
Journal of VLSI Signal Processing Systems 13, 57-66 (1996)
�9 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

FFT Computation with Linear Processor Arrays Using a Data-Driven
Control Scheme

DING-MING KWAI AND BEHROOZ PARHAMI
Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560, USA

Received March 30, 1995; Revised March 28, 1996

Abstract. For a large number N of data points, linear FFF arrays consisting of | 2 N) processors provide
significant economy in hardware. In this paper we discuss the radix-2 decimation-in-frequency Cooley-Tukey
algorithm implemented on linear arrays, thereby allowing a continuous real-time application using a word-serial
input data stream to the linear arrays. In order to avoid memory access and data path switching under central control,
we present a novel data-driven scheme permitting the proposed linear arrays to correctly operate on arbitrarily
arriving signal sequences. This distributed control scheme incorporates a control signal propagated with the data
signals, in the form of a tag attached to data items. The tag provides control information to initiate the access to the
memory containing the coefficients and to select an appropriate data path so that regular data flow can be achieved
within the linear array. The cascade structures are well suited for the computation and can operate in pipeline
fashion at extremely high data rates. The proposed data-driven control scheme can be used with both synchronous
and asynchronous (wavefront) processor arrays.

1. Introduction

The Discrete Fourier Transform (DFT) is widely used
in digital signal processing and its realization in hard-
ware has been proposed by many researchers (See,
e.g., [1]). For an input signal sequence x = [x(0),
x(1) x(N - 1)] ~r and its transformed versiony =
[y(0), y(1) y(N - 1)] T, the N-point DFT can be
written in matrix form as

[l
y(1) /

y(N - 1)_J

. (N-t) 2(N-I)
t o n ~ N

' ' l F +<o) l
" I x u) l _ 2 (N - l) /

(N - I) 2
�9 - - CON A L x (N - 1) d

where the entries of the N x N matrix W are defined
by [W]ij = o)~ (0 < i, j < N - 1) with O) u being the
primitive Nth root of unity. Implementation in pipeline
fashion is a natural extension for the on-line DFT com-
putation. Kung and Leiserson [2] thus suggested an ar-
ray of inner-product-step processors connected linearly
for a direct matrix-vector multiplication. Approaches
along this line, however, are limited by their O(N z)
operation count and generally lead to a total number

(N) of processors; implementation cost thus grows
at least linearly with N.

Fast Fourier Transform (FFT) algorithms based on
sparse factorization of the DFT matrix W lead to more
efficient implementations. Suppose that the number
N of sampled points is initially (or is adjusted up-
wards to) an integer power of 2, i.e., N = 2 n. We
can decompose the matrix W into a product of sparse
matrices, Wn---WzW1, where each Wi(1 < i < n)
has exactly two nonzero entries per row. We then re-
quire only O(N log 2 N) operations by exploiting the
sparsity of Wi. Different FFT algorithms have been

58 Kwai and Parhami

Stage 1 Stage 2 Stage 3

x(O) ~ ' ~] - ~ y (O)

x (4) - ~ ~ h t 1/~ - ~ ~ y (4)

x(3) y (3)

Figure 1. Butterfly FFT network�9

developed to operate on different arrangements of data
items by using the particular properties of Wi [3]. Al-
though our scheme applies to other cases as well, the
radix-2 decimation-in-frequency Cooley-Tukey algo-
rithm is discussed here due to the fact that a continuous
real-time application is allowed by its word-serial input
data stream. This arrangement permits data items to be
processed in the order of arrival without requiring the
inputs to be reassembled into a stream of consecutive
data items�9 A signal flow graph for computing 8-point
decimation-in-frequency FFTs is given in Fig. 1. Be-
cause of the bit-reversed order, the output vector y and
the DFT matrix become

f y(0) l
y(N/2) [

y (N - l)J

N/2 2(N/a) (N-0(N/2) / X(1)
t o N w N �9 . . 09 N

coNN/4 2 (N / 4) . 2 (N - I) (N / 4) x(2)
W N " ' " t O N

�9

(N - l) 2 (N - t) ~ ~U ... w~ u-l)2 kx(N - 1)

In this paper, we will focus on linear FFT ar-
rays consisting of | 2 N) processors. For a large
number N of points, these implementations provide
significant economy in hardware. Advantages of linear
arrays include low interconnection density for VLSI
layout, bounded I/O requirements, ease of global clock-
ing in the presence of signal propagation delays [4],

and amenability to (partial) scan design [5] to pro-
vide good controllability and observability for testing
purposes.

