PDF file of the article

B. Parhami, "Parallel Threshold Voting,"
The Computer J., Vol. 39, No. 8, pp. 692-700, 1996

begins on next page.

Parallel Threshold Voting

BEHROOZ PARHAMI

Department of Electrical and Computer Engineering, University of California, Santa Barbara,
CA 93106-9560, USA
Email: parhami®ece.ucsb.edu

Voting on large collections of input objects is becoming increasingly important in data fusion, signal
and image processing applications, learning algorithms, and distributed computing. To achieve high
speed in voting, the multiple processing resources typically available in such applications should be
utilized; hence the need for parallel voting algorithms. We develop efficient parallel algorithms for
threshold voting which generalize and extend previous work on both sequential threshold voting
and parallel majority voting. Our discussion centers on unweighted threshold (m-out-of-n) voting.
However, we observe that under certain conditions, the results can be extended to efficient weighted
threshold voting. We show how a known O(n)-time sequential algorithm for m-out-of-n voting
can be parallelized through a simple divide-and-conquer strategy. When m = 6(n), the resulting
algorithm has O(log?n) time complexity on n-processor PRAM and hypercubic computers and
O(k*n'/*) time complexity on a k-dimensional mesh with n processors. We also analyze the time
complexity of the algorithm for m = o(n) and its special case of m = 6(1).

Received August 14, 1995; revised June 28, 1996

INTRODUCTION

Voting has long been an important operation in the fusion of
data originating from multiple sources and in the realization
of ultrareliable digital systems based on multi-channel
computation [1]. In data fusion, voting is a possible way of
combining diverse data provided by multiple sources (such
as sensors) whose outputs may be erroneous, incomplete,
tardy or totally missing. In ultrareliable systems, voting
is required whether the multiple computation channels
consist of redundant hardware units, diverse program
modules executed with common data on the same basic
hardware, identical hardware and software components
with diverse data, or various hybrid combinations of
hardware/program/data redundancy and/or diversity [2].

Whereas traditional applications of voting have been
limited to processing a small number of simple input objects
(typically bits or numerical words), newer applications
involve both larger input sets and more complex input
objects. Examples include fusion of data originating from a
large collection of sensors [1, 3, 4], image processing filters
which smooth digital pictures by voting on neighborhoods
[5], enhancement of learning algorithms [6], implementation
of cellular automata and neural networks [7], and certain
configuration control, bookkeeping and diagnostic functions
in parallel and distributed systems [8-10].

Threshold voting, in particular, is more likely to be useful
for such large-scale applications in view of its inherent
simplicity compared with other voting schemes [11]. In its
unweighted (or m-out-of-n) form, threshold voting is used
to identify a certain required minimum level of agreement
among multiple information sources. All values, from 2 to
n, are meaningful for the threshold level m. Some of these
values even lead to applications beyond those discussed in

the preceding paragraph. The case of m = 2 corresponds to
detecting the presence of rcpeated elements in a set which
finds applications in the study of chemical structures. The
case m = n — ¢, for some small fixed ¢, can be viewed
as near-unanimity voting for use when no more than €
faults/disagreements are expected.

Hence, the efficiency of voting algorithms (both time
and space complexity) are becoming important. Previous
works on this aspect of voting have been limited to efficient
sequential majority voting [12-14], sequential threshold
voting [15] and parallel majority voting [16]. In all
cases, simple unweighted voting has been assumed. We
have previously extended these efficient threshold voting
algorithms to the weighted case in the context of a
comprehensive study of voting schemes [11, 17-19]. In
this paper, we generalize and extend the above to efficient
parallel m-out-of-n threshold voting algorithms. We also
note that our results can be extended to certain weighted
threshold voting schemes without serious loss in algorithm
speed. Parallel algorithms for general weighted threshold
voting remain to be developed.

The rest of this paper is organized as follows. In Section
2, we define the scope of the voting schemes that are of
interest in this study. Section 3 contains a review of a voting
algorithm that can be used for weighted or unweighted
threshold voting. In Section 4, we show how, the unweighted
m-out-of-n version of this algorithm can be parallelized
based on a divide-and-conquer strategy. Sections 5 and 6
contain discussions of the complexity of our parallel m-out-
of-n threshold voting algorithm form = 6(n) and m = o(n),
respectively. Section 7 deals with modifications required
in the algorithm and the associated complexity issues for
weighted threshold voting. We conclude, in Section 8, with

THE COMPUTER JOURNAL, Vol.39, No.8, 1996

PARALLEL THRESHOLD VOTING

693

Object space

N

Atomic objects Composite objects

/N

Small space Large space
Memcl space General space
Binary (bits) Totally ordered Transitive ~ Non-transitive
(e.g. numbers) 'support’ ‘support'

FIGURE 1. Voting schemes classified according to the object space size and structure.

a summary of our contributions and directions for further
research.

2. THRESHOLD VOTING SCHEMES

In order to facilitate and systematize the study of voting
schemes, we have previously categorized them according
to implementation in hardware or software (voting networks
[20] or voting routines) and based on the size and structure
of the input object space (see Figure 1). A voting algorithm
[19] specifies how the voting result is obtained from the
input data and may be the basis for designing a voting
network or a voting routine.

The input objects of a voting routine may be atomic
or composite (Figure 1). Composite objects, consisting
of implicitly or explicitly structured collections of atomic
objects, have not received due attention in previous works
on voting. With atomic objects, the input object space can be
small or large. For small object spaces, further classification
is unimportant, as they always lead to very simple and
efficient voting algorithms. For large object spaces, whether
or not a distance metric can be defined is crucial. In
particular, the special case of a totally ordered object space
leads to simple and efficient algorithms. Finally, for an
unordered space, voting algorithms tend to be less complex
if the notion of ‘support’, as discussed in Definition 2.1
below, is transitive (i.e. if ‘object, supports object,’ and
‘object; supports objects’ together imply that ‘object
supports objects’).

