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Abstract: Voting on large collections of input objects
is becoming increasingly important in data fusion,
signal and ima%e processing, and distributed computing.
To achieve high speed in voting, the multiple processing
resources typically available in such applications should
be utilized; hence the need for parallel voting algorithms.
We develop efficient parallel algorithms for threshold
voting which generalize and extend previous work on
both sequential threshold voting and parallel majority
voting. We show how a well-known O(n)-time
sequential aigorithm for m-out-of-n voting can be
parallelized through a simple divide-and-conquer strategy.
When m = 6(n), the resulting algorithm has O(log2 n)
time complexity on PRAM and hypercube computers
and optimal O(nl/k) complexity on a k-dimensional
mesh-connected architecture. ‘We also analyze the time
complexity of the algorithm in the case of m = o(n) and
for certain weighted threshold voting schemes.

Keywords: Data fusion, Dependable computation,
Distributed processing, Majority voting, Multi-channel
computation, Parallel complexity, Voting schemes.

1. Introduction

Voting has long been an important operation in the
fusion of data originating from multiple sources and
in the realization of ultrareliable digital systems
based on multi-channel computation [20]. In data
fusion, voting is a possible way of combining
diverse data provided by multiple sources (such as
sensors) whose outputs may be erroneous,
incomplete, tardy, or totally missing. In ultrareliable
systems, voting is required whether the multiple
computation channels consist of redundant
hardware units, diverse program modules executed
with common data on the same basic hardware,
identical hardware and software with diverse data,
or hybrid combinations of hardware/ program/data
redundancy and/or diversity.

Whereas traditional applications of voting have been
limited to processing a small number of simple input
objects (typically bits or numerical words), newer
applications involve both larger input sets and more
complex input objects. Examples include fusion of
data originating from a large number of sensors [8],
[20], [{21], image processing filters which smooth
digital pictures by voting on neighborhoods [2],
and certain configuration control, bookkeeping, and
diagnostic functions in parallel and distributed
systems [5], {12], [22].
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Hence, the efficiency of voting algorithms (both
time and space complexity) are becoming important.
Previous works on this aspect of voting have been
limited to efficient sequential majority voting
algorithms [1], [7], [13], sequential threshold
voting 3], and parallel majority voting [10]. In all
cases, simple unweighted voting has been assumed.
We have previously extended these efficient
threshold voting algorithms to the weighted case in
the context of a comprehensive study of voting
schemes [15], [16], [17], [18]. In this paper, we
generalize and extend the above to efficient parallel
m-out-of-n threshold voting algorithms.

The rest of this paper is organized as follows.
In Section 2, we define the scope of the voting
schemes that are of interest in this study. Section 3
contains a review of a voting algorithm that can be
used for weighted or unweighted threshold voting
with equal efficiency. In Section 4, we show how
the unweighted m-out-of-n version of the above
algorithm can be parallelized based on a simple
divide-and-conquer strategy. Sections 5 and 6
contain discussions of the complexity of our parallel
m-out-of-n threshold voting algorithm for m = &(n)
and m = o(n), respectively. Section 7 deals with
modifications required in the algorithm, and the
associated complexity issues, for weighted voting.
We conclude, in Section 8, with a summary of our
contributions and directions for further research.

2. Threshold Voting Schemes

In order to facilitate and systematize the study of
voting schemes, we have previously categorized
them according to implementation in hardware or
software (voting networks [14] or voting routines)
and based on the size and structure of the input
object space (see Figure 1). A voting algorithm [18]
specifies how the voting result is obtained from the
input data and may be the basis for designing a
voting network or a voting routine.

As shown in Figure 1, the input objects to be voted
upon can be atomic or composite. Composite
objects, consisting implicitly or explicitly structured
collections of atomic objects, have not received due
attention in previous works on voting. With atomic
objects, the input object space can be small or large.
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For small object spaces, further classification is
unimportant, as they always lead to very simple and
efficient voting algorithms. For large object spaces,
whether or not a distance metric can be defined, and
as a special case, if the objects can be ordered, is
important. Finally, for an unordered space, voting
algonlhrns tend to be less complex if the notion of

“support”, as discussed in Definition 2.1 below, is
transitive (i.e., if X supports Y and Y supports Z
together 1mp1y that X supports Z).

