 
intermittent error. Rather, we have transient faults leading to errors in some state variables or 
outputs which are then either corrected by explicit invocation of the system's error correction and 
recovery mechanism or propagate to higher levels and are treated there. 

5.2. Error detection and location 

All error detection schemes use informational redundancy. The differences appear in the level 
at which redundancy is applied (bit-string/word level, data-structure level, algorithm/application 
level) and in the classes of errors dealt with. 

Classical coding theory deals almost exclusively with the bit-string or word level. This is because 
coding theory was developed primarily for communication systems that are characterized by 
randomness and locality of errors (usually induced by random noise) and lack of  reliance on 
structural properties and semantic contents of  the encoded data (again reasonable because of 
generality requirements and secrecy concerns). Coding theory has provided a theoretical foun- 
dation and a vast repertory of  error codes having particular detection/correction properties. 
Unfortunately, there is no unified theory to help a designer in selecting the best code for a given 
set of requirements. Thus, one must rely on detailed knowledge of various important code classes 
and subclasses (linear, cyclic, BCH, Reed-Solomon, Berger, etc.) and make the final selection on 
the basis of error detection capability, redundancy level, and encoding/decoding cost and delay. 

Historically, the application of informational redundancy to computing systems has followed the 
path of  classical coding theory [38,80]. Several developments in coding theory, such as byte-oriented 
codes, unidirectional error codes [55], and arithmetic error codes [9,79], can be directly attributed 
to the requirements of computing applications. Even though coding theory was born at about the 
same time as electronic digital computers [82], systematic application of informational redundancy 
at the higher levels of  data structures and algorithms did not start until the 1980s. 

If data manipulation circuits can be assumed to be much more reliable than storage and 
transmission facilities, the strategy shown in Fig. 4 can be used. This is in fact the approach taken 
in most current commercially available computers. For  certain data manipulation functions, it may 
be possible to design circuits that accept encoded data and produce encoded results directly. Where 
this has not been possible with known error codes, computer designers have devised new ones (e.g. 
arithmetic error codes mentioned above). A significant innovation in this area is the concept of  
a totally self-checking (TSC) functional unit designed in such a way that its internal faults either 
do not affect the correct output or manifest themselves as invalid outputs [94]. Use of such circuits, 
with self-checking checkers and suitable recovery mechanisms, can lead to ultrareliable and resilient 
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computing systems. An important application of error codes is in the design of malfunction-safe 
(or fail-safe in the prevailing terminology) sequential circuits (see Subsection 5.4). 

At the data structure level, multiple words are encoded collectively to provide a higher degree 
of error protection at lower cost. Two simple examples are the provision of a checksum word at 
the end of a vector and the addition of row and column checksums to a matrix. Semantic 
information if available, can also be exploited for error detection. For example, the sorted order 
of a vector or symmetry of a matrix provide additional clues for error detection/correction. 
Concern for protecting structure data such as pointers has resulted in the investigation of robust 
data structures [88]. 

There are two approaches to error detection at the algorithm level. A fairly general language- 
based approach is the intermixing of annotations and assertions with program statements [56] for 
specifying expected data properties at certain execution points, so that any deviation can be 
detected. A second approach is the use of consistency checks guided by special properties of the 
algorithms being implemented. Techniques in this category are highly application-dependent. 
Published results include matrix operations [44] and hardware FFT processors [22,46]. 

5.3. Error tolerance 

Error tolerance is achieved by the application of error-correcting codes (ECCs) or through an 
error detection/recovery procedure. ECCs are used extensively in data transmission and storage 
systems. They usually involve a high degree of informational redundancy if applied to short words. 
Thus, except for single-error-correcting codes used for semiconductor random-access memories, the 
use of such codes usually involves encoding of large blocks of data. An impressive application area 
for such ECCs is in digital recording on compact audio discs (detection/recovery is inapplicable 
due to the real-time nature of sound production). The technique employed relies on sophisticated, 
highly redundant ECCs leading to the tolerance of extensive information loss from scratches on 
the disc surface. Similar schemes have been proposed for optical computer disks [41]. 