Figure 2 shows an example of composite data objects
that might be used in voting. The objects xy, x2, X3, X4
depicted in Figure 2 are infinite sets of numbers defined
by the four closed intervals [ll, h]], [12. h2], [13, hg], [14, h4]
on the real line. The voting algorithm may depend on
the semantics attached to these intervals and on application
requirements. For example, if the intervals are considered
as different views of the safe operating range for some

FIGURE 2. Voting with composite data objects represented as
intervals on the real line.

physical parameter in a critical system, then the interval
{l3, h4] may be taken as the voting outcome in view of
its unanimous designation as being safe. If one of the
evaluators (combination of sensors and decision logic) fails,
then majority consensus can still be reached.

To accommodate all voting schemes of interest, including
those dealing with composite data objects, we present the
following general definition of weighted threshold voting.

DEFINITION 2.1. (Weighted threshold voting): given n
input data objects xy, x3, ..., Xn, and their associated non-
negative real votes (weights) v, v, ..., Uy, with ZL, v =
V, it is required to compute the output y and its vote w such
that y is ‘supported by’ a number of input data objects with
votes totaling w, where w satisfies a condition associated
with the desired voting subscheme.

The term ‘supported by’, which accounts for the
generality of Definition 2.1, can be defined in several ways,
leading to different threshold voting schemes. With exact
voting, an input x; supports y iff x; = y. With inexact
voting, approximate inequality (£) is defined in some
suitable way (e.g. by providing a comparison threshold
"€ in the case of numerical values or, more generally, a

THE COMPUTER JOURNAL,

Vol. 39, No.8, 1996

694 B. PARHAMI

distance measure d in a metric space) and x, is said to
support y iff x; = y. With approval voting, y must be a
subset of the approved set of values that x; defines using
some suitable encoding of the sets (e.g. bit-vectors, lists or
intervals). Various constraints on the output vote w further
define a number of voting subschemes within the above
voting classes; e.g. w > V /2 for majority voting, w > 2V /3
for Byzantine voting and w > ¢ for t-out-of-V (generalized
m-out-of-n) voting. Note that for ¢-out-of-V voting with
t < V/2, or its special case of m-out-of-n voting with
m < n/2, the output may be non-unique. In such cases,
arbitrary selection of y from among valid outputs will be
assumed.

We get m-out-of-n voting as a special case of the weighted
threshold voting of Definition 2.1 by letting vy = v, =
... = v, = 1l and t = m. Majority voting is obtained
if we further restrict m to (n + 1)/2. Form > n/2 4 1;
stronger agreement is required (super-majority), whereas
in the case of m < n/2 weaker agreement is prescribed,
potentially leading to multiple correct outputs. It is thus seen
that Definition 2.1 covers a wide array of voting schemes of
common interest.

We will not use Definition 2.1 in its full generality but
will deal primarily with exact voting schemes. However, the
general definition is crucial for understanding the limitations
of our algorithms and for their future extensions. In most
practical applications of m-out-of-n voting, the magnitude
of m is comparable to n; i.e. m = 6(n). We will give this
important special case, as well as the further restricted case
of n —m = O(1) special attention. We also briefly deal with
the case of m = o(n) for completeness. All logarithms in
this paper are base-2.

3. SEQUENTIAL THRESHOLD VOTING

When the input object space is totally ordered, sorting can
be used to obtain an O(nlogn) sequential algorithm for
weighted threshold voting (assuming, of course, that the
relative order of two objects can be established in constant
time). This approach applies with equal efficiency to exact
and inexact voting. If the input object space is small, say of
size 8, then tallying of votes for each possible object (akin
to tallying of votes for a small number of candidates in an
election) can be used to obtain an O(nd)-time algorithm,
leading to linear time for any fixed 8. The remaining
questions are then: (i) Can one do better than O (n logn) for
threshold voting with a large space? (ii) What if the object
space is unordered, allowing only comparison for equality
among objects?

The following algorithm, adapted from the unweighted
version in [15], provides answers to both questions. It has
a time complexity O(np) and requires working space for
only p input objects, where p = |V/t]. Thus, when ¢
is comparable to V in magnitude (as in majority voting),
p is a small constant and the algorithm needs linear time
and constant working space. On the other hand, for small
values of ¢, the performance deteriorates to quadratic time
and linear working space. The latter results are consistent

with those of plurality voting under similar conditions.

Since for small ¢, we have p = O(V), one may think
that in this case, the algorithm has time complexity O(nV)
which may be much greater than O(n?). To prove worst-
case quadratic time complexity, let the largest input vote be
Umax. FOT ¢ < Umax, t-out-of-V voting becomes trivial since
any input object with vote no less than ¢ is a valid output.
The possibility of checking the condition ¢ < vmg in linear
time and the fact that for ¢+ > vmax we have V/t < n,
prove the worst-case quadratic time complexity. In some
such cases, it may be advantageous to use an O (n?)-time
plurality voting algorithm [19] to identify a maximum-vote
object. The derived vote for this object can then be compared
with ¢ to decide on the output.

The special case of V —¢ = O (Umn), Subsuming unanimity
voting with ¢t = V, (n — €)-out-of-n voting, and the like,
allows the use of a conceptually simpler algorithm which
consists of identifying an arbitrary, constant-size, subsét of
inputs whose vote total exceeds V —t¢ (perhaps including the
maximum-vote input in the set in order to minimize its size),
tallying the votes for each member of the set in O (n) time,
and doing a final selection in this small set.