2. Space-Time Mapping

A straightforward way of implementing an FFT net-
work is derived directly from the flow graph of the
algorithm. A fully parallel log2N-stage network, each
stage consisting of N / 2 butterfly processors, can be
obtained (see Figs. 1 and 2). There are two types of
operations in these networks�9 One is a butterfly opera-
tion, in which pairs of processors exchange data items
and compute weighted sums and differences of the data
items exchanged. The other is a permutation operation
that alters the order of data items to one that is lexically
ascending. It is usually achieved by interconnections
among processors.

- - i

a a + b

Figure 2. Butterfly processor (B). The square box R represents
one word of storage.

FFT Computation 59

In what follows, the butterfly processors will be as-
sumed to have bit-parallel inputs; i.e., all the bits of the
two operands a and b in Fig. 2 arrive simultaneously.
Since our array designs have only one primary input
and one primary output, the I/O requirements are mod-
est and well within the packaging constraints of current
VLSI technology. Similarly, with multiple processors
placed on a chip, the area overhead due to bit-parallel
inter-processor links is not a major concern in view of
their regularity and locality.

In terms of matrix factorization, the implementation
is derived by decomposing the DFI" matrix W into a
product of sparse matrices Wi (1 < i < log 2 N), each
corresponding to one stage of the butterfly network.
Pairs of nonzero entries in rows and in columns of Wi
are separated by 2 n-i - 1 zero elements. Additionally,
nonzero elements appear on only three diagonals of
Wi. Since always two input data items are used to com-
pute two output data items simultaneously, the network
combines the two input data items in parallel through a
butterfly processor. Consequently, N/2 butterfly pro-
cessors are required at each stage. As an example, an
8-point decimation-in-frequency DFT matrix W can
be decomposed into a product of three sparse matrices
Wl, W2, and W3, such that W = W3W2Wl , where

-1 0
0 1
0 0
0 0

W~ = too 0
~5

o o3~
0 0
0 0

1 0
0 1

~o ~ o
0 W2 = w~
0 0
0 0
0 0
0 0

1 1
too o34
0 0
0 0

W3 = 0 0

0 0
0 0
0 0

0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 0) 4 0 0 0
0 0 0 to~ 0 0

o o o o
o o o o 4

1 0 0 0 0 0"~
0 1 0 0 0 0

o3~ 0 0 0 0 0
0 to6 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1
o o too o 4 o
o o o o

0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0

toe ~ o o o o
0 0 1 1 0 0
o o too o o
0 0 0 0 1 1
o o o o too o34

Considering the total of (N/2) log 2 N processors
and 2N I/O ports, a feasible realization of the butterfly
FFT network in hardware is limited to small N, say
N = 8 [6]. Such a parallel design is clearly impracti-
cal when the number of data points becomes very large.
Most FFT array designs reallocate and reschedule the
operations in the butterfly network onto a smaller num-
ber of processors. This can be viewed as a space-time
mapping of the flow graph. One possibility is to map
the log 2 N stages onto log 2 N processors [7]. Another
approach is to decompose the multiply-subtract-add
(butterfly) operation in each processor into two sep-
arate multiply-add (inner-product-step) operations [8].
As we will see in Section 4, the decomposition actu-
ally creates three, instead of two, inner-product-step
processors per stage.

The rescheduling induces additional storage (in the
form of shift registers) inserted between processors
along the signal lines to regulate the pipelined com-
munications. The overall cost is therefore determined
by two important elements in such a design: the com-
putation modules and the additional storage. The coef-
ficients co~v are assumed to be stored in a circular queue
[9], or are located in a memory, with a counter linked to
the global clock determining the address before starting
the computation. Extending the design to a larger num-
ber of data points may be based on reusing the same

i hardware, although the memory containing the to N co-
efficients should be large enough for such an extension.