Object Space
Ammit@ }posite Objects
Smail Space Large Space
Metric Space/ }Oﬁl Space
Binary Tf:tally| Ordered Tranﬁ ;n\-Transitive
{bits) {e.g., numbers) “Support” "Support”

Figure 1. Voting scheemes classified according
*td the object space size and structure.

vagure 2 shows an example of composite data
"1 objects that might be used in voting. The objects

X1, X2, X3, X4 depicted in Figure 2 are infinite sets

“of numbers defined by the four closed intervals
[11, hI]! [12, h2], [13, h3], [14, h4] on the real line.
The voting algorithm may depend on the semantics
attached to these intervals and on application
requirements. For example, if the intervals are
considered as different views of the safe operating
range for some physical parameter in a critical
system, then the interval [/,, h4] may be taken as the
voting outcome in view of its unanimous
designation as being safe. If one of the evaluators
(combination of sensors and decision logic) fails so
that its' corresponding interval is “way off”, then
majority consensus can still be reached.
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_ Figure 2. Voting with composite data objects
represented as intervals on the real line.

To' accommodate all voting schemes of interest,
mcludmg those dealing with composite data objects,
we present the following general definition of
weighted threshold voting.

2.1. Definition (weighted threshold, yoting):
Given n input data objects xy, xa, . . ., X,, and
their associated non-negative real votes (we1ghts)
Vis Vo, ..., V,, with 2.1 vi=V, it is required to
compute the output y and its vote w such that y is
“supported by” a number of input data objects with
votes totaling w, where w satisfies a condition
associated with the desired voting subscheme;
e.g., w >V/2 for majority voting, w >2V/3 for
Byzantine voting, and w 21t for t-out-of-V
(generalized m-out-of-n) voting. Note that for
t-out-of-V voting with ¢ £ V/2, or its special case of
m-out-of-n voting with m < n/2, the output may be
non-unique. In such cases, arbitrary selection of y
from among valid outputs is assumed. Il

The term “supported by”, which accounts for the
generality of Definition 2.1, can be defined in
several ways, leading to different voting' schemes.
With exact votmg, an input x; supports y iff x; = y.
With inexact voting, approx1matc inequality (:) is
defined in some suitable way (e.g. by providing a
comparison threshold € in the case of numerical
values or, more generally, a distance measure d in a
metric space) and x; is said to support y iff x; = y.
With approval voting, y must be a subset of the
approved set of values that x; defines using some
suitable encoding of the sets (e £, bxt-vectors lists,
or intervals).

We get m-out-of-n voting as a special case of the
weighted threshold voting of Definition 2.1 by
letting vy =vy =...=v,=1 and t=m. Majority
voting is obtained if we further restrict m to
(n+ 1)/2. For m > n/2 + 1, stronger agreement is
required (super-majority), whereas in' the case of
m < nf2 weaker agreement is prescribed, potentially
leading to multiple correct outputs. It is thus seen
that Definition 2.1 covers a wide array of voting
schemes of common interest.

We will not use Definition 2.1 in its full generality
but will deal primarily with exact voting schemes.
However, the general definition is crucial for
understanding the limitations of our algorithms and
for their future extensions. In most practical
applications of m-out-of-n voting, the magnitude of
m is comparable to n; i.e., m = &n). We will give
this important special case, as well as the further
restricted case of n —m = O(1) special attention.
All logarithms in this paper are base-2. -

3. Sequentiélt Threshold Voting

When the input object space is totally ordered,
sorting can be used:to obtain an O(n log n)
sequential algorithm for weighted threshold voting
(assuming, of course, that the relative order of two
objects can be established in constant time). This
approach applies with equal efficiency to exact and
inexact voting. If the input object space is small,
say of size 0, then tallying of votes for each
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possible object (akin to tallying of votes for a small
number of candidates in an ¢lection) can be used to
obtain an O(né)-time algorithm, leading to linear
time for any fixed 8. The remaining questions are
then: (1) Can one do better than O(n log n) for th

reshold voting with a large space? (2) What if
the object space is unordered, allowing only
comparison for equality among objects?

The following algorithm that has been adapted from
the unweighted version in [3] provides answers to
both questions. It has a time complexxty O(np) and
‘requires working space for only p input objects,
where p =LV/tl. Thus, when 1 is comparable to V
in magnitude (as in majority voting), p is a small
constant and the algorithm needs linear time and
constant working space. On the other hand, for
small values of ¢, the performance deteriorates to
quadratic time and linear working space. The latter
results are consistent with those of plurality voting
“under similar conditions.

