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Several useful associative memory algorithms deal with identifying extreme values (maximum or
minimum) in a specified field of a selected subset of words. Previously proposed algorithms for such
extreme-value searches are bit-sequential in nature, even when implemented on fully parallel
associative memories. We show how the multiple-bit search capability of a fully parallel associative
memory can be used to advantage in reducing the expected search time for finding extreme values.
The idea is to search for the all-ones pattern within subfields of the specified search field in lieu of, or
prior to, examining bit slices one at a time. Optimal subfield length is determined for both fixed-size
and variable-size bit groupings and the corresponding reduction in search time is quantified. The
results are extended to rank-based selection where the jth largest or smallest value in a given field of a
selected subset of words is to be identified. We conclude that significant reduction in the number of
search cycles is possible in most practical extreme-value search and selection problems.
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1. INTRODUCTION

Associative or content-addressable memories have been
studied and used as mechanisms for speeding up time-
consuming searches and for allowing access to data by name
or partial content rather than by location or address. Also,
more functional variants of such systems known as
associative or content-addressable processors and database
machines (as complete systems, front-end data filters or
back-end data servers) have been the subjects of extensive
research. The origins of associative memories can be traced
back to the mid-1940s when Konrad Zuse sketched an
associative relay circuit [1] and Vannevar Bush published
his visionary assessment of the need for associative access
to information [2]. A decade later, cryogenic elements
provided the first viable cell technology for large-scale
implementation of associative memories [3]. Further
developments in this area are amply documented in various
books, article collections, and survey papers [4-12].

In its simplest form, an associative memory (AM) can be
viewed as a hardware device consisting of N fixed-size cells,
each being marked as empty or storing a data word or
record. Figure 1 depicts a functional view and the main
elements of an AM as used in this paper. We denote the
number of nonempty AM words by n, where n < N.

When presented with a search key (also known as the
‘comparand’), a mask specifying the relevant field(s) of the
stored words, and possibly an instruction containing the
type of search, the AM responds by marking all the words
that match the specified key or, more generally, satisfy the
search requirements given in, or implied by, the instruction.
Marking is done by setting or resetting a response bit or tag

(bit) in the corresponding AM cell. The N response bits
together form the AM’s response store. A response
indicator mechanism, which is a part of the global tag
operations unit, may provide information on the multiplicity
of responders (zero, one, several) or an exact count of the
number of responders. If there is no responder, the search
outcome is negative and we can proceed to the next step of
our algorithm corresponding to such an outcome. With one
responder, the required data item has been located and can
be appropriately dealt with by reading it out or modifying it
in-place. If there are several responders, the appropriate
course of action might be proceeding to further narrow
down the search, simultaneously modifying all responders
in-place or examining the responders in turn through the use
of a multiple response resolver.

Architecturally, associative memories come in four
basic varieties: fully parallel, bit-serial, word-serial and
block-oriented [10]. Bit-serial systems have been domi-
nant in practical implementations in view of their cost-
effectiveness [5,13,14]. However, fully parallel systems
have also been implemented, particularly where high
performance for the basic masked exact-match search
capability has been required.

Many algorithms have been developed for performing
search, retrieval and arithmetic/logic operations on data
stored in AMs. Although such operations can be pro-
grammed using the basic ‘masked exact match’ search
capability of simple AMs, provision of other types of
hardware primitives can have a significant effect on
performance. Starting with the pioneering works of Falkoff
[15] and Estrin and Fuller [16], research in associative
memory algorithms has continued up to the present [17-23].
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FIGURE 1. Functional view of an associative memory.

At the same time, innovations in hardware acceleration
mechanisms and scalable AM architectures [24-28] have
made the implementation of larger systems attractive and
practically feasible. Such AM and AM-based systems
constitute an important subclass of SIMD (single instruction
stream, multiple data stream) architectures that over the
years have provided some of the most cost-effective
alternatives for high-performance computing [29, 30].