ALGORITHM 1. (Sequential exact threshold voting for
large unordered object space.) We need working storage
space or ‘slots’ for p = |V/t] different inputs
object;, objecty, ..., object,, with each object; having an
associated vote total tally;. The algorithm is shown in
Figure 3.

EXAMPLE 1. Let the n object/vote pairs be denoted
as (x;,v;),i = 1,2,...,n. Consider 6-way, 8-out-of-
15 threshold voting with vote weights 4, 3, 3, 2, 2,
1. Take an instance of the voting problem with in-
puts (4, 3),(B,2),(B,2), (A, 1),(C,3), (A, 4) in presen-
tation or input order. Since V = 15,+ = 8 and
p = 115/8] = 1, a single working storage slot
(object, tally;) is required which will hold the val-
ues (4,3), (A, 1), (B, 1), (—,—),(C, 3) and (A, 1) succes-
sively as we proceed through the steps of Algorithm 1.
Therefore, A is a candidate for the voting result and a sec-
ond pass through the input yields its actual vote tally of 8 for
comparison with the threshold.

Since when only equality comparison is allowed for the
input objects the evaluation of the condition on line 3 of
Algorithm 1 (Figure 3) involves an O(p)-time linear search,
the overall algorithm time complexity is O(np). With
a totally ordered object space, the linear search can be
replaced by a (log p)-time operation on a search structure
such as a binary tree. This would be beneficial only when
p is relatively large. The resulting time complexity is
O(nlog p) or O(nlogn) for small weights and thresholds.
Note that, as written, the above modifications to the search
on line 3 do not reduce the algorithm complexity in view of
the implicit O (p)-time loops on lines 7 and 10. However,
these O (p)-time loops can be removed by keeping a second
version of the list in total vote order and by maintaining a
‘total vote reduction’ variable instead of actually modifying

THE COMPUTER JOURNAL,

Vol. 39, No.8, 1996

PARALLEL THRESHOLD VOTING

695

else objecty = x;; tally, = v;; tally; := tally; —min(1 < j < p)

1. object; := xy; tallyy == v tally; =02 < j < p)
2. for i =2 to n do {process the remaining n—1 input objects}
3. if 37 such that x; = object; with tally; # 0
4. then tally; := tally; + v;
5. else if 3 with tally; = 0 {an empty slot?}
6. then object; = x;; tally; := v; {save input object in empty slot}
7. else let min = tally; be a minimum of all tally;s (1 < j < p)
8. if v; < min
9, then tally; := tally; —v;(1 < j < p)
10.
1. endif
12, endif
13. endif
14. endfor
15. tally; :==0(1 < j < p)
16. fori =1tondo
17. if 3j such that x; = object;
18. then tally; := tally; + v;; if tally; > t then output object; and stop endif
19. endif
20. endfor

FIGURE 3. The sequential threshold voting algorithm (Algorithm 1).

the p votes each time. Hash coding may also be applicable
for certain types of input objects and input distributions to
reduce the search time to O (1) and the overall complexity to
O(n) on the average.

4. PARALLEL m-OUT-OF-n VOTING

One can parallelize Algorithm 1 based on a divide-and-
conquer strategy. We deal primarily with the unweighted
case (ie. v; = 1,V = n,t = m) and assume that n is
a power of 2. Implications of removing these assumptions
will be discussed briefly in Section 7. The two phases of the
algorithm (identifying up to p = |n/m| candidates, lines 1-
14, and selecting those candidates whose vote total actually
exceeds m, lines 15-20) will be merged in the following
discussion in the sense that once the p candidates have been
identified, they will carry with them their total vote tally
from all inputs. The second pass is thus not needed.

Let us divide the n inputs into two equal subsets
X1, X2y 00y Xnj2 and Xn/24+1s Xnj242s -+ + y Xn- If an object is
to have a total of m votes, it must have at least m/2 votes in
one of the two subsets. Using the parallel threshold voting
algorithm recursively on each subset, one can identify p
or fewer candidates, along with their associated votes, in
each subset. Clearly, if m is even, then m/2-out-of-n/2
voting leads to no more than {(n/2)/(m/2)] = |n/m] = p
candidates. For odd m, (m + 1)/2-out-of-n/2 voting is
performed on the two subsets which again leads to no more
than p candidates. The remaining problem then is to merge
the two lists of up to p candidates into a single list of p
candidates, combining the votes of common elements in the
two lists and discarding some of the lower-vote items along

the way.
Let the two candidate lists be object,
objects, ..., object, and object|, object,, ..., object,.

Assume that the exact vote totals for each list are also

provided by the recursively called algorithm. Let
these vote totals be tally,tally,, ..., tally, and
tally, tally,, ..., tally,, respectively. To find the ex-

act votes associated with each object; in the entire set of
inputs, the vote total tally, for object; in the first subset
must be augmented with corresponding votes from the
second subset (and similarly for object/). Hence, the pro-
cessors computing the object; and object] entities and their
associated vote totals within each subset must exchange the
two sets of results and proceed to update the votes.

Many algorithm details and their time complexities
depend on the particular model of parallel computation
assumed. These will be discussed later. Once the two lists
of size p along with associated total votes are available,
one can sort the combined list of size 2p by total votes,
remove duplicate elements (that are necessarily adjacent in
the sorted list) and keep up to p elements whose total vote
tallies are at least m. The above discussion leads to the
following high-level description of the parallel m-out-of-n
threshold voting algorithm.

ALGORITHM 2. (Parallel exact m-out-of-n voting for
large unordered object space.) We need working stor-
age space or ‘slots’ for 2p = 2|n/m] object—vote pairs
(objecty, tally,), (objecty, tally;), ..., (object,, tallyp)
and (object;, tally)), (object;, tallyy),...,(object],
tally,) for each recursive call. ~ The final p candi-
dates and their associated votes will be returned in
(objecty, tally,), (objecty, tallys), ..., (objecty, tally,).

