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Abstract. For a large number N of data points, linear FFF arrays consisting of | 2 N) processors provide 
significant economy in hardware. In this paper we discuss the radix-2 decimation-in-frequency Cooley-Tukey 
algorithm implemented on linear arrays, thereby allowing a continuous real-time application using a word-serial 
input data stream to the linear arrays. In order to avoid memory access and data path switching under central control, 
we present a novel data-driven scheme permitting the proposed linear arrays to correctly operate on arbitrarily 
arriving signal sequences. This distributed control scheme incorporates a control signal propagated with the data 
signals, in the form of a tag attached to data items. The tag provides control information to initiate the access to the 
memory containing the coefficients and to select an appropriate data path so that regular data flow can be achieved 
within the linear array. The cascade structures are well suited for the computation and can operate in pipeline 
fashion at extremely high data rates. The proposed data-driven control scheme can be used with both synchronous 
and asynchronous (wavefront) processor arrays. 

1. Introduction 

The Discrete Fourier Transform (DFT) is widely used 
in digital signal processing and its realization in hard- 
ware has been proposed by many researchers (See, 
e.g., [1]). For an input signal sequence x = [x(0), 
x(1) . . . . .  x(N - 1)] ~r and its transformed versiony = 
[y(0), y(1) . . . . .  y(N - 1)] T, the N-point DFT can be 
written in matrix form as 
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where the entries of the N x N matrix W are defined 
by [W]ij = o)~ (0 < i, j < N - 1) with O) u being the 
primitive Nth root of unity. Implementation in pipeline 
fashion is a natural extension for the on-line DFT com- 
putation. Kung and Leiserson [2] thus suggested an ar- 
ray of inner-product-step processors connected linearly 
for a direct matrix-vector multiplication. Approaches 
along this line, however, are limited by their O(N z) 
operation count and generally lead to a total number 

(N) of processors; implementation cost thus grows 
at least linearly with N. 

Fast Fourier Transform (FFT) algorithms based on 
sparse factorization of the DFT matrix W lead to more 
efficient implementations. Suppose that the number 
N of sampled points is initially (or is adjusted up- 
wards to) an integer power of 2, i.e., N = 2 n. We 
can decompose the matrix W into a product of sparse 
matrices, Wn---WzW1,  where each Wi(1 < i < n) 
has exactly two nonzero entries per row. We then re- 
quire only O(N log 2 N) operations by exploiting the 
sparsity of Wi. Different FFT algorithms have been 
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Figure 1. Butterfly FFT network�9 

developed to operate on different arrangements of data 
items by using the particular properties of Wi [3]. Al- 
though our scheme applies to other cases as well, the 
radix-2 decimation-in-frequency Cooley-Tukey algo- 
rithm is discussed here due to the fact that a continuous 
real-time application is allowed by its word-serial input 
data stream. This arrangement permits data items to be 
processed in the order of arrival without requiring the 
inputs to be reassembled into a stream of consecutive 
data items�9 A signal flow graph for computing 8-point 
decimation-in-frequency FFTs is given in Fig. 1. Be- 
cause of the bit-reversed order, the output vector y and 
the DFT matrix become 
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In this paper, we will focus on linear FFT ar- 
rays consisting of | 2 N) processors. For a large 
number N of points, these implementations provide 
significant economy in hardware. Advantages of linear 
arrays include low interconnection density for VLSI 
layout, bounded I/O requirements, ease of global clock- 
ing in the presence of signal propagation delays [4], 

and amenability to (partial) scan design [5] to pro- 
vide good controllability and observability for testing 
purposes. 

2. Space-Time Mapping 

A straightforward way of implementing an FFT net- 
work is derived directly from the flow graph of the 
algorithm. A fully parallel log2N-stage network, each 
stage consisting of N / 2  butterfly processors, can be 
obtained (see Figs. 1 and 2). There are two types of 
operations in these networks�9 One is a butterfly opera- 
tion, in which pairs of processors exchange data items 
and compute weighted sums and differences of the data 
items exchanged. The other is a permutation operation 
that alters the order of data items to one that is lexically 
ascending. It is usually achieved by interconnections 
among processors. 

- - i  

a a + b  

Figure 2. Butterfly processor (B). The square box R represents 
one word of storage. 
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In what follows, the butterfly processors will be as- 
sumed to have bit-parallel inputs; i.e., all the bits of the 
two operands a and b in Fig. 2 arrive simultaneously. 
Since our array designs have only one primary input 
and one primary output, the I/O requirements are mod- 
est and well within the packaging constraints of current 
VLSI technology. Similarly, with multiple processors 
placed on a chip, the area overhead due to bit-parallel 
inter-processor links is not a major concern in view of 
their regularity and locality. 