The best know ECCs belong to the classes of linear separable codes (also referred to as systematic 
or separable parity check codes) and polynomial cyclic codes. A codeword in a linear separable 
code consists of a number of information bits and several separate check bits, each obtainable as 
a certain linear combination of the information bits, Linear separable codes contain the Hamming 
single-error-correcting codes as a special subclass. Polynomial cyclic codes, which overlap with 
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linear separable codes and also contain Hamming single-error-correcting codes as special cases, 
derive their name from the fact that they are based on polynomial algebra and that any cyclic 
(end-around) shift of their codewords are also codewords. Polynomial cyclic codes have relatively 
simple encoders and decoders that are based on linear feedback shift registers. Important subclasses 
of these codes are the BCH and Reed-Solomon codes. 

The theory of  ECCs is well developed [6,71] and a wide variety of such codes are known. ECCs 
can be classified in the same way as error-detecting codes. Here also, there is no unified theory to 
help the computer system designer with the selection process. The more a designer knows about 
various subclasses of error-correcting codes and their properties, the closer his or her choice is likely 
to be to the optimal design. 

Recovery from errors detected at the bit-string/word level can take several forms. The simplest 
form is retransmission or recomputation of the erroneous data. The instruction retry facility of 
some computers is an example that is effective against errors caused by transient logic faults. 
Automatic hardward-controlled switchover to a standby circuit in the event of  a detected error is 
a technique that has been suggested but not widely used. Instead, the switching normally takes place 
at the higher level of functional units (modules) if and when the error leads to a detectable 
malfunction. Because structural and semantic information are application-dependent, recovery 
from errors detected at the data structure or algorithm level is usually software-controlled. A recent 
development in this respect is that of data diversity [2] which in its simplest form is based on retrying 
an erroneous computation by providing it with a logically equivalent set of input data. 

5.4. The error-to-malfunction transition 

A system moves from erroneous to malfunctioning state when an error affects the functional 
behavior of  some component subsystem. This transition can be avoided by using error tolerance 
techniques. An alternative is to control the transition so that it leads to a safe malfunction. This 
latter technique has been extensively applied to the design of malfunction-safe (fail-safe) sequential 
circuits. The idea is to encode the states of  the sequential circuit in some error code, specify the 
transitions between valid states (represented by codewords) in the normal way, and define the 
transitions for erroneous states in such a way that they never lead to a valid state. Thus, an invalid 
state persists and is eventually detected by an external observer or monitor. In the meantime, the 
output logic produces safe values when the circuit is in an invalid state. 

One may also try to facilitate this transition for the purpose of exposing latent system errors. 
For  example, a memory unit containing incorrect data is in the erroneous state. It will operate 
correctly as long as the erroneous words are not read out. Systematic testing of memory can result 
in a memory malfunction that exposes the errors. 

6. M A L F U N C T I O N - L E V E L  O R  S Y S T E M - L E V E L  V I E W  

6.1. Causes and symptoms of malfunctions 

A malfunction is any deviation of a system's operation from its expected behavior according to 
the design specifications. For example, an arithmetic/logic unit computing 2 + 2 = 5 can be said 
to be malfunctioning, as is a processor executing an unconditional branch instead of a conditional 
one. Malfunctions (like defects, faults, and errors) may have no external symptoms, but they can 
be made externally observable with moderate effort. In fact, malfunction detection (complemented 
by a recovery mechanism) constitutes the main strategy in the design of today's general-purpose 
dependable computer systems. Even though such systems are called fault-tolerant in the prevailing 
terminology [25], I will use the adjective 'malfunction-tolerant' for consistency. Many such systems 
are built from standard off-the-shelf building blocks with little or no fault and error handling 
capabilities and use higher-level hardware and software techniques to achieve malfunction 
tolerance at the module or substystem level. 

Malfunctions can be classified as being related to timeliness or correctness of the subsystem 
responses. Malfunctions of the first type are easier to deal with (e.g. using a time-out mechanism 
and rescheduling the computation on a different processor in the event of unacceptable delays). 
In fact, it has been suggested that dependability assurance would become much simpler if the 
processors were of the malfunction-stop (fail-stop) type [81]; i.e. they either produce correct 
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responses or produce no response at all. It is worth noting that the malfunction-stop property is 
actually a special case of the malfunction-safe mode of operation where the lack of output is the 
only safe output state. In contrast to this highly controlled malfunction mode, arbitrary or 
Byzantine malfunctions [27] are extremely difficult to handle, even for fairly trivial computations. 