Even though bit-sequential arithmetic operations can be
programmed on virtually all AMs, and special hardware
features have been implemented or suggested in AM
systems for facilitating or speeding up numerical computa-
tions, the primary focus of AM implementation efforts and
research studies has been searching and other non-
numerical functions. In addition to simple exact-match
search, many other varieties of search types have been
implemented as primitives for data manipulation and
retrieval functions [31]. These include approximate-match
searches (similarity, adjacency or threshold distance),
relational searches (less than, greater than or equal to,
etc.) and interval searches (combination of two relational
searches).

Several useful AM search algorithms deal with identify-
ing extreme values (maximum or minimum) in a specified
field of a selected subset of words. For example, in image
processing, the maximum and minimum pixel ‘intensities’
are needed for normalization and contrast enhancement.
Also, maximum or minimum pixel IDs may be used for
labeling an image’s connected components, a frequently
used operation in computer vision [32]. In other contexts,
max- and min-finding can be used for leader election
(designating a processor as controller, arbiter or coordina-
tor) or in lieu of relational and between-limit searches to
determine that a large collection of monitored objects or
subsystems are all operating within safe margins. Selection

(finding the jth largest or smallest value within a set of n
elements), and its special case of median finding where
J=n/2, are similarly quite useful in image processing filters,
data partitioning (e.g. in parallel divide-and-conquer algor-
ithms for sorting) and many other areas. In some such
applications, extreme-value searches and rank-based selec-
tion are needed to an extent that the speed of these
operations has a significant impact on the overall system
performance. Hence our interest in making such algorithms
more efficient.

Previously proposed algorithms for extreme-value search
are bit-sequential in nature, and therefore relatively slow,
even when implemented on high-performance fully
parallel associative memories or equivalent network-based
architectures such as broadcasting [33] and reconfigurable
[34] mesh-connected array processors. In this paper, we
show how the multiple-bit search capability of a fully
parallel AM can be used to advantage in reducing the
expected search time for finding extreme values. For brevity
and clarity of exposition, we will discuss only maximum
finding and selection of the jth largest value, but the
proposed techniques are clearly applicable, with trivial
adjustments, to minimum finding and selection of the jth
smallest value as well.

The remainder of this paper is organized as follows. In
Section 2, we specify a fully parallel AM model that will be
used for developing several extreme-value search algor-
ithms and describe the standard bit-sequential algorithms
for finding maximums and minimums. Next, we show how
the search algorithms- can be speeded up by inspecting
several bits at a time and suggest how an algorithm with
fixed-size bit groups might work (Section 3). We then examine
variable-length grouping of bits in optimal adaptive
algorithms (Section 4) and present some experimental
results on the attainable speedup with fixed-group and
adaptive-group search strategies (Section 5). Section 6 deals
with extension of the methods to general selection and other
search problems. Section 7 concludes the paper with a
review of the relative advantages of our proposed approach
and directions for further research.

2. BIT-SEQUENTIAL MAX FINDING
2.1. AM model

The AM model of interest in this paper is the fully parallel
model. Each AM cell compares the entire comparand, as
masked by the contents of a mask register, with its own
content and sets a response tag if they match. We assume the
availability of a response indicator. A three-valued indica-
tion (zero, one, several) is adequate for some of the simpler
algorithms while an actual response count is required for the
optimal adaptive versions. All N comparisons, setting of the
AM tags and response indication are performed within a
single basic cycle which will be taken as unit time in the rest
of the paper.

Clearly, a larger AM will need a larger cycle time
compared with a smaller AM in view of the additional time
required for instruction/operand broadcasting and multiple
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response indication and/or resolution [11, 26, 27]. However,
these variations are not relevant in the context of this paper
in that we assume the availability of a fully parallel AM of a
given size and compare our algorithms, in terms of the
number of search cycles needed, to the ones proposed for
the same architecture using exactly the same assumptions.

2.2. A bit-sequential algorithm

The following algorithm is described assuming an unsigned
integer field. Modification to signed and non-integer values
is straightforward. The bit-sequential maximum finding
algorithm scans the field of interest, starting from the most
significant bit. At the start of a typical step, corresponding to
bit position i, a set of AM words are candidates for being
maximum. The candidate set is identified by setting of one
of several tag bits or by the contents of a specific bit-slice in
the AM cells. A search is performed for the value of 1 in bit
position i. Depending on the number of responders, the
candidate set is modified as follows:

None: Candidate set does not change.
One: Stop; maximum already identified.
Several: Candidate set is replaced by the set of

responders.