Since for small 7, we have p = O(V), one may think
that in this case, the algorithm has time comglexity
O(nV) which may be much greater than On4). To
prove worst-case quadratic time complexity, let the
largest input vote be vinax. FOr ¢ € vy, t-out-of-V
voting becomes trivial since any input object with
vote no less than ¢ is a valid output. The possibility
of checking the condition f € vj,x in linear time and
the fact that for ¢ > Vmax We have V/t < n, prove the
worst-case quadratic time complexity. In sorne such
cases, it may be advantageous to use an O(n? ) time
plurality voting algorithm to identify a maximum-
vote object. The derived vote for this object can
then be compared to ¢ to decide on the output.

The special case of V -1 = O(vyi,), subsuming
unanimity voting with 7 =V, (n — g)-out-of-n voting,
and the like, allows the use of a conceptually
.. simpler algonthm which consists of identifying an
arbitrary, constant-size, subset of inputs whose vote
total exceeds V 1z (perhaps including the maximum-
_ vote input in the set in order to minimize its size),

tallying the votes for each member of the set in O(n)
time, and doing a final selection in this small set.

3.1. Algorithm (sequential exact threshold voting
for large unordered object space): We need working
storage space or “slots” for p = V/t} different inputs
objecty, objects, . . ., object,, with each object;
having an associated vote total zally,.

1. object; :=xy; tally, :=vy; tally;:==0(2<j<p)

2. fori =2 to ndo {process the remaining n — |
input objects}

if 3 j such that x; = object; with tally; #0
then tally; := tally; +v;
else if 3 j with rally; =0 {an empty slot?})

then object =x;; tally; :=v;
{save i mput object i i empty slot}

TON W B

7. else let min = tally, be a minimum
of all rallys (1<j<p)
8. if v, <min
9. then tallyj = tally]- -v;(1<j<p)
10. else objecty = x;; tally, :=v;;
tally; = tally; —min (1<j<p)
11. endif
12. endif
13.  endif
14. endfor

i5. tallyj =0(1<j<p)
16. fori=1tondo
17.  if 3j such that x; = object;

18.  thenlly; = tally +vg;iftally; 2t
then output object and stop endif

19.  endif
20. endfor §

Following is a textual description of Algorithm 3.1.
The first input object and its associated vote are
stored in the first slot and all other rally;s are
initalized to 0, thus designating the remaining p — 1
slots as empty (Line i). Input objects x3,...,Xn
are then examined in turn (Line 2). The next input
object x; to be considered is compared to the stored
ObJCCtS (Lme 3). If x; = object; for some J then
tally; is incremented by v; (Line 4). If x; is not
equaf to any object and fewer than p obJects have
been stored in the p slots, then (x;, v;) is stored in
an available empty slot (Line 6). If all p slots are
occupied, then the minimum vote tally min = tallyk
for the stored obJects is found (Line 7). If v; < min,
then the new input x; is discarded and all stored vote
tallies are rediced by v; (Line 9) If v; > min, then
all vote tallies are reduced by min and (x,, v; —min)
replaces one of the objects which is left with 0 vote
tally (Line 10). A second pass through the input,
comparing each x; to all object;s, tallying the actual
vote for each object;, and stopping as soon as some
tally reaches the thréshold ¢, completes the algorithm
(Lines 15-20). For proof of correctness see [17].

3.2. Example: Let the n object/vote pairs be
denoted as (x;, vp), i =1, 2, ..., n. Consider 6-way,
8-out-of-15 voting with vote weights 4,3,3,2,2, 1.
Take an instance of the voting problem with inputs
(4, 3), (B, 2), (B, 2),A,1,([C,3), (4,4 m
presentation or input order. Since V = 15,1 =

and p =115/8] = 1, a single working storage slot
(objecty, tally,) is requlred This slot will hold the
values (4, 3),(4, 1), B, 1), (), (C, 3),and (4, 1)
successively as we proceed through the steps of
Algorithm 3.1. Therefore, A is a candidate value

- for the voting result and a second pass’through the

input will yield its actual vote tally of 8 for
comparison with the threshold 8. §
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Since when only equality comparison is allowed for -

the input.objects the evaluation of the condition on
Line 3 of Algorithm 3.1 involves an O(p)-time
linear search, the overall algorithm time complexity
is O(np). With a totally ordered object space, the
linear search can be replaced by a (log p)-time
operation on a search structure such as a binary tree.