Like faults, malfunctions can be classified as being transient, intermittent/recurring, or perma- 
nent. Permanent malfunctions (e.g. a module producing incorrect results for every input) are very 
rare and a recurring malfunction is of course easier to detect than a transient one. 

6.2. Malfunction detection and diagnosis 

There are two methods for detecting malfunctions: internal monitoring and external observation. 
Internal monitors are built-in checkers that detect various irregularities and produce an external 
'malfunction' indication. To implement this scheme with standard off-the-shelf components and 
a small amount of specialized hardware, one can use straight (non-reconfigurable) duplication. For 
example, the Univac 1100/60 has duplicated subprocessors communicating over a pair of buses. 
At the end of each microcycle, values on the buses are compared to identify a possible processor 
malfunction [18]. In this scheme, the two subprocessors and the added monitoring hardware can 
be considered as parts of a single processor with internal malfunction detection capability. 

As f o r  external observation, we distinguish two malfunction detection strategies: concurrent 
checking and periodic diagnosis. With concurrent checking, external monitors check the outputs 
of various subsystems for reasonableness and consistency. In a bus-based system, monitors may 
be attached to system buses in order to check all inter-module data transfers. In software systems, 
external monitors may take the form of acceptance tests performed on various results. The design 
of reasonableness checks and acceptance tests is problem-dependent, with time and cost overheads 
varying greatly from one application to another. For example, it is relatively easy to validate the 
computed inverse of a matrix by performing matrix multiplication. It is much harder to 
authenticate the result of a scheduling or simulation routine with the same level of confidence. 

The periodic diagnosis version of external monitoring has received much attention, but practical 
applications lag far behind the strong theoretical developments. In this approach, each module is 
periodically subjected to special tests. The test, which is usually a built-in self-test procedure, is 
initiated by an external module and its results are evaluated by the same or a different external 
module. The theory of external malfunction diagnosis (or system-level fault diagnosis [48]) is based 
on a directed graph model of module testing capabilities (i.e. there is an arc from module i to 
module j if module i can test module j ) .  Practical applications are much more modest and do not 
require sophisticated design and analysis theories. For example, the Japanese COMTRAC railroad 
traffic computer [45] runs identical diagnostic programs on two CPUs. Each program exercises 
most parts of the CPU in the course of computing a single value. The two values obtained are then 
compared to a stored constant for determining the malfunctioning CPU. 

The COMTRAC approach, which is similar to that of  Bell System's local ESS processors [90], 
is known as reconfigurable duplication, with its pessimistic reliability equation being 

R = r,[r 2 + 2crm(1 - rm)] 

where r, is the reliability of the reconfiguration (switching) mechanism and c is the detection 
coverage factor (the probability of detecting a malfunction). This reliability is better than r,, iff: 

2c - 1/r, 
rm< 2c- -1  

For rs = c = 0.9, we need r~ < 0.86 for reconfigurable duplication to be more reliable. 

6.3. Malfunction tolerance 

The two approaches to malfunction tolerance are similar to the static and dynamic fault tolerance 
methods discussed in Subsection 4.3. The static approach is usually based on some form of voting. 
For example, three processors may be used and the result taken to be the one provided by at least 
two processors. A technique known as N-version programming applies this same principle to the 
tolerance of software malfunctions due to residual design slips (more on this later). Three problems 
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arise when applying replication at this level. First, it is quite difficult (some would even say 
impossible) to assure malfunction independence [31,49]. Second, synchronization is more difficult 
compared to voting at the logic circuit level. Third, it is hard to decide on meaningful comparisons 
without wasting time on high data volumes; e.g. one unit may be declared the master and if it agrees 
on some critical values with another unit, its results are assumed correct, thus avoiding 
time-consuming votes on all computed values. 