1. Divide the inputs into two equal subsets § =
{x1,x2, ..., xnp2}s ' = {Xnp2410 Xnj242, - - -4 Xa}-

2. Perform {(m + 1)/2j-out-of-n/2 voting in parallel
on § and §', with results returned in (object,,

THE COMPUTER JOURNAL,

Vol. 39, No.8, 1996

696 B. PARHAMI

tally)), (objecty, tallys), ..., (objecty, tally,) for S
and (object;, tally)), (objecty, tallyy), ..., (object;,,
tally,) for S§', where each pair is an object with
associated total vote within its subset.

3. Exchange the two sets of results (object;, tally;) and
(object], tally}) from Step 2 such that processors that
worked on S have access to the results for S’ and vice
versa.

4. Update the vote tallies tallyi, tally,, ..., tally, by
adding to each tally; the votes of all equal objects
in S. Similarly, update tally,, tally,, ..., tally, by
incorporating the votes from §'.

5. Sort each list in descending order of the vote
totals from all inputs (tally;,tally,,...,tally, or
tallyy, tally,, ..., tally,).

6. Merge the object-vote pairs (object|, tally),
(objecty, tallyy), ..., (objecty, tally,) into the list
(objecty, tally)), (object, tallys),...,(objectp,
tally,), removing duplicate entries if any, until all p
slots are occupied or the vote total drops below m.
Ignore any remaining object.

The following example should clarify the algorithm.

EXAMPLE 2. Consider 8-way, 3-out-of-8 voting with
equal vote weights. Take an instance of the voting problem
with inputs A, A, D, D, B, C, A, B in presentation or input
order. Withn = 8, m = 3 and p = |8/3] = 2, four working
storage slots, (object;, tally,), (objecty, tally;) for § =
{A, A, D, D} and (object|,tally)), (object;, tally;) for
S’ = {(B,C, A, B}, are initially required. These slots
will hold (A4, 2),(D,2) and (B,2), (—,0) following the
recursive calls in Step 2, indicating that A, D and B are
possible candidates for the voting result in view of getting
at least two votes in one of the halves. Exchanging the
two lists of size 2 and adding in the corresponding votes in
the other half leads to the updated lists (B, 2), (—, 0) and
(A, 3), (D, 2). Merging the two lists yields (4, 3), (—, 0),
which indicates that A with three votes is the unique
answer. The pair (—, 0) stands for a dummy/null entry in
an intermediate or final candidate list.

In the special case of majority voting, the above algorithm
can be simplified and converted to a variant of a previously
published parallel majority voting algorithm [16]. In
majority voting, i.e. for m = n/2 + 1, the recursive calls
in Step 2 of Algorithm 2 lead to a single candidate each, say
(objecty, tally,) and (object|, tally}). The merging phase
(replacing steps 3—6 in Algorithm 2) is now quite simple. If
object, = object], then the merge result is easily obtained
as (objecty, tally, + tally]). Otherwise, the object with
the larger vote is the only possible candidate for majority
(equal votes imply that there is no majority). Hence, the one
candidate for continuing the algorithm at the next level is
identified with a single comparison and there is no need to
tally the votes from the other half for each of the two objects.

To see this, let tally, = n/4 + a and tally; = n/4 + b,
witha > b > 0. The maximum vote that object| (the object
with the smaller vote) can get in the first half is n/4 —a, since

there are a total of n/2 objects and object, has n/4+a votes.
Thus the total vote associated with object; can be no more
than n/4 + b+ n/4 —a = n/2 — (a — b) which is less
than majority. Clearly, the above argument and the resulting
simplification also apply to super-majority threshold voting
schemes, i.e. the case of m > n/2 4+ 1. Since we do not tally
the total votes in each recursion step, the final candidate may
in fact not possess majority support (this can only happen if
there is no majority). Verifying the majority status of the
final candidate is easy and requires only a single broadcast
step and one fan-in (summation of votes) step.

Algorithm 2 was described as 2-way divide-and-conquer
for simplicity and clarity of exposition. It can easily be
extended to 2*-way divide-and-conquer where in each of the
2% subproblems, |(m + 2¥ — 1)/2*]-out-of-n/2* threshold
voting is performed and k phases of pairwise combining
of p-element lists is required to find the overall list of p
candidates. We will see in subsequent sections that multi-
way divide-and-conquer is more appropriate in some cases.

5. ANALYSIS FOR m = 6(n)

In this section, we first present a general analysis of
Algorithm 2 that includes among its parameters the time
to perform various key ‘building-block’ operations on the
parallel architecture of interest. We then derive asymptotic
complexities for several well-known parallel architectures as
examples. In what follows, we will assume p = |n/m] to
be a (small) constant. This is consistent with most uses of
threshold voting in practice. The condition m = 6(n) allows
us to simplify the analysis by assuming that p objects can be
stored and/or manipulated in the local memory associated
with a single processor of constant complexity.

Let T(n, p) be the time required for m-out-of-n voting
for m = 6(n). Step 1 of Algorithm 2 takes constant
time since it only involves designating each input object
as a member of one or the other subset. Step 2 takes
T(n/2, p) time, assuming that each half of the system has
the same connectivity or architecture as the entire system.
This is the case in many parallel architectures of practical
interest. Let Tg(p) be the time needed to exchange p
values between the two halves in Step 3. Similarly, let
Ta(n/2, p), Ts(p), and T (p, p) be the vote accumulation,
sorting and merging times of Steps 4 through 6, respectively.
With these assumptions, the worst-case running time of the
algorithm is defined by the recurrence:

T(n,p)=
T(n/2, p) + Te(p) + Ta(n/2, p) + Ts(p) + Tu(p, p)

The following examples illustrate the asymptotic time
complexity of Algorithm 2 for several well-known parallel
architectures. In all cases, multiple processors are assumed
to operate in SIMD mode (under control of a single
instruction stream).