This would be beneficial only when p is relatively -

large. The resulting time complexity is O(n log p)
which would be comparable to O(n log n) for small
weights and thresholds. Note that, as written, the
above modifications to the search on Line 3 does
not reduce the algorithm complexity in view of the
implicit O(p)-time loops on Lines 7 and 10.
However, these O(p)-time loops can be removed by
keeping a second version of the list in total vote
order and by maintaining a “total vote reduction”
variable instead of actually modifying the p votes
each time. Hash coding may also be applicable for
certain types of input objects and input distributions
to reduce the search time to O(1) and the overall
time complexity to O(n) on the average.

4. Parallel m-out-of-n Voting

One can parallelize Algorithm 3.1 based on a divide-
- and-conquer strategy. In this paper, we deal with
' the unweighted case only (ie., vi=1,V=nt1=m)

~ and assume that n is a power of 2. Implications of

removing these assumptions will be discussed
briefly in Section 7. The two phases of the
algorithm (identifying up to p =Ln/m| candidates,
Lines 1-14, and selecting those candidates whose
vote total actually exceeds m, Lines 15-20) will be
merged in the following discussion in the sense that
once the p candidates have been identified, they

_carry with them their total vote tally from all inputs.
The second pass is thus not needed.

Let us divide the n inputs into two equal subsets
X1, X2, oo s X2 ANd Xp2415 Xnj242s « + o 2 Xpe
If an object is to have a total of m votes, it must
have at least m/2 votes in one of the two subsets.
Using the parallel threshold voting algorithm
recursively on each subset, one can identify p or
fewer candidates, along with their associated votes,
in each subset. Clearly, if m is even, then
m/2-out-of-n/2 voting leads to no more than
L(n/2)/(m/2)] = Ln/m] = p candidates. For odd m,
(m+1)/2-out-of-n/2 voting is performed on the two
subsets which again leads to no more than p
candidates. The remaining problem then is to merge
the two lists of up to p candidates into a single list
of p candidates, combining the votes of common
elements in the two lists and discarding some of the
lower-vote items along the way.

Let the two candidate lists be object;, objects, . . . ,
object, and object’y, object’s,.. . ., object’,.
Assume that the exact vote totals for each list are
also provided by the recursively called algorithm.
Let these vote totals be tallyy, tally,, . . ., tally,

~and rally’y, tally’s, . .

-, tally’,, respectively.
To find the exact votes associated with each object;
in the entire set of inputs, the vote total tally; for
object; in the first subset must be augmented with
corresponding votes from the second subset (and
similarly for object’;). Hence, the processors
computing the ebject; and object’; entities and their
associated vote totals within each subset must
exchange the two sets of results and proceed to
update the votes. Many algorithm details and their
time complexities depend on the particular model of
parallel computation assumed. These will be
discussed later. Once the two lists of size p along
with associated total votes are available, one can

. sort the combined list of size 2p by total votes,

remove duplicate elements (that are necessarily
adjacent in the sorted list), and keep up to p
elements whose total vote tallies are at least m.
The above discussion leads to the following high-
level description of the parallel m-out-of-n threshold
voting algorithm.

4.1, Algorithm (parallel exact m-out-of-n voting

- for large unordered object space): We need working

storage space or “slots” for 2p = 2/ n/mJ object-vote
pairs (objecty, tallyy), (objecty, tallys), ... .,
(objecty, tallyy) and (object’y, tally"y), (object’,
tallys), . . ., &bjem'p, tally’p) for each recursive
call. The final p candidates and their associated
votes will be returned in (objecr, tallyy), (objects,
tally), . . . , (objecty, tallyp).

1. Divide the inputs into two equal-size subsets

8 = {x1.X2, oo Xnp2}s 87 = {Xpp241 X242 -+ Xn}

2. Perform L(m+1)/2]-out-of-n/2 voting in
parallel on § and §', with results returned in
(objecty, tallyy), (objecta, tallys), ..., (objecty, tally,)
for § and (object’, tally',), (object'y, tally’), ...,
(object’y, tally’p) for §’, where each pair is an
object with associated total vote within its subset.

3. Exchange the two sets of resuits (object;,
tally;) and (object’;, tally’;) from Step 2 such that
processors that worked on § have access to the
results for §’, and vice versa.