The dynamic approach to malfunction tolerance is based on malfunction detection and recovery. 
As a simple hardware example, memory module malfunctions in a bit-slice or byte-slice memory 
can be tolerated if a shadow module whose words are the XOR of the contents of all other modules 
is provided. When a module malfunctions, it is isolated and its contents reconstructed from the 
contents of the other modules [84, p. 157]. Software-oriented examples abound in the field of 
distributed computing [25] where data consistency and atomicity of actions must be guaranteed in 
the face of interleaved execution of transaction steps and the possibility of malfunctions in 
participating sites. Useful tools and techniques such as atomic broadcasting, agreement and commit 
protocols, synchronization, global state determination, and various other distributed algorithms 
have been devised over the past few years for particular classes of malfunctions and system 
topologies. This is still a very active research area. 

It has been suggested that by using replicated modules with diverse designs, the protection 
against random malfunctions will extend to related or common-cause malfunctions and design 
slips. Systematic use of design diversity in computing systems started with the software-related 
concepts of recovery blocks and N-version programming [14]. A recovery block [77,78] has the 
structure; 

ensure acceptance test, e.g. sorted list? 
by primary module, e.g. quicksort 
else by first alternate, e.g. bubblesort 

else by last alternate, e.g. insertion sort 
else error 

Problems with implementing recovery blocks include the coverage and trustworthiness of the 
acceptance test as well as a suitable checkpointing scheme to enable state restoration for error 
recovery. For N-version software, assuring independence of failures, consistency of multiple results, 
and proper functioning of the required inexact voting scheme are major challenges [12,20]. Several 
modem safety-critical systems use a combination of replicated diverse hardware and software 
modules (e.g. the Airbus A-310 and the Boeing 737/300 flight control systems). 

6.4. The malfunction-to-degradation transition 

The recovery block example in Subsection 6.3 shows how a software malfunction can lead to 
a degradation in performance. In the case of detected hardware malfunctions, the bad unit can be 
isolated from the rest of the system. This reduces the amount of hardware resources (memory, 
processing power, I/O bandwidth, etc.) available to computations, thus leading to a corresponding 
performance degradation. In fact in the absence of special monitoring facilities, a degraded 
performance (e.g. delayed responses) may be the first indication of the underlying impairments. 
Provision of backup resources can postpone this transition, as can the ability to replace or repair 
the malfunctioning modules without having to shut down or otherwise disturb the system. Whereas 
overall system performance may be degraded, individual users or processes need not experience the 
same level of service degradation (e.g. due to reassessment of priorities). In fact when degradation 
is severe, only critical computations may be allowed to run. 

7. D E G R A D A T I O N - L E V E L  OR S E R V I C E - L E V E L  VIEW 

7. I. Causes and effects of degradations 
I have defined a dependable computer system as one producing trustworthy and timely results. 

Actually, neither trustworthiness nor timeliness is a binary (all or none) attribute. I have already 
mentioned that results may be incomplete or inaccurate rather than totally missing or completely 
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wrong and they may be tardy enough to cause some inconvenience, without being totally useless 
or obsolete. Thus, various levels of inaccuracy, incompleteness, and tardiness can be distinguished 
and those that fall below particular thresholds might be viewed as degradations rather than failures. 
A computer system that is organized such that module malfunctions usually lead to degradations 
rather than to failures is gracefully degrading or fail-soft and is usually a multiprocessor system. 

Degradations occur in many different ways. A byte-sliced arithmetic/logic unit might lose 
precision if a malfunctioning slice is bypassed through recofiguration logic (inaccuracy). A 
dual-processor real-time system with one malfunctioning unit might choose to ignore less critical 
computations in order to keep up with the demands of time-critical events (incompleteness). A 
malfunctioning disk drive in a transaction processing system can effectively slow down the system's 
response (tardiness). These are all instances of degraded performance. Performance, of course, is 
relatively hard to define and even harder to quantify. Meyer [59] summarizes the arguments 
eloquently (remember that faults/failures in the following quotation are malfunctions in my 
terminology): 

"Evaluations of computer performance and computer reliability are each concerned, 
in part, with the important question of computer system 'effectiveness',... perform- 
ance evaluations (of the fault-free system) will generally not suffice since structural 
changes, due to faults, may be the cause of degraded performance. By the same 
token, traditional views of reliability (probability of success, mean time to failure, 
etc.) no longer suffice since 'success' can take on various meanings and, in particular, 
it need not be identified with 'absence of system failure'" 

Meyer then proceeds to suggest performability as a measure that encompasses performance and 
reliability and that constitutes a proper generalization of both. 