An important issue in the pipelined design is that
the coefficient memory must be initialized to the start-
ing address with the arrival of each new input signal
sequence. In view of the periodic resetting feature of
shift registers and binary address counters, this will not
cause any problem as long as input sequences are con-
tinuously fed to the FFT array. However, when input
sequences are separated by arbitrary gaps, or idle cy-
cles, it may not be desirable to wait until the current
sequence is completely flushed out and then resetting
the entire array.

In order to avoid the complexity and added delay of
data path switching under central control, we propose a
data-driven scheme that allows simple control and pro-
vides scalability for the structures. The basic idea of the
distributed scheme is to incorporate a set of control sig-
nals, propagated with data signals, in the form of a tag
attached to the data items [10]. This control tag is then
used to activate the counter of the coefficient memory
and/or to select an appropriate processor state, hence
leading to regular data flow within the linear array. We
apply the idea of distributed or data-driven control to

60 Kwai and Parhami

two different cascade implementations in Sections 3
and 4, briefly comparing the two in the concluding
Section 5.

3. Feedback Linear Array

The design proposed by Groginsky and Works in 1970
[11] is derived by vertically projecting the FFT flow
graph. Figure 3 shows the space-time diagram for com-
puting 8-point FFTs, in which nodes represent butterfly
operations scheduled at each processor and edges rep-
resent interconnection paths with delays required for
data items to move to the next processor. The nodes
are arranged in such a way that the causality require-
ment can be satisfied, meaning that an outgoing data
item from a node takes at least one time step to reach the
next node and two incoming data items (from different
nodes) used at the same node arrive simultaneously.

As we can See in the space-time diagram, there are
only two input patterns for each processor. For exam-
ple, the first and the second nodes in the central column
(corresponding to processor P2) receive one input data
item delayed by two additional time steps and the other

PI
x(O)
x (1)

x(2)
x(3)
x (4)

x(5)
x (6)

x (7)

0
1
2

3

4
5

6
7

8
9
10

11

12

13

14

15

16

Time step

Figure 3. Space-time diagram for the feedback FFT linear array.

without any delay, while the third and the fourth nodes
in the same column receive one input data item delayed
by six time steps and the other by four time steps.

An interesting feature of this design is that the shift
registers used to delay the input data items can be reused
for the generated data items. The data path is estab-
lished by a 2-state switch appended to each butterfly
processor as shown in Fig. 4. In the "through" state,
the processor performs the butterfly operation on the
input data items received from its primary input and
the shift register; two output data items are sent, one to
the next processor and the other back to the shift reg-
ister. In the "cross', state, the processor feeds the input
data item directly to the shift register while forwarding
the stored output data item from the shift register to the
next stage. The pipelining operation can be regarded
as two phases of processor activities: computation and
transmission, interleaved in consecutive time steps.

The linear array is constructed as follows. One of the
two outputs of each butterfly processor is connected to
the input of a shift register of appropriate length. The
shift register's output is connected to one of the butter-
fly processor's inputs, thus forming a feedback loop.
The remaining primary input and output of the butterfly

g
> Processor

y(O)
y (4)

,~ y (2)

y (6)
y(D
y(5)
y(3)
y(7)

FFT Computation 61

a a+b
('+

"9 0

C - ~

b a - b

[... ~ 1 1 Shift Register :~ ... a

Figure 4. Butterfly processor augmented with data path selection
logic.

processors are used to connect the latter into a linear
array. The feedback linear array for computing 8-point
FFTs is shown in Fig. 5. The length of the shift register
forreach processor Pi is 2 n-i which corresponds to the
distance (difference of indices) between two input data
items entering the same node in the flow graph or in
the same row of the sparse matrix Wi.

It is clear from the space-time diagram that the uti-
lization of the butterfly processors is only 50%. Op-
erationally, this is not a serious drawback since the
pipelined operation and throughput are maintained.
On the other hand, most concurrent error-detecting
schemes actually take advantage of the idle time steps
to do a duplicate computation for on-line testing. Thus,
the above structure can use the excess node capacity to
perform the duplicate computation efficiently.