4. Update the vote tallies tally"y, tally's; . . .,
tally’, by adding to each tally’; the votes of all equal
objects in §. Similarly, update tally, tally,, . . .,
tally, by incorporating the votes from §".

5. Sort each list in descending order of the vote
totals from all inputs (tallyy, tally, . .. , tally, or
tally’y, tally’s, . . . , tally’p).

6. Merge the object-vote pairs (object’y, tally'y),
(object’y, tallyy), . . . , (object’y, tally’y) into the
list (objecty, tallyy), (object;, talfyg), ..., (objecty,
tally,) , removing duplicate entries if any, until all p

“slots are occupied. Ignore any remaining object. 1
. The following example should clarify the algorithm.

4.2, Example: Consider 8-way, 3-out-of-8 voting
with equal vote weights. Take an instance of the
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voting problem with inputs A, A, DB, D,B,C,A, B
in presentation or input order. Since n = 8, m=3,
and p =18/3] = 2, four working storage slots,
(objecty, tally,), (objecty, tally,) for § = {A, A, D,
D} and (object’y, tally’)), (object’y, 1ally’;) for §" =
{B, C, A, B}, are initially required. These slots will
hold (4, 2), (D, 2) and (B, 2), (-, 0) following the
recursive calls in Step 2, indicating that A, D, and B
are possible candidates for the voting result in view
of getting at least 2 votes in one of the halves.
Exchanging the two lists of size 2 and adding in the
corresponding votes in the other half leads to the
updated lists (8, 2), (-, 0) and (A, 3), (D, 2).
Merging the two lists yields (4, 3), (-, 0), which
indicates that A with 3 votes is the unique answer.
The pair (-, 0) stands for a dummy or null entry in
an intermediate or final candidate list. R

In the special case of majority voting, the above
algorithm can be simplified and converted to a
variant of a previously published parallel majority
voting algorithm [10]. In majority voting, i.e. for
m = n/2 + 1, the recursive calls in Step 2 of
Algorithm 4.1 lead to a single candidate each, say
(objecty, tally;) and (object’y, tally'). The merging
phase (replacing Steps 3-6 in Algorithm 4.1) is now
quite simple. If object; = object’y, then the merge
result is easily obtained as (objecty, tally; + tally'y).
Otherwise, the object with the larger vote is the only
possible candidate for majority (equal votes imply
that there is no majority). Hence, the one candidate
for continuing the algorithm at the next level is
identified with a single comparison and there is no
need to tally the votes from the other half for each of
the two objects.

To see this, let tally; = n/4 + a and tally’y = n/4 + b,
with @ 2 b > 0. The maximum vote that object’y
(the object with the smaller vote) can get in the first
half is n/4 — a, since there are a total of #/2 objects
and objecty has n/4 + a votes. Thus the total vote
associated with object’t can be no more than n/4 + b
+ n/4 —a = n/2 — (a - b) which is less than majority.
Clearly, the above argument and the resulting
simplification also apply to super-majority threshold
voting schemes; i.e., the case of m > n/2 + 1.

5. Analysis for m = 6(n)

In this section, we first present a general analysis of
Algorithm 4.1 that includes among its parameters
the time to perform various key “building-block”
operations on the parallel architecture of interest.
We then derive exact complexities for several well-
known parallel architectures as examples. In what
follows, we will assume p =1n/m] to be a (small)
constant., This is consistent with most uses of
threshold voting in practice. The condition m = &(n)
- allows us to simplify the analysis by assuming that
p objects can be stored and/or manipulated in the
local memory associated with a single processor of
constant complexity.

Let T(n, p) be the time needed for m-out-of-n voting
for m = 8(n). Step 1 of Algorithm 4.1 takes
constant time since it only involves designating each
input object as a member of one or the other subset.
Step 2 takes T(n/2, p) time, assuming that each half
of the system has the same connectivity or
architecture as the entire system. This is the case in
virtually all parallel architectures of practical
interest. Let Te(p) be the time needed to exchange p
values between the two halves in Step 3. Similarly,
let T4(n/2, p), Ts(p), and Ty(p, p) be the vote
accurnulation, sorting, and merging times of Steps 4
through 6, respectively. With these assumptions,
the worst-case running time of the algorithm is
defined by the recurrence:

T(n, py = T(n/2, p) + TE(p) + Ta(n/2, p)
+ Ts(p) + Tu(p, p)

The following examples illustrate the actual time
complexity of Algorithm 4.1 for several well-
known parallel architectures. In all cases, multiple
processors are assumed to operate in SIMD mode
(under control of a single instruction stream).

