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Abstract

In this paper, we propose a new class of intercon-
nection networks called hierarchical swapped networks
(HSNs). We show that some subclasses of HSNs can
efficiently emulate hypercubes, or generalized hyper-
cubes, while having node degrees significantly smaller
than the emulated networks. In particular, a suit-
ably constructed HSN can emulate a hypercube or gen-
eralized hypercube with constant slowdown under the
single-dimension communication model and asymptot-
ically optimal slowdown with respect to its node degree
under the all-port communication model. As a con-
sequence, we obtain a variety of efficient algorithms
on HSNs through emulation, thus proving the versatil-
ity of HSN. Some subclasses of HSNs are also shown
to have asymptotically optimal diameters with respect
to their node degrees. HSNs appear to be attractive
low-degree alternatives to hypercubes and generalized
hypercubes for general-purpose parallel computers.

1 Introduction

Many interconnection schemes for parallel archi-
tectures have been proposed in recent years [3, 5, 6,
7, 8, 13, 14, 15]. Among them, the hierarchical cu-
bic network (HCN) [6], hierarchical folded-hypercube
network (HFN) [5], and three-level hierarchical cubic
network (3-HCN) [15] offer various desirable proper-
ties. HCNs (HFNs) use (folded) hypercube networks
as basic modules, are composed of nodes with degree
n/2+1 (n/2 + 2), as opposed to n for a hypercube
of the same size, and can emulate a hypercube with
single-port communication in O(1) time. 3-HCNs use
hypercube networks as basic modules, are composed
of nodes with degree n/3 + 2, and also emulate a hy-
percube in O(1) time. These networks have diameters
smaller than that of a hypercube of the same size.
Hierarchical swapped networks (HSNs), a subclass of
swapped networks [16], not only generalize, and serve
to unify, these parallel architectures as well as their al-
gorithms, but also generate a much wider class of cost-
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effective high-performance interconnection networks.

In this paper, we show that HSNs can emulate hy-
percubes, generalized hypercubes, or high-dimensional
meshes efficiently. As a consequence, we obtain a
variety of algorithms on HSNs through emulation.
We also develop efficient and elegant algorithms for
packet routing and ascend/descend algorithms. An
HSN has node degree considerably smaller than that
of hypercube when the network size grows very large,
and can achieve optimal diameter with respect to
its node degree. Thus, HSNs have potential for use
in high-performance general-purpose parallel architec-
tures. By comparing the properties and performance
of HSNs with other networks, we conclude that HSNs
have many advantages and appear to be an attractive
alternative to the hypercube, generalized hypercube,
as well as other high node-degree networks.

In Section 2, we define HSNs, derive some of their
parameters, and establish HCNs and HFNs as sub-
classes of HSNs. In Section 3, we present HSNs
based on an n-cube. We present ascend/descend al-
gorithms on hypercube-based HSNs. We show how to
emulate a hypercube efficiently under different com-
munication models. In Section 4, we present HSNs
based on a complete graph. We show that these net-
works can emulate generalized hypercubes efficiently.
We also show that N-node HSNs based on M-node
complete-graph nuclei always achieve optimal diam-
eter for M = Q(logN/loglog N). In Section 5, we
construct HSNs based on other nucleus graphs. We
conclude that HSNs are cost-effective, have desirable
topological and algorithmic properties, and appear
to be suitable abstractions for implementing versatile
high-performance interconnection networks with rea-
sonable cost.

2 Hierarchical Swapped Networks

A hierarchical swapped network that has [ levels
and uses the graph G as its nucleus is called an I-level
G-based hierarchical swapped network, and is denoted



by HSN(/,G). We define HSNs and derive their key
parameters in this section. We will study HSNs based
on various nucleus graphs in Sections 3, 4 and 5.

level-/ clusters
(i.e.HSN(/-1,G))

M-2

Fig. 1. Top view of an I-level hierarchical swapped net-
work, HSN({, G), with an M-node nucleus G.

2.1 Hierarchical Construction of Basic
HSNs

An HSN(!, G) begins with a nucleus G, which forms
an HSN(1, G) and can be any connected graph or hy-
pergraph (of more than one node), such as a mesh,
hypercube, complete graph, star graph, or buslet.
(For simplicity, we always refer to G as the nucleus
“graph57 .)