7.2. Degradation management 

Assuming that a malfunction is correctly identified, the malfunctioning subsystem is effectively 
isolated, and the reconfiguration and recovery processes are successful, several other steps are still 
necessary for the system to be able to function in a degraded mode. Figure 5 provides a basis for 
the following discussion of performance variations with time in three types of systems: 

S~: A fail-hard system with performance P,~x up to the failure time tl and after repair at t '~. 
$2: A fail-soft system with degrading performance and off-line repair upon failure at time t 2 . 
$3: A fail-soft system with on-line repair which postpones its failure time to t3. 

In a fail-hard system, the first malfunction leads to a failure. However, this malfunction may occur 
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at a later time compared to an equivalent fail-soft system due to lower complexity. In a fail-soft 
system, some malfunctions lead directly to system failure (as shown for $2 at time t "2). But many 
malfunctions only lead to performance degradations. If the system's design is such that malfunc- 
tioning modules can be isolated and removed for replacement or repair without disrupting the 
operation of other modules, then system failure may be postponed and its down time greatly 
reduced. Such an on-line repair capability is essential for high-availability systems. 

By degradation management, I mean the capacity of a system to go smoothly from one 
performance level to a lower one when a malfunction is detected and properly isolated or to a higher 
one when a malfunctioning subsystem is replaced. The two transitions are similar as they both 
relate to the ability to function with a fluctuating pool of resources, when individual resources go 
in and out of service at essentially unpredictable times. Due to the complex decision and recovery 
mechanisms, degradation management is usually a software task that is built into the operating 
system. 

The malfunction detection phase was discussed in Subsection 6.2. Assuming that the detected 
malfunction is not tolerable, the degradation management routine takes over and: 

(1) isolates the malfunctioning unit and updates the resource availability information 
(2) determines the affected processes and assesses the damage for each 
(3) to the extent possible, recovers data and state information from the dead module 
(4) initiates appropriate recovery algorithms for each of the affected processes. 

Because degradation management can be applied with relatively low hardware and software 
overheads, it has found its way into many modern computer systems. Examples include [85]: 

(1) deactivating malfunctioning processors, channels, and I/O devices 
(2) avoiding bad tracks on disk, contaminated files, and noisy communication lines 
(3) removing part of main memory through virtual address mapping facilities 
(4) bypassing a malfunctioning cache memory (VAX-11/750) 
(5) blocking half of cache via restricted mapping in the good half (VAX-11/780, Univac 

1100/60). 

Occasionally, in the course of recovery from a malfunction, global reconfiguration may be required. 
This can be accomplished by starting from a minimal working configuration that is known to be 
trustworthy and systematically expanding to the optimal configuration with the available resources. 

7.3. Degradation tolerance 

Degradation tolerance has a system component and an application component. Clearly, a 
gracefully degrading system must be structured so that it can function with a variable pool of 
resources. This system component is usually built into the operating system functions which must 
be configuration-independent and table-driven. A degradation is tolerated by the system if Step 4 
in the degradation management procedure (discussed in Subsection 7.2) results in complete 
recovery for all of the affected processes, with performance remaining at an acceptable level after 
the recovery. In a real-time environment, the speed of recovery actions is critical and extensive 
hardware support for such actions becomes mandatory. In most practical cases, partial degradation 
tolerance is more cost-effective. Only the more critical processes may be scheduled for recovery and 
continued execution, while other processes may receive reduced or no support (with appropriate 
warnings). In such a case, the system operates in a mixed degradation-tolerant/malfunction-safe 
mode. 

The application component of degradation tolerance is equally important. Application programs 
may be written such that they tolerate temporary reductions in computation accuracy and/or speed. 
For example, less important subcomputations may be bypassed, certain periodic computations 
performed less often, or double-precision computations replaced by single-precision ones. In many 
cases, it may be possible to write application programs in such a way that their successful 
completion does not depend on the availability of any particular resource. This is best illustrated 
by means of an example [3]. Consider an aircraft collision detection computation that is to be 
performed periodically based on radar data. The application software may be written in such a 
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way that if in a given cycle radar data is not available by a certain time, then an approximate 
computation based on the last available position and speed data is performed. In a similar way, 
the recovery-block scheme can become a degradation tolerance technique if the alternate modules 
are written in such a way that they require fewer resources for their successful execution. 