EXAMPLE 3. Consider the PRAM model of parallel
computation with concurrent reads allowed (CREW).
Consider first the 2-way divide-and-conquer strategy. For
this model, T is a constant as the exchange involves reading

THE COMPUTER JOURNAL, Vol.39, No.8, 1996

PARALLEL THRESHOLD VOTING 697

a pointer to the corresponding p-element array by n/2
processors. On the other hand, T, consists of p fan-in or
semigroup computations (summations) and takes p log(n/2)
time. Ts = O(plog p), assuming that a single processor
does the sorting in each list. Finally, Tpy = O(p). Hence the
recurrence becomes T(n, p) = T(n/2, p) + O(plogn) =
O(log2 n), given the assumption that p is a small constant.
For the EREW (exclusive read) PRAM model, broadcasting
of p values to n/2 processors in the other subset takes
O(p log n) time, so the overall complexity is asymptotically
the same. Using 2*-way divide-and-conquer is not of help
here since it reduces the number of recursive steps by a factor
of k but increases the combining work in each recursive step
by roughly the same factor.

EXAMPLE 4. Consider the hypercube model of parallel
computation and assume that the results of each half are
available in all participating processors. For this model, Tg
is p or 2p, depending on simplex or full duplex exchange
of values between the neighbors. T, consists of p fan-in
computations (summations), one for each of the candidates
coming from the other half, and takes O(p + logn) time
using standard pipelining techniques. Ts = O(plog p),
with each processor doing the sorting of its p-element list.
Finally, Ty = O(p). Hence, in this case, the recurrence
for time complexity becomes T(n, p) = T(n/2, p) +
O(logn) = O(log?n), given the assumption that p is
a small constant. As in Example 3, 2*-way divide-and-
conquer does not help here.

The O(log?n) complexity obtained in Example 4 for
hypercube holds for a wide variety of other hypercubic
(hypercube-derivative) and many scalable constant-degree
networks such as butterflies, cube-connected cycles, shuffle-
exchange networks [21], and some periodically regular
chordal rings [22]. It also holds for any architecture that
can emulate hypercube algorithms incorporating single-
dimension communication (a special case of single-port
communication, whereby all nodes are constrained to
communicate along the same dimension in each step) with
constant slow down. Examples include star and star-
connected cycles networks [23], hierarchical cubic networks
[24], as well as wide classes of recursively constructed
networks proposed recently [25, 26].

EXAMPLE 5. Consider the k-D mesh model of parallel
computation. For this model, it is more appropriate to
use a 2%-way divide-and-conquer strategy (e.g. 4-way in a
square 2-D mesh) which leads to meshes with equal sides
for the subproblems. Assume, as in Example 4, that the
results of each partition are available in all participating
processors. The combining step is done in k phases, one for
each mesh dimension. For each phase, the exchange time
is Te = O(n'*) and the vote accumulation takes T, =
O(kn'/*) steps. Sorting and merging require O(p log p)
and O(p) steps, respectively. Hence the recurrence for time
complexity becomes T'(n, p) = T'(n/2%, p) + O(k*n'/*) =
O (k?n'/*), given the assumption that p is a small constant.

The above examples show that the algorithm is asymp-

totically suboptimal for all three models considered. The
hypercube and k-D mesh models have diameter-based lower
bounds of lOg n and k(n‘/" — 1)’ respective]y' As of this
writing, it is not known whether a more clever way of orga-
nizing the computations can reduce these complexities to the
optimal O(logn) and O (kn'/*).

Analysis of the algorithm in the special case of majority or
super-majority voting, as discussed at the end of Section 4, is
quite simple and leads to the recurrence T'(n) = T'(n/2) +
O(1) = OQogn) for identifying the final candidate on
PRAM and hypercubic models of parallel computation and
to T'(n) = T'(n/2*) + O(kn'*) = O(kn"*) for the k-
dimensional mesh model. To this, one must add the time
Tv(n) needed for the final verification of majority status
among the n inputs, leading to T(n, 1) = T'(n) + Ty (n).
Since the final verification of majority status can also be
done in O(logn) or O(kn'/*) time on the PRAM/hypercube
and k-dimensional mesh models, respectively, an efficient
asymptotically optimal algorithm results in each case.

Consider the special case of near unanimity, a limiting
case of super-majority with n—m = 0(1); i.e. when (n—¢)-
out-of-n voting is required for a (small) constant €. The
only additional simplification in this case occurs for some
CRCW PRAM submodels. For example, when multiple
writes are allowed in case a common value is written or
when upon multiple writes of single-bit values, the logical
OR (maximum) of the values is stored, one can proceed
as follows. An (¢ + 1)-element list of different inputs is
constructed iteratively; start with one element in the list
and, in each step, have one of the processors holding a
value different from the ones on the list add its value to the
list. Next, all n processors compare their values to those
on this list and in case of disagreement, write a 1 into the
corresponding location of an (¢ + 1)-element ‘disagreement’
array which is initialized to all 0Os. An item can have
n — € or more votes only if no disagreement is registered
for it. Therefore, after the above constant-time steps, the
‘disagreement’ array points to the voting result, if any, or
indicates that there is no input element which has at least
n — € votes.