To build a 2-level hierarchical swapped network,
HSN(2,@), we use M identical copies of the nucleus
G, each of which has M nodes. Each nucleus is viewed
as a level-2 cluster, and is given a k-bit string X5 as
its address, where k = [log, M]; we also give each
node a k-bit string X; as its address within the nu-
cleus to which it belongs. Node X; within nucleus X3
has a 2k-bit string X} = XX, as its address within
the HSN(2,G). Each of the M nucleus copies has a
link connecting it to each of the other M — 1 nuclei,
via which node X2 X; connects to node X; X,. These
links are called level-2 inter-cluster links, or simply
level-2 links, and the connected nodes are called level-
2 neighbors. The links connecting nodes within the
same nucleus are called nucleus links, or level-1 links,
and the connected nodes within the same nucleus are
called nucleus neighbors, or level-1 neighbors.

To build an [-level hierarchical swapped network,
HSN(I,G), we use M identical copies of HSN(I -1, G).
The top view of an HSN({,G) is shown in Fig. 1.
Each copy of HSN(I — 1,G) is viewed as a level-
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l cluster, and is given a k-bit string X; as its ad-
dress; each node is already given a k(I — 1)-bit string
X]_1 = Xi—1a as its address within the level-/ cluster
to which it belongs, where X;.; = X;X;_; --- X;1.1 X,
Node X ; within the level-l cluster X; has a kl-bit
string X] = X;X| ;| = Xj.1 as its address within the
HSN(l,G). Each of the M level-l clusters has M!~2
links connecting it to each of the other M — 1 level-]
clusters, via which node X;X;_1.5X; connects to node
X1X;—1.2X;. This connectivity and the hierarchical
construction are the reasons we call such networks “hi-
erarchical swapped networks.” The connecting links
are called level-l inter-cluster links, and the connected
nodes are called level-l neighbors. The resultant G-
based I-level HSN is denoted by HSN(l,G). The re-
cursive definition allows us to construct arbitrary-level
HSNs based on any type of nucleus.

: clusters;
reach is an
EN 2,Q,)

Fig. 2. The complete structure of HSN(3,Q2). Node
addresses are expressed as radix-4 numbers.

The nodes that do not have a level-l inter-cluster
link are called the leaders of that level-l cluster. Lead-
ers can be used as I/O ports or be connected to other
leaders via their unused ports to provide better fault
tolerance or to improve the performance and reduce
the diameter of HSNs without increasing the node de-
gree of the network. If leader X;X;_1.2X] connects to
leader X' X;_1.2X]', where X] = M — X' — 1, the av-
erage distance between nodes and, in most cases, the
diameter of the network will be reduced. This type
of HSN is called HSN with diameter links, and the
links that connect level-l leaders are called level-l di-
ameter links. The resultant G-based I-level HSN with
diameter links is referred to as HSN(I, G) with diam-
eter links. Varying the connectivity between leaders
results in other classes of HSNs.



Fig. 2 shows a 3-level HSN based on the 2-cube.
2.2 Related Topologies

To obtain smaller step sizes for HSNs, we allow
the number M; of top-level clusters to be a divisor
of M. Node X; within a nucleus connects to a node
in the top-level cluster X; mod M; via its top-level
inter-cluster link. For example, node X;X;_1.2X; con-
nects to node XpX;_1.2(XoM; + X;), where X; =
XoM; + Xpg, and Xg, Xg are positive integers with
Xgr < M;. Most results derived in this paper can be
applied to such HSN variants either directly or with
minor modifications. However, to simplify the presen-
tation, we will discuss only the case of M; = M and
will use HSN to refer to such complete networks unless
explicitly stated otherwise.

It is worth noting that three recently proposed in-
terconnection networks, the hierarchical cubic net-
work (HCN) [6], hierarchical folded-hypercube net-
work (HFN) [5], and three-level hierarchical cubic net-
work (3-HCN) [15], are subclasses of HSNs: HCN(k, k)
is a 2-level hypercube-based HSN, HSN(2, Q) with
diameter links, where the nucleus Q; is a k-
cube; HEN(k, k) is a 2-level folded-hypercube-based
HSN, HSN(2, FQy), where the nucleus FQy is a k-
dimensional folded-hypercube; 3-HCN is a hypercube-
based 3-level HSN, HSN(3, Q) with/without diam-
eter links. HCN, HFN, and 3-HCN can emulate a
hypercube in O(1) time (assuming single-port com-
munication), have diameters smaller than that of hy-
percube, and have node degrees about 1/2, 1/2, and
1/3, respectively, of that of a similar-sized hypercube.
However, they require ©(log V) time to emulate a step
of a hypercube algorithm under the all-port commu-
nication model, even though their node degrees are in
the same order as that of a similar-sized hypercube.