7.4. The degradation-to-failure transition 

A failure occurs when the system's degradation tolerance capacity is exhausted and, as a result, 
its performance falls below an acceptable threshold. As degradations are themselves consequences 
of malfunctions, it is interesting to skip a level and relate system failures directly to malfunctions. 
It has been noted that failures in a gracefully degrading system can be attributed to: 

(1) isolated malfunction of a critical subsystem 
(2) occurrence of catastrophic (multiple space-domain) malfunctions 
(3) accumulation of (multiple time-domain) malfunctions beyond detectability/tolerance 
(4) resource exhaustion causing inadequate performance or total shutdown. 

Analysis of the PRIME gracefully degrading timesharing system (developed at Berkeley in the early 
1970s [19] showed that the first two items, i.e. intolerable malfunctions, are the most common 
causes of system failures; this conclusion has since been reinforced by other studies. In this context, 
a degradation is almost good news in that the mere fact of its occurrence means that the highest 
danger of failure has passed! Thus, minimizing the number and size of critical subsystems (the hard 
core) and providing strong protection against catastrophic common-cause malfunctions are 
important requirements for recovery and continued operation in a degraded mode. 

8. F A I L U R E - L E V E L  O R  R E S U L T - L E V E L  V I E W  

8. I. Causes and effects of failures 
The causes and effects of computer system failures can be analyzed by maintaining failure or 

crash logs. One system for which extensive crash data has been reported is the C.mmp 
multiprocessor of Carnegie-Mellon University [84]. It is generally acknowledged that human errors 
account for a significant fraction of failures and that a majority of system-related crashes are 
attributable to software. Studies of human reliability [15,70] are thus quite relevant to the discipline 
of dependable computing and dependability assurance for software must be emphasized. A form 
of design diversity is occasionally used for avoiding 'infant mortality' failures that result from 
serious design slips: several contractors may be asked to build prototypes of a critical system, with 
the best implementation then selected by rigorous testing under realistic conditions. 

Following Leveson [54], I note that failures (or hazards in her safety-related terminology) are 
characterized by severity and probability. The expected loss or risk associated with a particular 
failure is a function of both its severity and its probability. Dependability procurement techniques 
used in designing a computer system depend on the acceptable risk level which varies from one 
application area to another. Factors causing such variations are numerous and can be classified 
as: 

(1) economic; expected losses versus cost of reducing the risk 
(2) functional; required capabilities that cannot be compromised and are in conflict with safety 
(3) psychological; e.g. people willing to accept higher risks on highways than in the air 
(4) political; e.g. acceptable risk level lowered immediately after a major disaster. 

Given that complete failure avoidance or tolerance is not feasible, the next best thing is to be 
prepared for the inevitable, as failures tend to cause much greater damage when they take us by 
surprise. Therefore, a realistic dependability evaluation scheme, that accurately predicts the failure 
probability or that at least establishes an upper bound for it, is particularly important. 

8.2. Failure detection and confinement 

A prerequisite for containing the damage caused by a failure is the ability to detect it promptly. 
In this sense, a catastrophic failure with some obvious external indication (e.g. smoke or explosion) 
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may be preferable to a subtle one that is not immediately noticeable. Failure detection is generally 
achieved by some form of acceptance test applied by the user. In a way, we can view a computer 
system as simply a module in a high-level recovery-block architecture. When the outputs or actions 
resulting from a computer system are unacceptable, recovery is initiated and alternates (manual 
operation, warning system, etc.) are tried. In fact, the larger system, of which the computer is a 
module, may similarly experience degraded performance and possibly failure. 