For a k-bit field, a maximum of kK AM cycles, as defined in
Subsection 2.1, are required. Before presenting an exact
probabilistic analysis for the average-case behavior of this
algorithm (Subsection 2.4), in the next subsection we deal
with a simpler approximate analysis. Such approximate
analyses appear in subsequent sections of the paper as well,
since they facilitate the understanding of the more elaborate,
and less intuitive, exact versions while also providing
surprisingly accurate results on their own.

2.3. Approximate average-case analysis

The bit-sequential max finding algorithm described in
Subsection 2.2 may terminate before all £ bits in the given
field are examined. To analyze the average-case behavior of
this algorithm, let us assume that the candidate set is
initially of size m and that bit values are randomly
distributed (i.e. in any given cell and bit position, the
probability of having a 1 is 0.5, independent of all other cells
and bit positions).

Let k be the number of bits in the field of interest and T} ,,
denote the expected number of search cycles for maximum
finding. We can write an approximate recursive formula for
T, x based on the observation that with probability x/2* the
search is terminated after inspecting the most-significant bit
of the w-bit field (this is the probability that of the x bits in
one bit slice, exactly one is 1 and all others are 0). If the
search continues, however, there will be an expected
number of x/2 candidates with a remaining search field of
length w — 1. Thus:

vax ~1 + (1 —x.2_x)Tw_1’x/2 with TO,x = Tw,l =0 (1)

If one plots the variation of 7,, , with the candidate set size x
for several values of the field width w, it becomes apparent

that when x is greater than 2", the number of search cycles is
approximately w. On the other hand for x < 2", the expected
search time is a logarithmic function of x. These results are
consistent with intuition.

Equation (1) is approximate since on its right-hand
side, a single term with the expected number x/2 of
remaining candidates is used instead of x different terms,
one for each possible size of the remaining candidate set,
appropriately weighted with the probability of its
occurrence. For example, from equation (1) we find
T,>=1 whereas a more precise formulation yields
Tw2=1+(1/2)T,_1, =2—2"" based on the observ-
ation that both cells remain candidates with probability 1/2
(i.e. when they hold equal values in the bit slice). However,
this is a worst-case example and in most other situations,
equation (1) gives fairly accurate results.

2.4. Exact average-case analysis

The following is an exact probabilistic analysis. Let y be the
number of responders after searching for 1 in a particular bit
slice and thus spending one search cycle. If y =0 (no
responder, probability of event = 27 ), the search continues
with the same number x of candidates in the remaining
w—1 bits. For y=1, no further search is necessary.
Finally, if there are y > 2 responders (probability (*)2~*
. . Pg
for each value of y), the search continues with y candidates
in the remaining w — 1 bits. Thus:

- x (X :
Tux=1+27T, ;,+2 "Z(y) T,_1,, With To,
y=2

=T,; =0 (2)
Figure 2 shows the variation of T, , with the candidate
set size x for several values of the field width w.
Equation (2) is computationally much more intensive
than Equation (1), but the results of this exact analysis
closely match those obtained through approximate
analysis in Subsection 2.3, particularly for relatively
larger values of x.

3. MAX FINDING WITH UNIFORM GROUPS
3.1. Taking advantage of multi-bit search

Intuitively when m is much larger than 2%, it is very likely
that the maximum value is 2¥ — 1, represented by the all-
ones bit pattern. Thus, in such a case, it makes sense to first
search for the all-ones pattern and resort to a bit-serial max-
finding algorithm only if the first search yields no match. Let
the probability that a match is not found in the first step be
Pr, m- Each word contains the all-ones pattern with
probability 27%. Therefore, the probability that none of the
given m words contains the all-ones pattern is
Pim = (1— 27%ym, Denoting the search time with this

strategy as T, ,, we have

T{v,xz1+pwJwa=1+(1—2_w)xTw’x 3)

where T,, , is the bit-serial search time derived in Subsection
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FIGURE 2. Expected number of cycles in bit-serial max search.