In terms of matrix factorization, the implementation 
is derived by decomposing the DFI" matrix W into a 
product of sparse matrices Wi (1 < i < log 2 N), each 
corresponding to one stage of the butterfly network. 
Pairs of nonzero entries in rows and in columns of Wi 
are separated by 2 n-i - 1 zero elements. Additionally, 
nonzero elements appear on only three diagonals of 
Wi. Since always two input data items are used to com- 
pute two output data items simultaneously, the network 
combines the two input data items in parallel through a 
butterfly processor. Consequently, N/2  butterfly pro- 
cessors are required at each stage. As an example, an 
8-point decimation-in-frequency DFT matrix W can 
be decomposed into a product of three sparse matrices 
Wl, W2, and W3, such that W = W3W2Wl ,  where 
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Considering the total of (N/2) log  2 N processors 
and 2N I/O ports, a feasible realization of the butterfly 
FFT network in hardware is limited to small N, say 
N = 8 [6]. Such a parallel design is clearly impracti- 
cal when the number of data points becomes very large. 
Most FFT array designs reallocate and reschedule the 
operations in the butterfly network onto a smaller num- 
ber of processors. This can be viewed as a space-time 
mapping of the flow graph. One possibility is to map 
the log 2 N stages onto log 2 N processors [7]. Another 
approach is to decompose the multiply-subtract-add 
(butterfly) operation in each processor into two sep- 
arate multiply-add (inner-product-step) operations [8]. 
As we will see in Section 4, the decomposition actu- 
ally creates three, instead of two, inner-product-step 
processors per stage. 

The rescheduling induces additional storage (in the 
form of shift registers) inserted between processors 
along the signal lines to regulate the pipelined com- 
munications. The overall cost is therefore determined 
by two important elements in such a design: the com- 
putation modules and the additional storage. The coef- 
ficients co~v are assumed to be stored in a circular queue 
[9], or are located in a memory, with a counter linked to 
the global clock determining the address before starting 
the computation. Extending the design to a larger num- 
ber of data points may be based on reusing the same 

i hardware, although the memory containing the to N co- 
efficients should be large enough for such an extension. 

An important issue in the pipelined design is that 
the coefficient memory must be initialized to the start- 
ing address with the arrival of each new input signal 
sequence. In view of the periodic resetting feature of 
shift registers and binary address counters, this will not 
cause any problem as long as input sequences are con- 
tinuously fed to the FFT array. However, when input 
sequences are separated by arbitrary gaps, or idle cy- 
cles, it may not be desirable to wait until the current 
sequence is completely flushed out and then resetting 
the entire array. 

In order to avoid the complexity and added delay of 
data path switching under central control, we propose a 
data-driven scheme that allows simple control and pro- 
vides scalability for the structures. The basic idea of the 
distributed scheme is to incorporate a set of control sig- 
nals, propagated with data signals, in the form of a tag 
attached to the data items [10]. This control tag is then 
used to activate the counter of the coefficient memory 
and/or to select an appropriate processor state, hence 
leading to regular data flow within the linear array. We 
apply the idea of distributed or data-driven control to 
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two different cascade implementations in Sections 3 
and 4, briefly comparing the two in the concluding 
Section 5. 

3. Feedback Linear Array 

The design proposed by Groginsky and Works in 1970 
[11] is derived by vertically projecting the FFT flow 
graph. Figure 3 shows the space-time diagram for com- 
puting 8-point FFTs, in which nodes represent butterfly 
operations scheduled at each processor and edges rep- 
resent interconnection paths with delays required for 
data items to move to the next processor. The nodes 
are arranged in such a way that the causality require- 
ment can be satisfied, meaning that an outgoing data 
item from a node takes at least one time step to reach the 
next node and two incoming data items (from different 
nodes) used at the same node arrive simultaneously. 

As we can See in the space-time diagram, there are 
only two input patterns for each processor. For exam- 
ple, the first and the second nodes in the central column 
(corresponding to processor P2) receive one input data 
item delayed by two additional time steps and the other 

PI 
x(O) 
x ( 1 )  

x(2) 
x(3) 
x ( 4 )  

x(5) 
x ( 6 )  

x ( 7 )  

0 
1 
2 

3 

4 
5 

6 
7 

8 
9 
10 

11 

12 

13 

14 

15 

16 

Time step 

Figure 3. Space-time diagram for the feedback FFT linear array. 

without any delay, while the third and the fourth nodes 
in the same column receive one input data item delayed 
by six time steps and the other by four time steps. 