6. ANALYSIS FOR m = o(n)

When m is much smaller than n, the parameter p = |n/m|
is no longer a constant and it is unreasonable to base
the complexity analysis on the assumption that a single
processor can hold and efficiently sort/merge lists of size
p. More importantly, if the input object space is large and
unordered, only direct comparison can be used to establish
the equality of objects, leading to 2(p) time complexity for
any vote accumulation scheme and Q(p log n) time overall.
With m = o(n), the above can be as large as 2(n logn). The
recurrence

T(n,p)=
T(n/2, p) + Te(p) + Ta(n/2, p) + Ts(p) + Tu(p, p)

introduced in Section 5 is still valid and can be used as

~ a starting point for our analysis. Since the storage and/or

THE COMPUTER JOURNAL, Vol.39, No.8, 1996

698 ' B. PARHAMI

transformation of the required lists of size p must now
be distributed across multiple processors, the distribution
of data items and processing functions becomes critical
in minimizing the time complexity. Thus, we revisit
each of the three examples of Section 5, with the aim of
specifying suitable data distribution and processing schemes
to minimize the overall complexity. As before, a SIMD
mode of operation is assumed.

EXAMPLE 6. Consider the PRAM model, with or without
concurrent reads (CREW/EREW). The differences with
Example 3 occur in the vote accumulation, sorting and
merging steps. For vote accumulation, n/(2p) processors
can be assigned to tally the votes for each of the 2p
candidates within its respective n/2-element subset, leading
to O(p) time steps. Sorting of x items using x processors
takes O(logx) time on the PRAM. Thus, the sort and
merge times for vote combining are sublinear in p and can
be ignored in our asymptotic analysis. The above lead
to T(n,p) = T(n/2,p) + O(p) = O(plogn). With
p = o(n/logn) or equivalently m = w(logn), the time
complexity of parallel threshold voting on PRAM becomes
o(n) which is still asymptotically better than that of plurality
voting which requires $2(n?) comparisons [20] and thus
Q(n) time in any n-processor parallel implementation.

EXAMPLE 7. Consider the hypercube model of parallel
computation and assume that the list of candidates for the
two halves are held in neighboring (log p)-dimensional
subcubes of the two log(n—1)-cubes. In this case, Tg
becomes a constant term (1 or 2). Vote accumulation
involves p broadcast and fan-in computations in the
log(n—1)-cubes, needing O (p +log n) time with pipelining.
As in Example 6, we can ignore the sort/merge time which
is sublinear in p. Hence, the recurrence for time complexity
yields T'(n, p) = T(n/2, p)+ O(p+logn) = O(plogn+
log? n). The algorithm complexity in this case ranges from
the fairly efficient O(log?>n) for m = Q(n/logn) to the
less desirable O(nlogn) for m = O(1). It is instructive
to carry out the analysis for 2*-way divide-and-conquer
for this example. Once the 2* problems of size n/2* are
solved, k combining phases are needed with the jth phase
requiring p-+log(n/2*~/*1) time steps corresponding to data
exchange and vote accumulation in neighboring hypercubes
of size n/2%, n/2%~1, ..., n/2. The recurrence then becomes
T(n, p) = T(n/2*, p) + k(p +logn — (k + 1)/2). Hence,
the asymptotic time complexity of the algorithm does not
change, given that k < logn.

Again, the O(plogn +'log?n) complexity obtained in
Example 7 for hypercube holds for a wide variety of fixed-
degree and hierarchical networks that were enumerated
following Example 4.

EXAMPLE 8. Consider the k-D mesh model of parallel
computation with a 2%-way divide-and-conquer strategy,
as in Example 5, and assume that the results from the
2* subproblems are held in adjacent k-D submeshes with
sides of length p'/*. For this model, Tz is O(p'/*),
since the exchange involves shifting of values along one

of the dimensions. The k sort/merge phases required
for vote accumulation take O(kp + k2n'/*) time, since
each phase involves p broadcast and fan-in operations with
pipelining. The sort and merge steps by vote totals require
O (kp'/*) time within the respective submeshes. Therefore,
the recurrence for time complexity changes to T(n, p) =
T(n/2%, p) + O(kp + k*n'/*)y = O(kplogn + k2n'/%).

Again, we see that the algorithm is asymptotically
suboptimal in each of the three cases examined. It is unlikely
that more efficient algorithms can be devised when the
voting threshold m is further restricted; to m = 6(1) or
m = Q(logn), for example. But we have no proof for this
assertion. We note that with m = 8(1), the time complexity
of the algorithm becomes O(n logn) for Examples 6 and 7
and O (knlogn) in Example 8. The O(n log n) complexity is
a factor of log n below the best possible performance in view
of the O(n?) operations required to compare all object pairs.
The lower performance of higher-dimensional meshes is not
surprising in view of the fact that their corresponding 2¢-way
divide and conquer strategy involves a larger amount of data
exchange in the combining phase. Again, we do not know
whether these are inherent to the problem or are artifacts of
our specific algorithm.

For the sake of generality, our analyses thus far were
based on an unordered object space where inequality of
object; and object, does not provide any information about
their relationship to object; (general space, with transitive
‘support’, in Figure 1). In the case of a totally ordered
object space, sorting can be used to obtain highly efficient
algorithms for exact (and some inexact) threshold voting
schemes. We illustrate this through an example.

EXAMPLE 9. Consider the voting problem of Example
2 with inputs A, A, D, D, B,C, A, B in presentation or
input order. Sorting the inputs in lexicographic order yields
A, A A B,B,C,D, D, with all equal inputs occupying
consecutive positions in the resulting sequence. A partition
vector 1, 1,1¢,1,1", 1,1, 1" is formed to indicate the span
of each distinct value, with the tag ‘¢’ indicating the last
element in each run. Now, a partitioned parallel prefix sum
computation, which corresponds to the operator ‘+t’ defined
in terms of standard additionasx +'y = x + y, x +' y* =
(x+y).x*+'y =y and x' +' y' = y', is performed on
the partition vector. This results in the accumulation of all
votes in the tagged elements of the partition vector, making it
easy to complete the threshold voting algorithm or to devise
a plurality voting algorithm to select one of the inputs with
maximum vote.