2.4. Plots of the value of T, , as a function of x for different
values of w are given in Figure 3. Comparing Figures 2 and
3 reveals the advantages of this new strategy for the case
where x is larger than 2",

Based on the above observations, and in order to achieve
better performance for cases where x is smaller or not much
larger than 2, one can perform block searches using blocks
of g bits for the all-ones search instead of using the entire w-
bit wide field. Again, intuition suggests that when the
candidate set size is larger than 2, one may be able to relax
g bits in one cycle by searching for the g-bit all-ones pattern.

3.2. Approximate average-case analysis

Let T, k(,f,) denote the expected number of search cycles for
max finding using uniform groups of size g. We can
write an approximate recursive formula for T, ‘.Sﬁ? based on

the observation that with probability

281
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FIGURE 3. Expected number of cycles in bit-serial max search with
initial search for the w-bit all-ones pattern.

the search is terminated after inspecting the most-significant
g bits of the w-bit field (this is the probability that of the x g-
bit fields, exactly one has the value v and all others are less
than v for some v in the range 1 < v < 28 ). If the search
continues, however, there will be an expected number of x/
28 candidates with a remaining search field of length w — g.
If the candidate set size in a given step is x, the probability
that a match is not found when searching for the all-ones
pattern in the current g-bit block is (1 — 278)". In this case,
one can resort to bit-sequential search for the current block
and treat the subsequent blocks with the same two-step
process. Thus:

T8 ~ 14 (1 -278)T,

8x
281 (@)
(U -x/2E /2D @)
v=1

The initial conditions for equation (4) are the same as those
for equation (1), i.e. T, O(,i) = vafl) = 0. Figure 4 shows the
variation of T, ‘.Sfx) with the candidate set size x for several
values of group size g assuming a field width of w = 12 bits.
The reader should not be misled by the straight lines drawn
through the points in Figure 4 in order to show the trends. A
more detailed plot with more points (not included here)
reveals significant jitter (resulting from divisibility and
rounding problems) which is typical of situations when
continuous analysis is used for integer-valued parameters.
As an example, for x = 64, the group size g = 3 is better
than g = 4, whereas Figure 4 seems to indicate otherwise.

Equation (4) is approximate since on its right-hand side, a
single term with the expected number x/28 of remaining
candidates is used instead of x different terms, one for each
possible size of the remaining candidate set, appropriately
weighted with the probability of its occurrence.

3.3. Exact average-case analysis

With an argument similar to that of Subsection 3.2, we can

1.@ [
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FIGURE 4. Expected number of cycles in max search in a field of width
w =12 with fixed group size g (approximate analysis).
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write the following exact equation for the expected search
time with uniform groups of size g:

X
Tﬁffﬁ =1+ (1-27%)T, . + Z‘Ig,x‘yT‘(vg—)g,y (5)
y=2

where g, ., is the probability of the number of candidates
being reduced from x to y after relaxing the current g-bit
block. Near the end of this recursive process, we will have
w < g. Then, TVS},? is set equal to T, ,. Notice that the first
two terms on the right-hand side of (5) are identical to those
in (4). The probability g, ., is computed as follows:

281
Gy = 27063+ 3 (D)2 P02 (6)
v=1
The first term in equation (6) corresponds to the case of no 1
in any of the g bit slices in the current group, with 6(x — y)
being the step function whose value is equal to 1 only if
x =y and O otherwise. In other words, the maximum value
in the g-bit field is 0 with probability 27#" and in this case, y
will be equal to x. Each term in the summation corresponds
to the y responders having the value v(1 < v <28 — 1) and
all the x —y non-responders having values less than v.
Again, results from the exact analysis closely match the
approximate ones for larger values of x. Observe that in the
limiting case of g = w, the summation term in (5) becomes
zero and the scheme discussed at the beginning of
Subsection 3.1 results. Thus T iy’? =T, x> @S expected.
Figure 5 shows the variation of T,Si) with x and g,
assuming a field width of w = 12 bits. The jitter and
periodic variations due to the effects of divisibility and
rounding are evident here. However, the overall trend of
larger group sizes performing better as x gets larger is also
clearly seen. The periodic variation is due to the tail end of
the recursion as discussed above. For example, g =6
performs better than g =2, 3 or 4 for x = 128 = 2 and
again becomes better as x is increased beyond 24,