An interesting feature of this design is that the shift 
registers used to delay the input data items can be reused 
for the generated data items. The data path is estab- 
lished by a 2-state switch appended to each butterfly 
processor as shown in Fig. 4. In the "through" state, 
the processor performs the butterfly operation on the 
input data items received from its primary input and 
the shift register; two output data items are sent, one to 
the next processor and the other back to the shift reg- 
ister. In the "cross', state, the processor feeds the input 
data item directly to the shift register while forwarding 
the stored output data item from the shift register to the 
next stage. The pipelining operation can be regarded 
as two phases of processor activities: computation and 
transmission, interleaved in consecutive time steps. 

The linear array is constructed as follows. One of the 
two outputs of each butterfly processor is connected to 
the input of a shift register of appropriate length. The 
shift register's output is connected to one of the butter- 
fly processor's inputs, thus forming a feedback loop. 
The remaining primary input and output of the butterfly 
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Figure 4. Butterfly processor augmented with data path selection 
logic. 

processors are used to connect the latter into a linear 
array. The feedback linear array for computing 8-point 
FFTs is shown in Fig. 5. The length of the shift register 
forreach processor Pi is 2 n-i  which corresponds to the 
distance (difference of indices) between two input data 
items entering the same node in the flow graph or in 
the same row of the sparse matrix Wi. 

It is clear from the space-time diagram that the uti- 
lization of the butterfly processors is only 50%. Op- 
erationally, this is not a serious drawback since the 
pipelined operation and throughput are maintained. 
On the other hand, most concurrent error-detecting 
schemes actually take advantage of the idle time steps 
to do a duplicate computation for on-line testing. Thus, 
the above structure can use the excess node capacity to 
perform the duplicate computation efficiently. 

A drawback of this structure, as originally proposed, 
is that the control of the switch and the address counting 
to access the coefficient memory require a central con- 
troller. The central controller becomes a bottleneck that 
may limit the scalability and speed of the linear array. 

The problem can be avoided by appending a ("rout- 
ing") tag [12] to each data item, thereby allowing a 
processor to perform its operation based on the control 
information provided by the tag. We can assign a tag 
bit "0" to instruct the processor to switch to the "cross" 
state and a tag bit "1" to switch to the "through" state. 
Note that the processor performs a butterfly operation 
only when its switch is in the "through" state. 

The tag assigned to each data item is simply its se- 
quence number (i.e., 0, 1 . . . . .  N - 1 in binary form). 
Therefore, for an N-point FFT, tog 2 N bits are needed 
to encode the control information. We can further di- 
vide the control information into two fields: the most 
significant bit is used to select the data path which is 
either "cross" or "through" and the remaining bits are 
used to address the coefficient memory. By observing 
the flow graph in Fig. 1, it is clear that for processor Pi 
the size of the memory is 2 n-i (which is equal to the 
length of the shift register); thus, n - i bits are sufficient 
to address the memory. To achieve this, we remove the 
most significant bit after the processor has generated 
the output data items and append the resulting tags to 
the generated data items. The operations performed 
by the processor are then determined solely by the tag 
received from the primary input. 

Figure 6 shows the timing table corresponding to an 
8-point FFT under such a control scheme. The timing 
table contains data items with tags at each location of 
the linear array, the time steps increasing from top to 
bottom. The intermediate signal sequences are shown 
a s X  = WlX, g = W2X, andy = W3Y. To make 
the two phases of operation distinct, we have shaded 
the generated data items in the shift registers. Each 
processor waits until it receives an input data item with 
the most significant tag bit equal to 1 and then performs 
a butterfly operation using the coefficient co~ selected 
by the remaining tag bits. The two generated data items 
are given tags that are obtained from input tags with the 
most significant bit removed. A data item with a small 

Pl P2 P3 

Figure 5~ Feedback linear array, for computing 8-point FFTs. The butterfly processors B are augmented with data path selection logic. Each 
square box R represents one word of storage. 
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Timing table for computing 8-point FFTs on the feedback linear array. 
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sequence number is sent directly to the next processor 
to the right while a data item with a large sequence 
number is fed back to the shift register. The stored data 
items are then propagated to the primary output and the 
lexically ascending order of data items is maintained. 