7. SOME EXTENSIONS

When n is not a power of 2, a simple modification to the
algorithm can be used that does not affect the asymptotic
time complexities discussed thus far. The modification
consists of padding the list of n elements with 2ll8n+1 _
special objects that would not match any object (including
another special object) in equality comparisons. The m-out-
of-n threshold voting problem is then converted to m-out-

THE COMPUTER JOURNAL, Vol.39, No.8, 1996

PARALLEL THRESHOLD VOTING 699

of-2t82)+1 yoting on the padded list. Alternatively, one
could use weighted threshold voting, as discussed below,
with 2UR821+! _ » additional arbitrary objects whose votes
are set to 0. It is tempting to make the additional 218"+t —p
objects ‘wild’ so as to match any other object. It might
then be argued (as was done in an early draft of this paper)
that this approach increases the vote tallies by the same
amount for all objects, making it easy to offset the bias
by correspondingly adjusting the threshold to m’ = m +
gllogn)+1 _ - The fallacy of this argument lies in the fact
that the bounded size of the candidate set can no longer be
guaranteed.

So far we have based our analyses on the assumption that
we have n processors to solve our n-input voting problem.
When n is large, it would be more reasonable to assume that
the number ¢ of processors satisfies ¢ < n. In this case,
we can use the same algorithm by requiring that each of
the g processors emulates n/q processors in the original n-
processor version. For the PRAM version of the algorithm,
this will result in a slowdown factor of n/q, leading to
the overall time complexity 0((n/q)log2 n). In the case
of hypercube, each processor must emulate an (n/q)-node
subcube, leading to the same n/q slowdown. Finally, for a
k-D mesh, each processor must emulate a k-D submesh of
dimension (n/q)"/*. This again leads to the same optimal
slowdown.

Weighted voting would involve the following modifica-
tions to the algorithm and its analysis. Ideally, one would
like to replace Step 1 of Algorithm 2 with a partitioning of
the set of inputs into roughly equal-weight subsets. This
would lead to only minor changes in the remaining steps,
as the number of candidates in each subset will be roughly
equal to p. However, for arbitrary weights, such a parti-
tioning is a special case of the subset sum problem which is
known to be NP-complete {27]. Thus, we opt for partitioning
into equal-size subsets as before. The total votes associated
with the two subsets will be roughly equal in a probabilis-
tic sense, thus making our previous analyses valid for ex-
pected (rather than worst-case) time complexity. Thus, the
PRAM/hypercube versions of our algorithm run in expected
O(log? n) time in the same sense that sequential quicksort
runs in O(nlog n) time on the average.

One way to derive the worst-case time complexity of the
weighted voting version of our algorithm is to place an upper
bound vy On the input votes (weights). Then, the number
of candidates having at least £/2 votes in each subset of n/2
elements is no more than | (numax/2)/(t/2)] £ PUmax- Thus,
the preceding asymptotic analyses still apply if vpa, is a
constant. In particular, if the input weights are in {0, 1}, the
time complexity of weighted threshold voting is the same as
that of m-out-of-n voting. The performance penalty of this
approach is illustrated by Example 1 where the size of the
candidate set grows from |15/8} = 1to |6 x 4/8] = 3.

When the input object space is totally ordered, weighted
threshold voting can be performed with the same efficiency
as m-out-of-n voting, discussed in Example 9 and the
paragraph preceding it. In Example 9, it would have been
sufficient to initialize the elements of the partition vector

to the input weights (swapping the elements of this vector
whenever input pairs are swapped to produce the sorted
order) and executing the rest of the algorithm unmodified.
For example, the initial votes 1, 2, 1, 2, 2, 3, 1, 3 would be
transformed to 1, 2, 1,2, 3,3, 1, 2 after the sort step, yielding
the tallies —, —, 4, —, 5,3, —, 3 following the partitioned
parallel prefix sum computation.

8. CONCLUDING REMARKS

We have presented a parallel algorithm for m-out-of-n
threshold voting and analyzed its complexity for various
models of parallel computation. The algorithm was shown
to be reasonably efficient, though asymptotically suboptimal
by a log n factor, on the PRAM, binary hypercube, certain
fixed-degree hypercubic networks, and a wide array of
hierarchical architectures. The algorithm is also suboptimal
on k-D mesh architectures by a factor of k, but since k tends
to be relatively small in practice (typically 2 or 3), this is less
of a problem. As far as we know, this work represents the
first discussion of parallel voting algorithms beyond simple
majority voting.

In the special case of majority voting, it was shown that
the algorithm can be adapted to run in optimal time on all
of the above models. The key to this simplification in the
case of majority voting is that merging and selection of
candidates in each recursive step does not require the tallying
of votes from the other partition; a simple comparison of
votes tells us which of the two candidates may have majority,
with the actual tallying of votes deferred until a single
candidate has been identified at the very end. Thus, the vote-
tallying overhead is paid only once.

We showed that our algorithm can be adapted for efficient
parallel weighted threshold voting in cases where the
maximum weight is not too large. When the input object
space is totally ordered, asymptotically optimal algorithms
can be constructed if the objects are first sorted using any
optimal sorting algorithm. Once the input objects are sorted,
vote tallying can be done by a partitioned parallel prefix
computation, and the outputs can be selected by a parallel
comparison of vote tallies with the threshold ¢.

Work is expected to continue on refining the algorithm
and its analysis and on evaluating its efficiency on various
other models of parallel computation. Of particular interest
is to show how tallying of votes in each recursive step can
be avoided for general threshold voting or to prove that the
O(log?n) and O(plogn + log®n) complexities obtained
under different assumptions for the PRAM, hypercube, and
related hypercubic networks, or the O (k*n'/*) and O (kp +
k2n'/¥) complexities for k-D mesh architectures, are in fact
the best possible (lower bounds). Extension of the algorithm
to more efficient weighted voting schemes, particularly
when vna is not small, constitutes another direction for
further research.