5.1. Example: Consider the PRAM model of
parallel computation with concurrent reads allowed
(CREW). For this model, Tr is a constant as the
exchange involves reading a pointer to the
corresponding p-element array by n/2 processors.
On the other hand, T4 consists of p fan-in or
semigroup computations (summations) and takes
p log(n/2) time. Ts= O(p log p), assuming that a
single processor does the sorting in each list.
Finally, Ty = O(p). Hence the recurrence becomes
T(n) = T(nf2) + O(p log n) = O(log2 n), given the
assumption that p is a small constant. For the
EREW (exclusive read) PRAM model, broadcasting
of p values to n/2 processors in the other subset
takes O(p log n) time, so the overall complexity is
asymptotically the same. I

5.2. Example: Consider the hypercube model of
parallel computation and assume that the results of
the two halves are held in neighboring processors.
For this model, Tg is p or 2p, depending on simplex
or full duplex exchange of values between the
neighbors. T4 consists of p broadcast operations,
each followed by a fan-in computation (summation)
and takes O(p + log a) time, using standard
pipelining techniques. Ts= O(p log p), assuming
that a single processor does the sorting in each list.
Finally, Ty = O(p). Hence, in this case, the
recurrence for time complexity becomes T(n) =
T(n/2) + O(log n) = O(log? n), given the assumption
that p is a small constant. i

The O(log? n) complexity obtained in Example 5.2
for hypercube holds for a wide variety of other
hypércubic (hypercube-derivative) and other
scalable constant-degree networks ‘such as
butterflies, cube-connected cycles, shuffle-exchange
networks [11], and periodically regular chordal
rings [19]. It also holds for any architecture that
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can emulate hypercube algorithms incorporating
single-dimension communication (a spécial case of
single-port communication, whereby all nodes are
constrained to communicate along the same
dimension in each step) with constant slowdown.
Examples include star and star-connected cycles
networks [9], hierarchical cubic networks [6],
as well as wide classes of recursively constructed
networks proposed recently [23], [24].

5.3. Example: Consider the k-D mesh model of
paralle] computation and assume that the results of

the two halves are held in neighboring processors.

For this model, T is again O(p). T4 consists of p
broadcasts, each followed by a fan-in computation
(summation) and thus takes O(p + nl/k) time, using

- standard. pipelining techniques. Ts = O(p log p),
assuming that a single processor does the sorting in
each list. Finally, Ty = O(p). Hence the recurrence
becomes T(n) = T(n/2) + O(nl/k) = O(nl/k), given
the assumption that p is a small constant. I

Example 5.3 shows that the algorithm is
asymptotically optimal for the k-D mesh model.
However, the time complexities of Examples 5.1
and 3.2 are suboptimal. As of this writing, a more
clever way of organizing the computations in order
to reduce this complexity is not known

Analysis of the algorithm in the special case of
majority or super-majority voting, as discussed at
the end of Section 4, is quite simple and leads to the
recurrence T'(n) = T'(n/2) + O(1) = O(log n) for
identifying the final candidate on PRAM and
hypercubic models and to T'(n) = T'(n/2) + O(nl/k)
= O (nl/k) for the k-dimensional mesh model.
To this, one must add the time Ty{(n) needed for the
final verification of majority status among the n
inputs, leading to T(n) = T'(n) + Ty(n). Since the
final verification of majority status can also be done
in O(log n) or O(nVk} time on the PRAM/hypercube
and k-dimensional mesh models, respectively,
an efficient asymptotically optimal algorithm results
in each case.

One can consider the further restricted case of
super-majority where n —m = O(1), This is when
{n — g)-out-of-n voting is required for a (small)
“constant €. The only additional simplification in this
case occurs for some CRCW PRAM submodels.
For example, when multiple writes are allowed in
case a common value is written or when upon
multiple writes of single-bit values, the logical OR
(the maximum) of the values is stored, one can
proceed as follows. . An (€ + 1)-element list of
different inputs is constructed iteratively; start with
one element in the list and, in each step, have one of
the processors holding a value different from the
ones on the list add its value to the list. Next, all n
processors compare their values to those on this list
and in case of disagreement, write a 1 into the
corresponding location of an (¢ + 1)-element
“disagreement” array which is initialized to all Os.