A drawback of this structure, as originally proposed,
is that the control of the switch and the address counting
to access the coefficient memory require a central con-
troller. The central controller becomes a bottleneck that
may limit the scalability and speed of the linear array.

The problem can be avoided by appending a ("rout-
ing") tag [12] to each data item, thereby allowing a
processor to perform its operation based on the control
information provided by the tag. We can assign a tag
bit "0" to instruct the processor to switch to the "cross"
state and a tag bit "1" to switch to the "through" state.
Note that the processor performs a butterfly operation
only when its switch is in the "through" state.

The tag assigned to each data item is simply its se-
quence number (i.e., 0, 1 N - 1 in binary form).
Therefore, for an N-point FFT, tog 2 N bits are needed
to encode the control information. We can further di-
vide the control information into two fields: the most
significant bit is used to select the data path which is
either "cross" or "through" and the remaining bits are
used to address the coefficient memory. By observing
the flow graph in Fig. 1, it is clear that for processor Pi
the size of the memory is 2 n-i (which is equal to the
length of the shift register); thus, n - i bits are sufficient
to address the memory. To achieve this, we remove the
most significant bit after the processor has generated
the output data items and append the resulting tags to
the generated data items. The operations performed
by the processor are then determined solely by the tag
received from the primary input.

Figure 6 shows the timing table corresponding to an
8-point FFT under such a control scheme. The timing
table contains data items with tags at each location of
the linear array, the time steps increasing from top to
bottom. The intermediate signal sequences are shown
a s X = WlX, g = W2X, andy = W3Y. To make
the two phases of operation distinct, we have shaded
the generated data items in the shift registers. Each
processor waits until it receives an input data item with
the most significant tag bit equal to 1 and then performs
a butterfly operation using the coefficient co~ selected
by the remaining tag bits. The two generated data items
are given tags that are obtained from input tags with the
most significant bit removed. A data item with a small

Pl P2 P3

Figure 5~ Feedback linear array, for computing 8-point FFTs. The butterfly processors B are augmented with data path selection logic. Each
square box R represents one word of storage.

62 K w a i and Parhami

Figure 6.

Time
step

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Input Shift Register Pt Shift Register P~

,(o)_ooo (o)_ooo i i iii i :ii i i i i !iii iiiiii! i i iiiiiiiiii i i i iiiiiiiiiiii ii i [iiiiii iiiiiiiii ii i i i iiiiii iiiii .
x(1)_O01 x(1)_OOi x(O)._O00 iii~i~iii~i~i~i:~i~:i!~Jii~iiiiiiiiiii~i~i~i~i~Jiiiii!iiiiii~!ii~iiii~i~i:iiii~i~

x(2)_010 x(2)_O10 x(1)_00l x(O)_O00[iiiiii!iii!iiiiii!iiiiiiii~iiiiiiiiiii!iiiiiiiii!ii]

x(3)_Oll x(3)_011 x(2)_OlO x(1)_O01 x(O)_O00
. , . , ~

x(4)_lO0 ~ii::i~iii:.x(3)_Oll x(2)_OlO x(1)_O01 X(O)_O0

x(5)_101 " ~ i i i i ~ i i : : x(3)_011 x(2) 010

x(6) 110 ~iiiiii~i:: ~)ili~ili i~ii~ii0~i! x(3) 011
- - : : : : : : : . . . : : . . : : ~ : : : : : : : : : : : : : : . : ~ . : : ~ : : : : : : . , - -

: . . : i : i i : ~ . . : : : : : : : : :
. :

f

Shift Direction

x(o)_oo [::i::i~i::!~i~i~iii~i::iii:;~i::i~i~ ~!ii::;::!t

X(1)_O1 X(O)_O0

i i i ~ i i i X(1) 01 Y(O)__O

iiiiii~:...~!i~iiii :}~:~i!ii Y(1) I I Y(0)

X(4)_O0 iiiiiiiN~iii!' Y(2) O [iiiiiiiiii~iiiiiiiiiiii

x(5)_01 x(4)_oo Y(3) 1 I r(2)
X(7)_11 iiiiii~iiiill X(5)_01 Y(4) O [ii.l.iii:.~iiiii.i.iii

:iii!ii~:iiii!--iiii:iii:ililiiii~i:iiiii~iiii ' Y(5) l [Y(4)

~:: , : : . : i i : : : : . . . : . i : : : !~. : ; : ; : ; . ; ~ : ~ : : : : ? :.:.: : ! : : : : : : : . . .