Because recovery from computer failures necessarily involves human intervention, and human 
reaction tends to be slow and at times unreliable, an additional requirement for the detectable 
failure condition in safety-critical systems is that it be safe. On the hardware side, much of the work 
reported pertains to fail-safe sequential logic circuits (e.g. [23]) and extension of these ideas to 
higher system levels needs further work. Safety aspects of computer software are surveyed by 
Leveson [54]. Goldberg [40] argues for the application of safety engineering to computer systems 
in general and to software in particular. Here is his compilation of safety engineering principles: 

(1) using barriers and interlocks to constrain the access to critical resources or states 
(2) performing critical actions incrementally rather than in a single step 
(3) dynamically modifying system goals so as to avoid or mitigate the damages of a hazard 
(4) managing resources needed to deal with crises so that enough will be available in an 

emergency 
(5) exercising all the critical functions and safety features to determine their viability 
(6) designing the operator interface to provide the information and power to deal with 

exceptions 
(7) defending the system against malicious attacks. 

The last item above presents particularly challenging design problems and is the main source of 
concern in certain weapons and defense systems. The operator (or more generally, the human) 
interface is quite important, particularly wh~re the credibility and informativeness of warning 
messages are concerned. Experience with conventional disaster warning systems (storms, floods, 
fires, etc.) indicates that human beings tend to disbelieve and ignore warning messages. Clearly: 

"No warning system will function effectively if its messages, however logically arrived 
at, are ignored, disbelieved, or lead to inappropriate action" [35]. 

The paper cited above presents guidelines for designers of disaster warning information systems. 
These guidelines are equally applicable to failure warnings in a safety-critical computer system. 

I have defined a failure as an impairment for individual results/or computations. It is therefore 
important to protect other computations that may be in progress in a computer system when a 
failure is detected. This is referred to as failure confinement. Various approaches are possible 
depending on the application. In a safety-critical system, one may decide to halt all computations 
in the event of a detected failure in order to initiate a complete system checkout. At the other 
extreme, computations may be allowed to continue as if nothing had happened, hoping that the 
failure was an isolated event with no side effects. In the case of communicating processes, a 
reasonable middle ground is to be suspicious of all processes that have sent or received data to/from 
the failed process. This strategy sometimes causes a chain reaction in that the suspicious processes 
may have communicated with other processes, which in turn may have communicated with others, 
etc. It is thus important to coordinate the checkpointing strategy with the process intercommuni- 
cation pattern to avoid having to restart everything. 

8.3. Failure tolerance 

Many malfunction tolerance techniques can be applied at this higher level to achieve failure 
tolerance. In fact the distinction between malfunctions and failures is sometimes blurred in that, 
for example, abnormal behavior of a computer in a multicomputer or distributed system can be 
labeled a computer failure of a subsystem malfunction, depending on our point of view. 

The oldest method of failure tolerance is failure detection followed by rollback or restart of the 
failed computation (possibly on a backup system). This is clearly not easy to implement. First, 
failure detection is never perfect and second, even with perfect failure detection, not all processes 
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are reversible so that they can be rolled back and their effects undone. This method is essentially 
a manually-controlled recovery block scheme. Process outputs or actions are subjected to fuzzy 
acceptance tests by human observers. When tests indicate a failure, expert judgement is used to 
select the best course of recovery actions (e.g. rollback to a checkpoint). Many computations or 
transactions may be declared suspect, with manual or automatic verification requested for them. 

The effectiveness of the above failure tolerance method is application-dependent. For example, 
a writer will have little trouble resorting to a cut-and-paste style of editing based on the last 
hard-copy of a manuscript in the event of a failed word processor. A pilot may be more 
inconvenienced by a failed instrumentation computer but can usually bring the aircraft to a safe 
landing. A spacecraft may be permanently lost if the control computer for its propulsion system 
fails. The ability to detect the failure may not be of much value in this last case. In most practical 
cases, partial failure tolerance may be provided, with the higher-level physical or organizational 
system operating in a mixed failure-tolerant/fail-safe mode. Thus, failures are detected as usual, 
but not all processes are treated identically afterwards. Some processes are transferred to a backup 
system while others may be inactivated until the system is repaired or is otherwise judged fit to 
resume its operation. 

8.4. The failure-to-disaster transition 

A tolerated failure, by definition, has negligible negative side effects. Also a detected failure does 
not lead to a disaster unless there is something fundamentally wrong with the larger (physical, 
societal, or corporate) system into which the computer system is incorporated. Disasters, therefore, 
are primarily caused by undetected failures. The best protection against such disasters is to 
acknowledge the fact that a computer failure could go undetected and to have an accurate estimate, 
or at least a safe upper bound, for its probability. Thus, dependability measures are needed not 
only because they allow us to compare competing systems for particular dependability and safety 
goals, but also because they prevent unjustified or misguided confidence in computation results. 