3.4. On optimal group size

Intuitively, an optimal value for g exists since if g is too
large, block searches are less likely to be successful
(particularly as the candidate set size shrinks) while if g is
too small, we approach the performance of a slow bit-
sequential search. Even though the optimal value for g
cannot be derived in closed form, the above analyses can
help in selecting a good value for g. For example, both
Figures 4 and 5 show that the optimal group size g°®* for
w = 12, corresponding to the lowest value of T, ‘,Sf? in the
figures, shifts from 2 to 3 and from 3 to 4 as the candidate set
size x grows beyond 8 and 32, respectively.

4. MAX FINDING WITH ADAPTIVE GROUPS

4.1. A greedy max finding algorithm

If the block size g can be picked arbitrarily, then it can be
adjusted at each step to minimize the expected remaining
search time. As a first approximation to this global

optimization problem, one may try a greedy strategy of
minimizing the per-bit search time for the next few bits.
This approach is called greedy since it is based on
maximizing the immediate gain as opposed to following a
globally optimal course.

To be more precise, consider the following algorithm. In
Phase i of the algorithm, a block size g is selected and a
search for the all-ones pattern within that block is
conducted. If matches are found, Phase i + 1 is initiated.
Otherwise, Phase i is completed by performing g bit-
sequential searches. Using a greedy strategy, the per-bit
search time for the current phase is taken as the quantity to
be minimized. To enable the selection of an optimal group
size, an exact or approximate count of the number of
responders is required after the search in each phase.

The probability of not finding an all-ones pattern in a g-bit
field of x words is (1 — 278)". Thus, the expected per-bit
search time within the current g-bit block is

lex = 1/g+(1-27%8) (7)

where 1/g is the per-bit contribution of the initial g-bit block
search and (1 — 2 ~ )* is the probability of needing an extra
search per bit position.

Figure 6 shows the values of g°® that minimize equation
(7) for different values of x. It is seen that g°™ grows roughly
as log, x. The least-squares straight line through the data
points shown in Figure 6 is actually g=
(67/84)log, x — 5/28. Ignoring the first couple of points
corresponding to log, x < 4 in view of possible boundary
effects, the least-squares straight line becomes g = (61/70)
log, x —38/35. This line (dotted in Figure 6) matches the
data points for log, x > 6 perfectly, to within the jitter
expected for an integer-valued function.

These results are consistent with intuition. A block size of
log, x yields an average of one responder. Therefore, in
some cases there will be no responder and the block search
cycle goes to waste. A block size slightly less than log, x
increases the likelihood of finding some all-ones patterns
while at the same time it relaxes a relatively large number of
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FIGURE 5. Expected number of cycles in max search in a field of width
w =12 with fixed group size g (exact analysis).
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FIGURE 6. The optimal group size g°" as a function of the number of
candidates x assuming the use of bit-sequential search after an unsuccessful
block search.

bits in the event of finding such matching patterns among
the candidate words.

4.2. Alternate adaptive max finding strategies

Instead of resorting to bit-sequential search within a group
of size g when the search for the all-ones pattern produces
no responder, one can try again with a smaller group size.
Possible choices for the reduced group size are g — 1, g/2,
etc. This approach should lead to better overall performance
by increasing the initial group size g°* (the time penalty for
not finding any all-ones responder is not so great now). The
analyses of these schemes are quite complicated and
computationally intensive.

Following is an approximate analysis for a class of
algorithms in which the group size is reduced from g to f(g)
after any unsuccessful block search. The group size
reduction function f(g) can be any integer-valued function
satisfying f(g) <g. Let us again use a greedy strategy to
minimize the expected search time for the immediately
following bit. This can be written as

tg,x = l/g + (1 - Z_g)xtf(g),x with hx= 1 (8)

where 1/g is the per-bit contribution of the initial g-bit block
search and (1 — 2~ #)" is the probability of stepping down to
the next lower block of size f(g) due to failure to find any
all-ones pattern of length g.