Finally, we have only dealt with threshold voting in this
paper. Even though parallel complexity results have been
previously derived for a variety of voting schemes [17],
efficient parallel algorithms for these cases remain to be

“developed.

THE COMPUTER JOURNAL, Vol.39, No.8§,

1996

700 B. PARHAMI

REFERENCES

(1] Parhami, B. (1995) Multi-sensor data fusion and reliable
multi-channel computation: unifying concepts and tech-
niques. Proc. Asilomar Conf. Signals, Systems and Comput-
ers, Pacific Grove, CA, October, pp. 745-749.

[2] Parhami, B. (1996) Design of Reliable Software via Gen-
eral Combination of N-Version Programming and Acceptance
Testing. Proc. 7th Intl Symp. Software Reliability Engineer-
ing, White Plains, NY, October, pp. 104-109.

[3] Iyengar, S., Sitharama, S., Kashyap, R. and Madan, R. (guest
eds) (1991) Special section on distributed sensor networks.
IEEE Trans. Systems Man Cybernetics, 21, 1027-1031.

(4] Parhami, B. (1996) A taxonomy of voting schemes for data
fusion and dependable computation. Reliability Engng Syst.
Safety, 52, 139-151.

[5] Brownrigg, D. R. K. (1984) The weighted median filter.
Commun. ACM, 27, 807-818.

[6] Freund, Y. (1995) Boosting a weak leamning algorithm by
majority. Info. Computat., 121, 256-285.

[7]1 Battiti, R. and Colla, A. M. (1994) Democracy in neural nets:
voting schemes for classification. Neural Networks, 17, 691-
707.

[8] Dolev, D., Lamport, L., Pease, M. and Shostak, R. (1987) The
Byzantine generals. In Bhargava, B. K. (ed.), Concurrency
Control and Reliability in Distributed Systems. pp 348-369,
Van Nostrand Reinhold, New York.

[9] Lorczak, P. R.,, Caglayan, A. K. and Eckhardt, D. E.
(1989) A theoretical investigation of generalized voters
for redundant systems. Proc. Intl Symp. Fault-Tolerant
Computing, Chicago, IL, June, pp. 444-451.

[10] Su, S. Y. H,, Cutler, M. and Wang, M. (1991) Self-diagnosis
of failures in VLSI tree array processors. JEEE Trans.
Comput., 40, 1252-1257.

[11]) Parhami, B. (1994) Threshold voting is fundamentally
simpler than plurality voting. Intl J. Reliability, Quality Safety
Engng, 1, 95-102.

[12] Boyer, R. S. and Moore, J. S. (1991) MJRTY—A fast majority
vote algorithm. In Boyer, R. (ed.), Automafed Reasoning:
Essays in Honor of Woody Bledsoe. Kluwer Academic,
Dordrecht, The Netherlands.

[13] Gries, D. (1990) A hands-in-the-pocket presentation of a
k-majority vote algorithm. In Dijkstra, E. W. (ed.), Formal

Development of Programs and Proofs. pp. 43-4S, Addison-
Wesley, Reading, MA.

[14] Misra, J. and Gries, D. (1982) Finding repeated elements.
Sci. Comp. Programm., 2, 143-152,. See also a related
correspondence item in Comput. J. (1992) 35, 298.

[15] Campbell, D. and McNeill, T. (1991) Finding a majority when
sorting is not available. Comput. J., 34, 186.

[16] Lei, C. -L. and Liaw, H. -T. (1993) Efficient parallel
algorithms for finding the majority element. J. Info. Sci.
Engng, 9,319-334.

{17] Parhami, B. (1991) The parallel complexity of weighted
voting. Proc. Intl Symp. Parallel and Distributed Computing
and Systems, Washington, DC, October, pp. 382-385.

[18] Parhami, B. (1992) ‘Optimal algorithms for exact, inexact,
and approval voting’, Proc. Int’l Symp. Fault-Tolerant
Computing, Boston, June, pp. 444-451.

[19] Parhami, B. (1994) Voting algorithms. JEEE Trans. Reliabil-
ity, 43, 617-629.

[20) Parhami, B. (1991) Voting networks. IEEE Trans. Reliability,
40, 380-394.

[21] Leighton, F. T. (1994) Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann, San Mateo, CA.

[22] Parhami, B. (1995) Periodically regular chordal ring networks
for massively parallel architectures. Proc. 5th Symp. Frontiers
of Massively Parallel Computation, McLean, VA, February,
pp. 315-322.

[23] Latifi, S., Azevedo, M. and Bagherzadeh, N. (1993) The
star-connected cycles: a fixed-degree network for parallel
processing. Proc. Intl Conf. Parallel Processing, 1, 91-95.

[24) Ghose, K. and Desai, R. (1995) Hierarchical cubic networks.
IEEE Trans. Parallel Distrib. Syst., 6, 427-435.

[25] Yeh, C. -H. and Parhami, B. (1996) Swapped networks:
unifying the architectures and algorithms of a wide class
of hierarchical parallel processors. Proc. Intl Conf. Parallel
Distrib. Systems, Tokyo, June, pp. 230-237.

[26] Yeh, C. -H. and Parhami, B. (1996) Recursive hierarchical
swapped networks: versatile interconnection architectures
for highly parallel systems. Proc. 8th IEEE Symp. Parallel
Distrib. Processing, New Orleans, LA, October, pp. 453-460.

[27] Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990)
Introduction to Algorithms. McGraw-Hill, New York.

THE COMPUTER JOURNAL,

Vol.39, No.8, 1996