However, knowing the failure probability is not enough by itself. Humans are generally weak 
in properly interpreting small probabilities. It is thus necessary for standards to be set and computer 
system quality to be monitored in safety-critical systems in much the same way as other 
safety-critical system components in construction, transportation, and nuclear power industries. It 
is also necessary to give due attention to the training of operators for safety-critical computer 
systems so that they react properly to emergency conditions and do not underestimate the 
seriousness of observed deviations from the normal mode of operation. 

Two sources of computer system failures, namely malicious attacks and misoperation, are 
notoriously difficult to deal with. Systems that have special safeguards against these sources of 
failures are sometimes described as tamper-proof and foolproof, respectively. In the first arena, 
considerable progress has been made over the past two decades but somehow the attackers always 
seem to be a step ahead (e.g. computer viruses). In the second arena, 'fools' appear to be quite 
inventive in devising new ways to throw off supposedly foolproof systems. The inability of our most 
ingenious designers to make even the simplest systems completely foolproof is very alarming. 

9. C O N C L U S I O N S  

I have provided a unified framework for the study of dependable computing and have surveyed 
the field in light of the proposed framework. My multi-level model clearly exposes the fact that 
dependability assurance techniques can be applied at several levels to supplement and strengthen 
one another. Such a multi-level view provides a better understanding of both the impairments to 
dependability and the consequences of undependability. Over the years, I have observed a shift of 
emphasis from dependability procurement techniques at the lower levels of my model (defects, 
faults, errors) to the higher levels (malfunctions, degradations, failures). Therefore, I expect 
dependable computers of the future to use avoidance and removal techniques at the lower levels 
in combination with tolerance techniques at the higher levels to achieve their goals. This, however, 
does not mean that researchers will become disinterested in the lower levels altogether. Much work 
needs to be done in the areas of defect and fault modeling and interest will probably remain high 
in the use of defect and fault tolerance techniques as methods for VLSI yield enhancement. 
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In spite o f  significant progress  in the field o f  dependab le  comput ing  over  the pas t  three decades,  
the field is still full o f  interest ing and  chal lenging open p rob lems  and much work  remains  to be 
done.  Dependab i l i t y  enhancement  features will be rout inely  inco rpora t ed  in the design o f  future  
compu te r  systems. Thus,  an i m p o r t a n t  quest ion facing the designers o f  such systems will be how 
to use a mul t i tude  o f  seemingly unre la ted  techniques in an op t imal  and  coherent  fashion to achieve 
given dependab i l i ty  goals. Me thodo log ie s  for  guiding the designers o f  ha rdware  and  sof tware  
systems in their  search for  useful tools  and  strategies in a vast  space o f  dependabi l i ty  p rocuremen t  
techniques are  bad ly  needed.  I hope  that  the f r amework  p roposed  in this pape r  will con t r ibu te  to 
clear  fo rmula t ion  o f  such med thodo log ies  and  their  areas  o f  appl icabi l i ty .  

I t  is my sincere bel ief  tha t  dependab le  compu t ing  can no longer  be t rea ted  as a separa te  discipline.  
Ra ther ,  the useful techniques o f  the field mus t  be systemat ical ly  i nco rpora t ed  into the o ther  areas  
o f  c o m p u t e r  science and  engineering (e.g. tes tabi l i ty  into logic design,  reconf igurat ion strategies into 
c o m p u t e r  archi tecture ,  pe r fo rmabi l i ty  analysis  into system eva lua t ion  methodologies ,  etc.). Clearly,  
this change  o f  view mus t  s tar t  with educa t iona l  p rograms .  Tak ing  an isola ted advanced  course on 
dependab le  comput ing  encourages  our  future  compu t ing  profess ionals  to th ink o f  dependabi l i ty  
as an a d d - o n  feature. Indus t r ia l  qual i ty  con t ro l  suffered f rom a s imilar  p rob lem unti l  it  was realized 
tha t  qual i ty  cont ro l  and  the rest o f  manufac tu r ing  processes are inseparable .  
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