The algorithm discussed in Subsection 4.1 can be viewed
as a special case of the above with f(g) = 1. Figure 7 shows the
values of g°"* that minimize equation (8) for different values of
x using the functionf(g) = | g/2]. Again g°® grows roughly as
log, x. The least-squares straight line through the data points
shown in Figure 7 is g = (6/7) log, x — 3/14. The first couple of
data points corresponding to x < 4 show the boundary effect
more drastically here. Ignoring these points, the least-squares

straight line becomes g = log, x — 2 (dotted line in Figure 7).
As expected, the optimal group size is slightly larger than that
obtained in Subsection 4.1.

4.3. On exact average-case analyses

We have developed recursive formulae for the exact
average-case analysis of the above and various other
adaptive schemes. Most of these schemes do not lend
themselves to analytical evaluation. In some cases, even
numerical evaluation becomes impractical for large x in
view of the exponential growth of the number of terms to be
evaluated recursively. For example, let T,;% be the overall
optimal search time with x candidates in a field of width w,
using the algorithm of subsection 4.1, i.e. resorting to bit-
sequential search in the event that the search with optimal
group size g(x) yields no responder. The optimal group size
function g(x) must be determined from a recursive equation
involving two x-term summations, with each summation
term being the product of an event probability and a residual
optimal time expression of the form T;’Etg(x) . The situation
is much worse for the algorithms of subsection 4.2 since
both the g(x) and f(g) functions need to be determined.

Despite this difficulty of analyses, however, application
of such methods remains practical. The time-consuming
computations are performed only once, perhaps in an
approximate manner, with the results converted to simple
heuristics or pre-stored tables in order to make the run-time
overhead acceptable (see also the final paragraph in
Subsection 5.2).

In all cases where we have been able to perform
numerical experimentation, the logarithmic growth rate of
the optimal group size g° is observed asymptotically. The
differences between various strategies are significant only

g gopt ‘,,,."’

log , x
0 T T T T T T 1

2 4 6 8 10 12 14 16

FIGURE 7. The optimal group size g°" as a function of the number of
candidates x assuming the group size is halved after an unsuccessful block
search.
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for boundary cases involving small values of x. It is,
therefore, quite possible to begin the search with one
strategy that exhibits better performance for larger values of
x and to then switch to a different strategy as x becomes
smaller. Ways of combining such strategies and the optimal
switching point need further study.

5. PERFORMANCE OF MAX-FINDING
5.1. Experimental assessment of speedup

The expected speedups offered by out extreme-value search
algorithms depend on the width of the search field and the
initial size of the candidate set. With optimal fixed group
length, speedups in the range 3-5 have been observed with
realistic parameter values. Adaptive groups, which imply
somewhat more complicated control computations to set up
the required comparands and masks in successive steps of
the search algorithm, offer speedups that are typically two to
three times larger than those with fixed-size groups.

As an example, we have used simulation to estimate the
speedup attained with various methods when searching for
extreme values in a field of width w =12 bits. Each data
point represents the average performance observed over
thousands of trials. In each trial, the x x w AM matrix was
filled with randomly generated data, the desired search
algorithms were run to completion, and the number of
search cycles was noted. The average speedup was then
computed by dividing the bit-sequential search time by the
average number of search cycles obtained from the
simulation.

Figure 8 shows the variation of the resulting speedup as a
function of the initial number of candidates x for three
search schemes:

1. Fixed group size of g =12 bits, i.e. preceding the bit-
sequential search with a single search for the 12-bit all-
ones pattern.

2. Fixed group size of g = 6 bits, thus leading to at least two
searches and a maximum attainable speedup of 6.

3. Using adaptive groups based on the greedy algorithm
discussed in Section 4 and halving of group size after
each unsuccessful search.

When the number x of candidates is relatively small, say up
to a few tens, it is often faster to read out the candidate
words and perform the required manipulations within the
sequential host computer as opposed to within the AM cells.
The crossover point is likely to be even higher if the
required manipulations are more extensive than a simple
extreme-value search. We see from Figure 8 that beyond
this initial region, the speedup attained by the adaptive
method is quite respectable, ranging from about 5 to the
maximum of 12,

5.2. Search time variability and overhead

One issue about the performance is that the proposed
algorithms may change the deterministic number of cycles

in a worst-case bit-sequential search algorithm (e.g. 12
cycles with w=12) into a non-deterministic one that may
even change from one run to the next. However, this
presents no problem as most algorithms already contain
conditional computations and other constructs that make
their running times data-dependent. Furthermore, even the
bit-sequential search may be provided with an early
termination test that stops the search if there is only one
responder. Thus, the non-determinism in running time is not
a serious issue.