An jtem can have n — € or more votes only if no
disagreement is registered for it. Therefore, after
the above constant-time steps, the “disagreement”
array points to the correct voting result, if any, or
indicates that there is no input element which has
at least n — € votes.

6. Analysis for m = o(n)

When m is much smaller than n, the parameter p =
Ln/mlis no longer a constant and it is unreasonable
to base the complexity analysxs on the assumption
that a single processor'can hold and efficiently
sort/merge lists of size p.” More importantly, if the
input object space is large and unordered, only
direct comparison can be used to ‘establish the
equality of objects, leading to £Xp) time complexity
for any vote accumulation scheme and £2(p log n)
time overall. With m = o(n), the above can be as
large as £2(n log n). We thus assume a totally
ordered input object space that would allow us to
use sorting to simplify the vote accumulation phase.
The recurrence

T(n, p) = T(n/2, p) + Te(p) + Ta(n/2, p)
+ Ts(p) + Tu(, p)

derived in Section § is still valid and can be used as
a starting point for our analysis. Since the storage
and/or transformation of the required lists of size p
must now be distributed across multiple processors,
the distribution of data/processing becomes critical
in minimizing the time complexity. Thus, we revisit
each of the three examples of Section 5, with the
aim of specifying efficient distribution schemes to
minirnize the overall complexity. As before, a SIMD
mode of operation is assumed.

6.1. Example: Consider the PRAM model,
with or without concurrent reads (CREW/EREW).
The differences with Example 5.1 occur in the
vote accumulation, sorting, and merging steps.
For efficiency, we base the vote accumulation step
on sorting rather than on multiple semigroup
computations. The sorting of x items using x
processors. takes O(log x) time. Thus, both the
n/2-element subset and the p-element candidate list
can be sorted in O(log n) time. Vote tallying can
then be accomplished by merging the n/2-element
list of inputs into the p-clement list of candidates in
O(log n) steps. This observation, combined with
the fact that p-element lists can be sorted/merged in
O(log p) time using p processors, leads to the
conclusion that the time complexity of the algorithm
remains O(log2 n). In fact, the algorithm can be
made even more efficient by sorting the input list
initially, This would lead to all lists and sublists
being automatically .ebtained in sorted order in
intermediate steps. So, the need for multiple sorts
is eliminated. Howe-ver, since vote accumulation
involves the (log n)- -time, merging of two lists of
sizes n/2 and p using nf2 processors, the asymptotlc
time complexity is not affected.
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6.2. Example: Consider the hypercube model of
parallel computation and assume that the results of
the two halves are held in directly linked (log p)-
dimensional subcubes of the two log(n — 1)-cubes.
In this case, Ty becomes a constant term (1 or 2).
Vote accumulation involves the sorting and merging
of n/2 elements on a log(n — 1)-cube into p elements
on one of its (log p)-dimensional subcubes. This is
easily accomplished in O(log n) time using known
sort/merge algorithms. The original sorting and
merging steps based on vote totals take O(log p)
time within the respective subcubes. Hence, given
that the O(log n) term dominates the O(log p) terms,
the recurrence for time complexity remains 7'(n) =
T(n/2) + O(log n) = O(log2 n). 4

As before, the O(log2 n) complexity obtained in
Example 6.2 for hypercube holds for a wide variety
of fixed-degree and hierarchical networks that were
enumerated following Example 5.2.

6.3. Example: Consider the k-D mesh model of
parallel computation and assume that the results
from the two halves are held in adjacent k-D sub-
meshes of size pl/t. For this model, T is O(p1/%).
The sorting and merging operations required for
vote accumulation take O(nl/k) time. The original
sorting/merging steps based on vote totals require
O(pVk) time within the respective submeshes.
Hence the recurrence for time complexity remains
T(n) = T(nf2) + O(nl/k) = O(nl/k), given that the
O(nl/k) term dominates the O(p1/%) terms. i

Again, we see that the algorithm is asymptotically
optimal for the k-D mesh model and suboptimal for
the other models examined.

- It is unlikely that more efficient algorithms can be
designed when the voting threshold m is further
restricted, to m = O(1) or m = O(log n), say. But
we have no proof for this.