Y(7) 1 I r(6)

Timing table for computing 8-point FFTs on the feedback linear array.

Shift
Register

P3

i[y(o)

i[y(6)
y(1)

Y(6) I y(5)

i',iii' ',iiiN',ii!ii',Yiii]
y(7)

sequence number is sent directly to the next processor
to the right while a data item with a large sequence
number is fed back to the shift register. The stored data
items are then propagated to the primary output and the
lexically ascending order of data items is maintained.

An elegant feature of this control scheme arises from
the fact that each processor performs the butterfly op-
eration only when it receives a tag with the most sig-
nificant bit equal to 1. Thus if we set all the tag bits to
0, the shift registers naturally form a scan path, mak-
ing it easy to incorporate a built-in self-test (BIST)
mechanism into the linear array [6]. Equally simple
is the insertion of an arbitrary number of dummy data
items between two input signal sequences with all tags
set to 0. This is of great value when input signal se-
quences are separated in time, since regardless of the
inter-sequence gaps, the FFTs are computed correctly
without mutual interference.

4. Concatenated Unidirectional Linear Array

Boriakoff [8] has recently proposed a concatenated
structure consisting of log 2 N (one uni-directional and

log 2 N - 1 bidirectional) linear arrays of inner-product-
step processors which takes advantage of the sparsity
of decomposed matrices in a different way. As noted
in Section 2, the nonzero entries of each sparse matrix
are located on three diagonals and this leads to the re-
quirement for three inner-product-step processors per
stage. In a manner similar to pipeline chaining in vec-
tor processors, the design cascades the linear arrays,
each performing a matrix-vector multiplication, such
that the output of one linear array is fed to the input of
the next array. Here, we adopt the same decomposition
technique, but make all linear arrays unidirectional as
shown in Fig. 7. Figure 8 shows the space-time dia-
gram for computing 8-point FFTs.

Recall that pairs of entries in the sparse matrix Wi
are separated by 2 n-i places in both row and column
dimensions. The linear array for the multiplication
of Wi correspondingly contains 2 n-i delay elements
(registers) between a pair of processors in order to
regulate the arrival time of input data items. Use of
unidirectional linear arrays provides the added flexi-
bility of being able to insert additional registers in the
signal lines between processors without affecting their
schedules. These registers, functioning as repeaters in

FFT Computation 63

P tl P 12 P t3
x

0 X

o

0 y

Figure 7. Concatenated unidirectional linear array for computing 8-point FFTs. Segments consisting of three inner-product step processors 1
are connected in a snakelike arrangement. Each square box R represents one word of storage.

x(0)
xO)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)

0
1
2
3
4
5
6
7
8
9
I0
11
12
13
14
15
16
17
18
19
20
21
22
23

Ptl Pl2 Pl3 P21 P22 P23 1331 P32 P33
Processor

y(0)
y(4)
y(2)
y(6)
y(D
y(5)
y(3)
y(7)

Time step

Figure 8. Space-time diagram for the concatenated unidirectional FFT linear array.

64 Kwai and Parhami

Y in ~"

- - ~ X out

" ~ Y out

Figure 9. Inner-product-step processor (I).

pipelining communication, help improve the transmis-
sion rate when long inter-chip or off-chip interconnec-
tion wires are required [13]. More importantly, as we
will see later, the structure can be driven by a simple
control scheme.