An elegant feature of this control scheme arises from 
the fact that each processor performs the butterfly op- 
eration only when it receives a tag with the most sig- 
nificant bit equal to 1. Thus if we set all the tag bits to 
0, the shift registers naturally form a scan path, mak- 
ing it easy to incorporate a built-in self-test (BIST) 
mechanism into the linear array [6]. Equally simple 
is the insertion of an arbitrary number of dummy data 
items between two input signal sequences with all tags 
set to 0. This is of great value when input signal se- 
quences are separated in time, since regardless of the 
inter-sequence gaps, the FFTs are computed correctly 
without mutual interference. 

4. Concatenated Unidirectional Linear Array 

Boriakoff [8] has recently proposed a concatenated 
structure consisting of log 2 N (one uni-directional and 

log 2 N - 1 bidirectional) linear arrays of inner-product- 
step processors which takes advantage of the sparsity 
of decomposed matrices in a different way. As noted 
in Section 2, the nonzero entries of each sparse matrix 
are located on three diagonals and this leads to the re- 
quirement for three inner-product-step processors per 
stage. In a manner similar to pipeline chaining in vec- 
tor processors, the design cascades the linear arrays, 
each performing a matrix-vector multiplication, such 
that the output of one linear array is fed to the input of 
the next array. Here, we adopt the same decomposition 
technique, but make all linear arrays unidirectional as 
shown in Fig. 7. Figure 8 shows the space-time dia- 
gram for computing 8-point FFTs. 

Recall that pairs of entries in the sparse matrix Wi 
are separated by 2 n-i places in both row and column 
dimensions. The linear array for the multiplication 
of Wi correspondingly contains 2 n-i delay elements 
(registers) between a pair of processors in order to 
regulate the arrival time of input data items. Use of 
unidirectional linear arrays provides the added flexi- 
bility of being able to insert additional registers in the 
signal lines between processors without affecting their 
schedules. These registers, functioning as repeaters in 
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Figure 7. Concatenated unidirectional linear array for computing 8-point FFTs. Segments consisting of three inner-product step processors 1 
are connected in a snakelike arrangement. Each square box R represents one word of storage. 
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Figure 8. Space-time diagram for the concatenated unidirectional FFT linear array. 
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Figure 9. Inner-product-step processor (I). 

pipelining communication, help improve the transmis- 
sion rate when long inter-chip or off-chip interconnec- 
tion wires are required [13]. More importantly, as we 
will see later, the structure can be driven by a simple 
control scheme. 

An inner-product-step processor that computes 
Yout = co~v • xin +yin is shown in Fig. 9, where the three 
inputs co~v, Xin, and Yin are complex numbers stored in 
registers actuated by a global clock signal The value 
Of Xout is the same as Xin; hence, this value simply prop- 
agates forward in each segment's shift registers. The 
hardware cost for three inner-product-step processors 
is higher than that for a single butterfly processor, con- 
sidering the number of complex multiplier and adder 
modules used (the disparity is somewhat reduced if we 

use an array implementation combining the multipli- 
cation and addition operations [14]). The significant 
difference is due to the property co~ = --CON +N/2 that 
results in only one complex multiplication (by o~)  in 
the butterfly processor. The same butterfly computa- 
tion turns into four complex multiplications (by 1, 1, 
co~, and CON +N/2) and is computed at three different 
inner-product-step processors in the unidirectional lin- 
ear array. Unlike the butterfly processor, the two multi- 
plications by 1 do not correspond to any saving in hard- 
ware, given the path through which data must travel. 

We next apply our data-driven control scheme to the 
unidirectional linear array. The tags are used to access 
the coefficient memory, since no data path switching is 
necessary in this structure. The size of the memory for 
each processor Piy(1 < i < n, 1 < j < 3) atsegmenti 
is 2 n-i+l . The memory containing the coefficients can 
be implemented as a circular queue or as an address- 
able memory with a counter. The control information 
in the tag is used to reset the counter to its starting 
value. The timing table in Fig. 10 shows the execution 
sequence for the computation Y = W2X that occurs 
in the middle segment of Fig. 7 (where the tag is at- 
tached to the output data stream I0. Because they share 
the same construction, the top and bottom arrays have 
similar operations. We can assign a tag bit 1 to reset 
the counter and a tag bit 0 to increment the counter by 
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Figure 10. Timing table for computing Y = W2X on the middle segment of the unidirectional linear array. 
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one. The tag bit stream (1 followed by 2 n - i + l  - -  1 0s) 
is propagated through the linear array and inserted ev- 
ery 2 n - i + l  cycles. The three inputs CO~v, xin, and Yin for 
each inner-product-step processor are placed together 
in the same column. 