In real-time applications with hard deadlines, scheduling of
tasks must be based on their worst-case running times. OQur
proposed algorithms have worst-case time complexities that
are slightly higher than that of the naive bit-sequential
search. Thus, one may wish to avoid using these algorithms
in the context of hard real-time systems that lack the needed
slack or to make the group size g an adjustable parameter
that can be reduced to 1 when the worst-case running time is
to be minimized. Having said this, we note that the slight
additional investment in hardware resources (larger number
of processors or faster technology) to accommodate the
slightly higher worst-case running times of our algorithms is
more than offset by the substantial processing power that is
saved on the average. This freed processing power can be
applied to the handling of background tasks, more extensive
error detection, diagnostic tests, fault tolerance schemes
based on task replication and the like, leading to higher
overall cost-effectiveness and reliability.

- The process by which the optimal group size is selected in
each step deserves some elaboration. As discussed in section
4, a greedy or some other suitable analytic/experimental
strategy can be used to determine the optimal group size.
This strategy provides the optimal group size as a function
of x, the number of remaining candidates. Since the group
size is always a fairly small integer, the staircase-like
function g°"(x) can be precomputed and stored in a small
table for use by the adaptive search algorithm. With this
approach, the control overhead associated with the adaptive
algorithm becomes negligible.

Speedu
12 poedup
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Use optimal groups,
halving g with each
8 | unsuccessful search

N L
n—-.-—-Ané'—':‘:.':--- a7

1 1 1 1 1 1 1 1 1 1 A 1 1 1
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log x

FIGURE 8. Speedup attained by three max-finding algorithms with
block searches relative to a 12-cycle bit-sequential search for a field width
of w=12 bits.
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6. GENERAL SELECTION AND OTHER
PROBLEMS

6.1. A bit-sequential selection algorithm

Assuming that an exact count for the number of responders
is available after each search, the jth largest value held
within a set of m candidate fields of length k can be
identified through bit-sequential searching as follows. There
are k steps in the algorithm. Step i (0 < i<k) starts with x
candidates among which the rth largest must be identified
(r < x; initially, x=m, r=j). A search for 1 is conducted
in the ith most significant bit of the field. Let there be y
responders. If y > r, then the search continues among the
responders for the rth largest value starting at the next bit
slice. If y <, then the required value must have a 0 in the
current bit slice. The search continues among the non-
responding subset of the original set of candidates for the
(r — y)th largest value, again starting at the next bit slice.

The average-case time complexity of this algorithm can
be analyzed in a manner similar to that of bit-sequential max
finding. The following recursive formulation of the
expected number of steps is directly derivable from the
above description:

X X B r—1 X B
Sw,r,x =1 + Z()/)Z ¥ w—1,r,y + Z(y)z xsw—l,r—y,x—y
y=0

y=r
9)

Boundary conditions for Equation (9) are S,,1 ; = Sy, , = 0.

6.2. Selection with block searches

Here is one way to speed up the algorithm. Consider a g-
bit subfield starting at position i and let there be x candidates
at this point. Approximately x/2% of the candidates have the
all-ones pattern in the next g bit positions. Thus if r < x/25, it
is likely that g bits can be relaxed with a single search for the
g-bit all-ones pattern since the rth largest value is likely to
have the all-ones pattern in these g bits. If the search does in
fact produce at least r responders, then we simply continue
from bit position i + g, looking for the rth largest value
among the responders. If, on the other hand, fewer than r
responders are produced, then we repeat from bit position i,
using single-bit searches within the current g-bit group or,
more generally, with a smaller group size A(g), in a manner
similar to that discussed in Subsections 4.1 and 4.2.