An inner-product-step processor that computes
Yout = co~v • xin +yin is shown in Fig. 9, where the three
inputs co~v, Xin, and Yin are complex numbers stored in
registers actuated by a global clock signal The value
Of Xout is the same as Xin; hence, this value simply prop-
agates forward in each segment's shift registers. The
hardware cost for three inner-product-step processors
is higher than that for a single butterfly processor, con-
sidering the number of complex multiplier and adder
modules used (the disparity is somewhat reduced if we

use an array implementation combining the multipli-
cation and addition operations [14]). The significant
difference is due to the property co~ = --CON +N/2 that
results in only one complex multiplication (by o~) in
the butterfly processor. The same butterfly computa-
tion turns into four complex multiplications (by 1, 1,
co~, and CON +N/2) and is computed at three different
inner-product-step processors in the unidirectional lin-
ear array. Unlike the butterfly processor, the two multi-
plications by 1 do not correspond to any saving in hard-
ware, given the path through which data must travel.

We next apply our data-driven control scheme to the
unidirectional linear array. The tags are used to access
the coefficient memory, since no data path switching is
necessary in this structure. The size of the memory for
each processor Piy(1 < i < n, 1 < j < 3) atsegmenti
is 2 n-i+l . The memory containing the coefficients can
be implemented as a circular queue or as an address-
able memory with a counter. The control information
in the tag is used to reset the counter to its starting
value. The timing table in Fig. 10 shows the execution
sequence for the computation Y = W2X that occurs
in the middle segment of Fig. 7 (where the tag is at-
tached to the output data stream I0. Because they share
the same construction, the top and bottom arrays have
similar operations. We can assign a tag bit 1 to reset
the counter and a tag bit 0 to increment the counter by

Time step

0

1

2

3

4

5

6

7

8

9

10

11

12

13

P23

o, Y(oL1

o, r(1)_o

od, X(O), Y(2)_o

cod, xo) , r(3)_o

o, x(2), u

o, x(3), r(5) o

o8 ~ x(4), r(6)_0

o8 ~, X(5), Y(7)_o

o, x(6)

o, x(7)

Shift Reg. P22 Shift Reg. P2t

o, x(o)

x(o) o,x(1)

x(o) x(1) 1,x(2),Y(oL1

x(1) x(2) 1 , x (s) , r (O 0

x(2) x(3) o,x(4),Y(2)o

X(3) X(4) o,x(5),r(3)_o

X(4) X(5) 1,X(6),Y(4)_l

X(5) X(6) 1,X(7),Y(5)_0

X(6) X(7) O, Y(6)_O

X(7) 0, r(7)_0

1, x(o), Y(O) l

:x(o) l, x(1), YO)_o

X(O) x(1) o,4,x(2),Y(2)o

X(1) x (2) od, x(3), Y(3)_o

X(2) x(3) l,X(4), r(4)_l

X(3) X(4) I,X(5), r(5)_O

X(4) X(5) co~,X(6),r(6)_0

X(5) X(6) ~g~,X(7),r(7)_0

X(6) X(7) Shift Direction

x(7)

<

Figure 10. Timing table for computing Y = W2X on the middle segment of the unidirectional linear array.

FF]? Computation 65

one. The tag bit stream (1 followed by 2 n - i + l - - 1 0s)
is propagated through the linear array and inserted ev-
ery 2 n - i + l cycles. The three inputs CO~v, xin, and Yin for
each inner-product-step processor are placed together
in the same column.

Note that the tag bit 1 also indicates the arrival of a
new signal sequence. If the next input signal sequence
is delayed, we may insert dummy data items (with "0"
tags attached) to the linear array. The processor does
not reset the memory counter until a tag "1" appears.
Once the input signal sequence arrives, the tag bit 1
propagates along the linear array and resets each mem-
ory counter in a pipeline fashion.

5. Conclusions

FFT arrays are generally treated as special-purpose en-
gines which contain processors, memories, and com-
munication links. Previous designs addressed the issue
of how to connect processors with a suitable number of
delay elements in the communication links; however,
they tended to leave the problem of memory access or
data path switching to an unspecified controller. When
two sequences coexist in the same array, the memory
access and data path switching scheme must remain
correct for each of them. Hence, the task of the con-
troller may not be trivial, especially for real-time ap-
plications.