7. Some Extensions

When n is not a power of 2, a simple modification
to the algorithm can be used that does not affect the
asymptotic time complexities discussed thus far.
~ The modification consists of padding the list of n
elements with 2llog nl+l _ 5 “wild” objécts that
would match any object in equality comparisons.
This would inflate all votes by 2l1g nl+1 _ p and
thus has no effect on relative order of total votes.
Subtracting 2llog »}¥1 _ 1 from the final vote tallies
or adding it to the threshold f corrects the bias.
Alternativeiy,:pne could use weighted threshold
voting, as diScussed below, with 2llog nlt1 _
additional arbitrary objects whose votes are set to 0,
but this is bound to be less efficient.,

So far we have based our analyses on the
assumption that we have n processors to solve our
n-input voting problem. When # is large, it would
be more reasonable to assume that the number g of
processors satisfies ¢ < n. In this case, we can use

the same algorithm by requiring that each of the ¢
processors emulate n/g processors in the original
solution with n processors. For the PRAM version
of the algorithm, this will result in-a slowdown
factor of n/q, leading to the overall time complexity
O((n/q) log? n). In the case of hypércube, each
processor must emulate an (n/g)-node subcube,
leading to the same slowdown as for the PRAM.
Finally, for a k-D mesh, each processor must
emulate a k-D submesh of dimension (n/q)V/k. This
again leads to the same optimal slowdown.

Weighted voting would involve the following
modifications to the algorithm and its analysis.
Ideally, one would like to replace Step 1 of
Algorithm 4.1 with a partitioning of the set of inputs
into roughly equal-weight subsets. This would lead
to only minor changes in the remaining steps, as the
number of candidates in each subset will be roughly
equal to p. However, for arbitrary weights, such a
partitioning is a special case of the subset sum
problem which is known to be NP-complete [4].
Thus, we opt for partitioning into equal-size subsets
as before. The total votes associated with the two
subsets will be roughly equal in-a probabilistic
sense, thus making our previous analyses valid for
expected (rather than worst-case) time complexity.
Thus, . the PRAM/hypercube versions of our
algorithm run in expected O(log2 n) time in the same
sense that sequential quicksort runs in O(n log n)
time on‘the average.

One way to.derive the worst-case time complexity
of the weighted voting version of our algorithm is to
take the minimum weight to be v = 1 and assume
a maximum weight of vpax. Then, the number of
candidates having at least 1/2 votes in each subset of
n/2 elements is no more than L(nvmax/2)/(#/2)] <
Pvmax- Thus, the preceding asymptotic analyses
still apply if vmax is a constant.

8. Concluding Remarks

We have presented a parallel algorithm for m-out-
of-n threshold voting and analyzed its complexity
for various models of parallel computation. The
algorithm was shown to be optimal for &-D mesh-
connected parallel computers and reasonably
efficient on the PRAM, hypercube, some fixed-
degree derivative networks, and a wide array of
hierarchical architectures. In the special case of
majority voting, it was shown that the algorithm can
be modified to run in optimal time on all of the
above models. The key to this simplification in the
case of majority voting is that merging and selection
of candidates in each recursive step does not require
the tallying of votes from the other partition;
a simple comparison of votes tells us which of the
two candidates may have majority, with the actual
tallying of votes deferred until a single candidate has
been identified at the very end. Thus, the vote-
tallying overhead is paid only once.
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When the input object space is totally ordered,
asymptotically optimal algorithms can be
constructed if the objects are first sorted using any
optimal sorting algorithm. Once the input objects
are sorted, vote tallying can be done by a partitioned
parallel prefix computation, and the outputs can be
selected by a parallel comparison of vote tallies with
the threshold r. However, even in such cases, our
algorithm may be faster in view of potentially
smaller constants.

Work is expected to continue on refining the
algorithm and its analysis and on evaluating its
efficiency on various other models of parallel
computation. Of particular interest is to show how
tallying of votes in each recursive step can be
avoided for general threshold voting or to prove that
the O(log2 n) complexity obtained for the PRAM,
hypercube, and related hypercubic networks is in
fact the best possible (a lower bound). Extension of
the algorithm to more efficient weighted voting
schemes, particularly when vmax/Vmin is not small,
constitutes another direction for further research.
Finally, we have only dealt with threshold voting in
this paper. Even though parallel complexity results
have been previously derived for a variety of voting
schemes [15], efficient parallel algorithms for these
cases remain to be developed.
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