6.3. A greedy adaptive selection algorithm

The greedy adaptive strategy for selection is quite similar to
that used for max finding in Subsection 4.2. Using an
integer-valued group size reduction function h(g) and a
greedy strategy to minimize the expected search time for the
immediately following bit, the quantity to be minimized can
be written as

r—1
x\ ._ P
sg,x=1/g+[2(y)2 gy(1—2 g) y]sh(g),x
y=0

with s;, =1 (10)

where 1/g is the per-bit contribution of the initial g-bit block
search and the summation term is the probability of having
fewer than r responders, thus necessitating stepping down to
the next lower block of size h(g).

The algorithm discussed in Subsection 4.2 is a special
case of the above algorithm with »=1. Minimum finding
can be viewed as another special case with r=x. It is
instructive to analyze the behavior of the algorithm in the
important special case of median finding, i.e. for r = |x/2].
In the initial step, the optimal group size is g = 1, leading to
y=~x/2 responders. If y > |x/2], then the rth largest value
among the responders is sought starting at the next bit
position. The optimal group size in this second step is likely
to be large in view of the fact that r is likely to be very close
to y and a search for the all-zeros pattern can be conducted
to relax several bits at once. If, on the other hand, y < |x/2],
then the (r — y)th largest value among the non-responding
candidates must be identified. Again, r —y is likely to be
fairly small, leading to a large optimal group size as in the
case of maximum finding.

6.4. Application to other problems

Speedup techniques similar to those discussed previously
are applicable to other searches on fully parallel AMs.
Consider, for example, a relational search used to identify
values in a specified field that are greater than a given
comparand. The bit-sequential algorithm for this function
consists of scanning the field from the most significant to the
least significant end. The set of active words, or candidates,
at a particular stage consists of all the words that are equal to
the comparand up to that bit position. A comparand bit of 1
refines the candidate set by removing those candidates that
have a 0 in the corresponding bit position. A comparand bit
of 0 causes words that have a 1 in the corresponding bit
position to be marked as ‘greater’ and to become inactive
for subsequent steps. Clearly, when a string of g
consecutive 1s or Os is encountered in the comparand, a
single g-bit search can be used to refine the candidate set
or to identify the subset of the candidates that must be
marked as ‘greater’. The speedup obtained here is modest
since the expected length of strings of consecutive 1s or
Os in a random binary sequence is 1/2+2/4 +3/8+
4/16 + ... +i/2 +... ~ 2.

Other searches for which these speedup techniques are
applicable include identifying the j largest values (rather
than the jth largest, as discussed in the preceding
subsections) in a given field of a set of x words, finding
the next larger/smaller value (greater-than or less-than
search combined with min or max finding) and range
searches. In the latter case, the speedup is likely to be
significant when the range (interval) of interest if fairly
narrow.

7. CONCLUSIONS

We have shown how the multiple-bit search capability of
fully parallel AMs can be used to improve the average-case
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performance of extreme-value searches (maximum and
minimum finding) and rank-based selection algorithms. The
improvement results from the ability to relax several bits of
the field under consideration at once. Analyses were offered
for both fixed-size and fully adaptive groups and the
derivation of optimal group size was discussed in each case.
Results for fixed-size group length are of particular interest
for byte-serial AMs as well. We have also pointed out the
applicability of such speedup techniques to other search
functions of interest in several AM applications.

The results presented in this paper can be enhanced and
extended in several different directions. These include more
extensive experimental verification of the derived time
complexities and optimality results through simulation.
Also of interest are refinements of some of the analytical
results in order to obtain good approximations or compu-
tationally more tractable exact formulae. Finally, the entire
class of useful AM search functions, including more
complicated approximate and multidimensional searches,
could be examined in order to determine the applicability of
these and similar speedup and optimization techniques.

The techniques and results presented in this paper are not
only relevant to fully parallel systems but may find
applications in bit- and byte-serial systems as well. For
example, designers of bit-serial AM systems typically
provide multiple-bit searches as part of the basic instruction
set, with built-in hardware or microprogrammed control of
bit-sequential steps. On such systems, an instruction for a g-
bit search is likely to execute much faster than a sequence of
g single-bit search instructions. In these cases, similar
strategies and optimality results can be derived, although
optimal group sizes and the resulting speedups are likely to
be much smaller compared with our results here.
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