2.3 Packet Routing

In this subsection, we present a recursive routing
algorithm to route a packet from node X to node ¥
in an HSN(I, G).

Suppose that a routing algorithm for the nucleus
G is known and that the routing algorithm for an
HSN(l — 1,G) network is also known. Then, here is
how routing is done in level /.

Let the addresses of nodes X and Y within the
HSN(l, G) be X;.; and Y}, respectively, with the bit-
strings X; and Y; being the addresses of the level-
clusters to which nodes X and Y belong.

e Case 1: X; = V;: Nodes X and Y belong to the
same level-l cluster. We use the routing algorithm
for HSN(I — 1,G) to route the packet, since any
level-l cluster is an HSN(I — 1,G).
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e Case 2: X; # Y;: Nodes X and Y belong to dif-
ferent level-l clusters. To route a packet from
node X to node Y, we use the routing algorithm
for the nucleus G to route the packet from node
X;X;_1.0X1 to node X;X;_1.0Y;. We then send
the packet to node Y, X;_1.0 X via its level-l inter-
cluster link in one step, and then use the routing
algorithm for HSN(I — 1, G) to route the packet to
node Y;Y,_1.1. That is, the path through which
the packet travels can be expressed as follows:

XiXi_12X1 ™3 X1 X112V

level-l level-!
link cluster

— YiXj10 X — ViViaa.

If the routing algorithm on HSN(¢, G) takes at most
Tr(i) time steps, and the routing algorithm on nucleus
G takes Tg(1) time steps, the recursive routing algo-
rithm on HSN(/, G) requires time at most

Te)=Tr( - 1)+ Tr(1)+1=1Tr(1)+1~-1. (1)

2.4 Topological Properties

Let the nucleus G be a graph with M nodes of de-
gree d;. The number of nodes in an HSN is increased
by a factor of M when the level is increased by 1.
Thus, the number of nodes N of an HSN(/, G) is

N=N_i-M=M, (2)

where N; is the number of nodes in an HSN(i, G).
From Eq. 2, the level of HSN(I,G) of N nodes is

= logy, N
T log, M

3)

Since the node degree is increased by 1 with each
additional level, the node degree of HSN(l, G) is

logy N

dg=d1+l—1=d1+log2M

-1

(4)

The diameter of HSN(/, G) is obtainable from the
routing algorithm given in Subsection 2.3.

Theorem 2.1 The diameter of an HSN(l,G) (with-
out diameter links) is D1l + 1 — 1, where Dy is the
diameter of the nucleus G.

Proof: Let X’ and Y’ be the addresses of two nodes
that have distance D; within the same nucleus G. It
is straightforward to prove that the routing algorithm
presented in Subsection 2.3 is optimal for routing from
node X = X'X'---X'tonode Y = Y'Y'...Y’. Thus,
hN;—H \-—_T_/



the time complexity of the algorithm, assuming opti-
mal D;-step routing within the nucleus, provide both

an upper bound and a lower bound for the diameter
of HSN(L, G). a

3 Hypercube-Based HSNs

When HSNs use hypercubes as nucleus graphs, they
have node degree considerably smaller than that of a
similar-sized hypercube, and acquire desirable algo-
rithmic properties. These include emulating the hy-
percube efficiently, performing ascend/descend opera-
tions at high speed, and generally running many algo-
rithms with performance comparable to or even better
than the hypercube.

3.1 Ascend/Descend Algorithms

“Ascend/descend” algorithms [12] require succes-
sive operations on data items that are separated by
a distance equal to a power of 2. Many applica-
tions, such as Fast Fourier Transform, bitonic sort,
matrix multiplication, and convolution, can be formu-
lated using algorithms in this general category. As-
cend/descend algorithms can be performed efficiently
on hypercube-based HSNs.

We first present an elegant ascend algorithm on
HSNs based on a hypercube, and then modify the al-
gorithm for performing descend algorithms and nor-
mal hypercube algorithms. It is obvious that ascend
algorithms can be performed on the hypercube nu-
cleus, HSN(1, Q). The following algorithm uses inter-
cluster links to bring data which belong to nodes sep-
arated by a distance 2%, i > k into the same nucleus
k-cube, and then makes use of the nucleus neighbors
to perform ascend operations. This recursive ascend
algorithm for HSN(/, Q) has 4 phases:

o Phase 1: Perform the ascend algorithm on each of
the level-l clusters, which are HSN(l — 1, Q).

e Phase 2: Each node, except level-l leaders, ex-
changes data via its level-l inter-cluster link.

e Phase 3: Perform again the ascend algorithm
on each of the nuclei, which are k-cubes

(HSN(1, Q))-

e Phase 4: Each node, except level-l leaders, ex-
changes data via its level-! inter-cluster link again.