Note that the tag bit 1 also indicates the arrival of a 
new signal sequence. If the next input signal sequence 
is delayed, we may insert dummy data items (with "0" 
tags attached) to the linear array. The processor does 
not reset the memory counter until a tag "1" appears. 
Once the input signal sequence arrives, the tag bit 1 
propagates along the linear array and resets each mem- 
ory counter in a pipeline fashion. 

5. Conclusions 

FFT arrays are generally treated as special-purpose en- 
gines which contain processors, memories, and com- 
munication links. Previous designs addressed the issue 
of how to connect processors with a suitable number of 
delay elements in the communication links; however, 
they tended to leave the problem of memory access or 
data path switching to an unspecified controller. When 
two sequences coexist in the same array, the memory 
access and data path switching scheme must remain 
correct for each of them. Hence, the task of the con- 
troller may not be trivial, especially for real-time ap- 
plications. 

In this paper, we have presented two linear array 
structures for computing N-point FFTs based on sparse 
factorization of the Cooley-Tukey matrix. In order to 
avoid memory access and data path switching under 
central control, we proposed a data-driven scheme al- 
lowing the linear arrays to be controlled simply and 
precisely. The basic idea of the distributed scheme is 
to incorporate a set of control signals, in the form of a 
tag attached to the data items, that propagates with data 
signals. The control tag is used to access the appropri- 
ate element of the memory containing the coefficients 
and/or to direct the processor to a desirable state so 
that regular data flow can be achieved within the linear 
a r r a y .  

The hardware cost and performance of these two 
implementations are summarized in Table 1 .  For 
N = 1024, the feedback linear array requires 10 but- 
terfly processors and 10 tag bits to set the data path 
and to address the coefficient memory. The storage 
requirement for both the shift registers and coefficient 
memories is 1023 words. The delay time from input 
to the emergence of the first transformed data is 1033 

Table 1. Hardware  cost and  per fo rmance  o f  two FFT arrays.  

Conca tena ted  

Feedback  unidirect ional  

l inear a r ray  l inear  ar ray 

Number  of  processors  log 2 N (B)  3 log 2 N ( I ) 

Number  o f  tag  bits log 2 N 1 

Size of  s torage N - I 2 ( N  - I) 

Size o f  coefficient memory  N - 1 6 (N  - 1) 

Delay  t ime to first result  N + log 2 N - 1 N + 3 log 2 N - 1 

La tency  o f  complet ion 2 N  + log 2 N - 2 2 N  + 3 log 2 N - 2 

time steps. The latency for the whole transform is 2056 
time steps; only 50% of these steps are used for com- 
putation. The concatenated unidirectional linear array, 
on other hand, requires more (30) inner-product-step 
processors but only ! tag bit to activate the circulat- 
ing coefficient memory. The storage requirement for 
the shift registers and the coefficients is higher (2046 
words and 6138 words, respectively). It also implies 
slightly longer delay and latency (1053 time steps and 
2076 time steps, respectivelY). The advantages of the 
concatenated:structure lie primarily in simple control 
mechanism and ease of expansion. 

Obviously, introduction of fault tolerance capabil- 
ity into the FFT arrays is also important. We have 
examined some possibilities for incorporating built-in 
testing and concurrent error detection for a feedback 
linear array. Intuitively, the unidirectional data flow 
of the concatenated linear array design simplifies the 
provision and analysis of fault tolerance mechanisms, 
since any permanent or extended transient fault is exer- 
cised only once and thus is likely to have a much more 
localized effect. However, comprehensive treatments 
of error detection, location, and reconfiguration issues 
remain for future research. 

in closing, we note that our data=driven Control 
scheme can be used with synchronous systolic arrays 
[2] or their asynchronous counterparts known as wave= 
front arrays [15, 16]. Wavefront arrays are also "data- 
driven". However, the data-driven aspect of Wavefront 
arrays only applies to the activation of processors; i .e '  
it is the availability of input data, rather than the ris- 
ing or falling edge of a clock signal, that triggers the 
processor's computation. Our method of embedding 
instructions within the data stream augments the above 
capability of wavefront arrays and can also be applied, 
with equal ease, to synchronous systolic arrays. The 
examples presented in this paper involved linear arrays 
in which the single input data stream carried the needed 



66 Kwai and Parhami 

instructions. With multi-dimensional arrays, or multi- 
ple data streams within linear arrays, the instructions 
can be encoded in various ways by attaching suitable 
indicators or tags to the various data streams. The resul- 
tant optimization problem to obtain the most efficient 
tagging scheme is quite interesting [10]. 
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