In this paper, we have presented two linear array
structures for computing N-point FFTs based on sparse
factorization of the Cooley-Tukey matrix. In order to
avoid memory access and data path switching under
central control, we proposed a data-driven scheme al-
lowing the linear arrays to be controlled simply and
precisely. The basic idea of the distributed scheme is
to incorporate a set of control signals, in the form of a
tag attached to the data items, that propagates with data
signals. The control tag is used to access the appropri-
ate element of the memory containing the coefficients
and/or to direct the processor to a desirable state so
that regular data flow can be achieved within the linear
a r r a y .

The hardware cost and performance of these two
implementations are summarized in Table 1 . For
N = 1024, the feedback linear array requires 10 but-
terfly processors and 10 tag bits to set the data path
and to address the coefficient memory. The storage
requirement for both the shift registers and coefficient
memories is 1023 words. The delay time from input
to the emergence of the first transformed data is 1033

Table 1. Hardware cost and per fo rmance o f two FFT arrays.

Conca tena ted

Feedback unidirect ional

l inear a r ray l inear ar ray

Number of processors log 2 N (B) 3 log 2 N (I)

Number o f tag bits log 2 N 1

Size of s torage N - I 2 (N - I)

Size o f coefficient memory N - 1 6 (N - 1)

Delay t ime to first result N + log 2 N - 1 N + 3 log 2 N - 1

La tency o f complet ion 2 N + log 2 N - 2 2 N + 3 log 2 N - 2

time steps. The latency for the whole transform is 2056
time steps; only 50% of these steps are used for com-
putation. The concatenated unidirectional linear array,
on other hand, requires more (30) inner-product-step
processors but only ! tag bit to activate the circulat-
ing coefficient memory. The storage requirement for
the shift registers and the coefficients is higher (2046
words and 6138 words, respectively). It also implies
slightly longer delay and latency (1053 time steps and
2076 time steps, respectivelY). The advantages of the
concatenated:structure lie primarily in simple control
mechanism and ease of expansion.

Obviously, introduction of fault tolerance capabil-
ity into the FFT arrays is also important. We have
examined some possibilities for incorporating built-in
testing and concurrent error detection for a feedback
linear array. Intuitively, the unidirectional data flow
of the concatenated linear array design simplifies the
provision and analysis of fault tolerance mechanisms,
since any permanent or extended transient fault is exer-
cised only once and thus is likely to have a much more
localized effect. However, comprehensive treatments
of error detection, location, and reconfiguration issues
remain for future research.

in closing, we note that our data=driven Control
scheme can be used with synchronous systolic arrays
[2] or their asynchronous counterparts known as wave=
front arrays [15, 16]. Wavefront arrays are also "data-
driven". However, the data-driven aspect of Wavefront
arrays only applies to the activation of processors; i .e '
it is the availability of input data, rather than the ris-
ing or falling edge of a clock signal, that triggers the
processor's computation. Our method of embedding
instructions within the data stream augments the above
capability of wavefront arrays and can also be applied,
with equal ease, to synchronous systolic arrays. The
examples presented in this paper involved linear arrays
in which the single input data stream carried the needed

66 Kwai and Parhami

instructions. With multi-dimensional arrays, or multi-
ple data streams within linear arrays, the instructions
can be encoded in various ways by attaching suitable
indicators or tags to the various data streams. The resul-
tant optimization problem to obtain the most efficient
tagging scheme is quite interesting [10].

References

1. C.D. Thompson, "Fourier transform in VLSI," IEEE Transac-
tions on Computers, Vol. C-32, pp. 1047-1057, 1983.

2. H.T. Kung and C.E. Leiserson, "Algorithms for VLSI processor
arrays," in Introduction to VLSISystems, C. Mead and L. Conway
(Eds.), Reading, MA: Addison-Wesley, pp. 271-292, 1980~

3. C. Van Loan, Computational Frameworks for the Fast Fourier
Transform, Philadelphia, PA: Society for Industrial and Applied
Mathematics, 1992.

4. A.L Fisher and H.T. Kung, "Synchronizing large VLSI proces-
sor arrays," IEEE Transactions on Computers, Vol. C-34, pp.
734-740, 1985.

5. R. Gupta, R. Gupta, and M.A. Breuer, "The BALLAST method-
ology for structured partial scan design," IEEE Transactions on
Computers, Vol. 39, pp. 538-544, 1990.

6. K. Yamashita et al., "A wafer-scale 170000-gate FFT processor
with built-in test circuits," IEEE Journal of Solid-State Circuits,
Vol. 23, pp. 336-342, 1988.

7. J. Choi and V. Boriakoff, "A new linear systolic array for FFT
computation," IEEE Transactions on Circuits and Systems I1:
Analog and Digital Signal Processing, Vol. 39, pp. 236-239,
1992.

8. V. Boriakoff, "FFT computation with systolic arrays, a new ar-
chitecture," IEEE Transactions on Circuits and Systems--ll:
Analog and Digital Signal Processing, Vol. 41, pp. 278-284,
1994.

9. M. Aloqeely and C.Y. Chen, "Sequencer-based data path syn-
thesis of regular iterative algorithms," Proc. 31st ACM/IEEE
Design Automation Conf., pp. 155-160, 1994.

10. D.-M. Kwai and B. Parhami, "A data-driven control scheme for
linear processor arrays," Submitted for publication.

11. H.L. Groginsky and G.A: Works, "A pipeline fourier transform,"
IEEETransactionson Computers, Vol. 19, pp. 1015-1019, 1970.

12. S. Sarkar and A.K. Majumdar, "Fast fourier transform using
linear tagged systolic array," IEEE Region 10 Conf. Computer
and Communication Systems, pp. 289-293, 1990.

13. D. Audet, Y. Savaria, and N. Arel, "Pipelining communications
in large VLSI/ULSI systems," IEEE Trans. Very Large Integra-
tion (VLSI) Systems, Vol. 2, pp. 1-10, 1994.

14. M.O. Ahmad and D.V. Poornalah, "Design of an efficient VLSI
inner-product processor for real-time DSP applications," IEEE
Transactions on Circuits and Systems, Vol. 36, pp. 324-329,
1989.

15. S.Y. Kung, "On supercomputing with systolic/wavefront array
processors," Proceedings IEEE, Vol. 72, pp. 867-884, 1984.

16. S.Y. Kung, VLSI Array Processors, Englewood Cliffs, NJ:
Prentice-Hall, 1988.

Ding-Ming Kwai received the B.S. degree from the National Cheng
Kung University, Tainan, Taiwan, in 1987, and the M.S. degree
from the Institute of Electronics, National Chiao Tung University,
Hsinchu, Taiwan, in 1989. He was with the Chung Cheng Institute
of Technology, Taoyuan, Taiwan, as a reserve officer from 1989 to
1991 and with the Hualon Microelectronics Corporation, Hsinchu,
Taiwan, as a design engineer from 1991 to 1993. He is currently pur-
suing the Ph.D. degree in Computer Engineering at the University
of California, Santa Barbara. His research interests include parallel
processing, VLSI architectures, and fault-tolerant computing.

Behrooz Parhami received the Ph.D. degree from University of
California, Los Angeles, U.S.A., in 1973. During his 14-year af-
filiation with Sharif University of Technology, Tehran, Iran, he car-
ried out research in several areas of computer architecture and was
also instrumental in national projects in technology transfer, educa-
tional planning, curriculum development, and standardization. He
was the principal founder of the lnformatics Society of Irma and
served as its first President and Editor-in-Chief for 5 years, while
at the same time guiding the IEEE Iran Section through a turbulent
decade. Since 1988, he has been Professor of Computer Engineering
at University of California, Santa Barbara, with research interests in
computer arithmetic, parallel processing, and fault-tolerant comput-
ing. His current projects in these areas emphasize architectures and
algorithms for scalable massively parallel systems and their VLSI
implementations. Dr. Parhami is a Fellow of the British Computer
Society, a Senior Member of IEEE, a Distinguished Member of the
Informatics Society of Iran, and a Member of the Association for
Computing Machinery. He received the IEEE Centennial Medal in
1984.