By performing the exchange step via level-l inter-
cluster links in Phase 2, node X;X; ;.0X; will hold
the data item from node X; X;_1.0X;. In essence, this
moves data items separated by a distance of 27, j =
kl—k,kl—k+1,...,kl -1, into the same nucleus, such
that they are now separated by a distance of 2/ —#+%,
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In effect, we use the ascend algorithm on hypercube
nucleus (HSN(1, Q%)) to emulate the steps needed in
the highest £ dimensions.

Theorem 3.1 Ascend/descend algorithms on an
HSN(l,Qy) can be performed in the time required on
a hypercube of the same size plus 2(1 — 1) exchange
steps.

Proof: Let Tysc(l,@r) denote the time required for
the ascend algorithm on HSN(/, Q). Then we have

Tasc(l,Qk) = Tasc(l - 1,Qk) + Tasc(lka) +2
= ITaeo(1,Qr) + 21 — 2.

If the time required for the ascend algorithm on the
nucleus k-cube (HSN(1, Q) is Tasc(1,Qr) = k, then

Tasc(l,Qr) = logy N + 21 — 2.

To perform descend algorithms, we simply reverse
the order of the phases in the ascend algorithm and
replace each occurrence of “ascend” with “descend.”
O

Normal hypercube algorithms can be emulated in
similar time complexity using a construction similar to
ascend/descend algorithms. The details are omitted.
3.2 Emulating a Hypercube with Single-

Dimension Communication

In this subsection, we assume single-port communi-
cation, with all the nodes only capable of using links
of the same dimension at the same time. This as-
sumption, used in some SIMD architectures and their
algorithms in order to reduce the cost of implementa-
tion, is called single-dimension communication in this
paper. We show that an HSN(l, Q) can emulate a
hypercube of the same size with a slowdown factor
3, which is much better than the results achieved by
hypernet, CCC, butterfly network, and most other hy-
percubic variants under this assumption.

The algorithm and its performance are given below.

e Step 1: If the computation-routing step is along
dimension j, with k(1 - 1) < j < ki, i = 2,3, ...,1,
each node exchanges data via its level-i inter-
cluster link.

e Step 2: Each node exchanges data via its dimen-
sion j — k(¢ — 1) nucleus link within the k-cube
nucleus to which it belongs.

e Step 3: If Step 1 was executed, each node ex-
changes data via its level-¢ inter-cluster link again
and then performs computation.




Theorem 3.2 Any step of an lk-dimensional hy-
percube algorithm with single-dimension communica-
tion can be emulated on an HSN(l, Q) with single-
dimension communication in 8 steps.

3.3 Emulating a Hypercube with All-Port
Communication
In this subsection, we assume all-port communica-
tion, with all the nodes capable of using links of all
dimensions at the same time.

Theorem 3.3 Any step of an lk-dimensional hyper-
cube algorithm with all-port communication can be em-
ulated on an HSN(l, Qy) in maz(2k + 1,1+ 1) steps.

Proof: In Subsection 3.2, we showed that an
HSN(l, Q) can emulate any step of an lk-cube algo-
rithm in 3 steps with single-dimension communication.
To emulate a hypercube algorithm with all-port com-
munication, we simply perform the single-dimension
emulation for all dimensions at the same time with
proper scheduling. The details are omitted. 0O

By properly choosing the nucleus size and, as a
result, the number of hierarchical levels, we can op-

timally emulate a hypercube on a hypercube-based
HSN.

Corollary 3.4 Any step of a hypercube algorithm
with all-port communication can be optimally emulated
on an HSN that uses N nodes of degree ©(y/log N) in
O(VIog N) steps.

Proof: To optimally emulate an N-node hyper-
cube with all-port communication, we select k =
©(y/log N) for the HSN(I, Q). Then we have

l= log;N = O(y/log N).

We know from Theorem 3.3 that the time required
for emulation is O(v/log V). Since the node degree of
the HSN(I, Qx) is ©(\/log N), it requires Q(v/log N)
time for a node to receive log, N packets. Thus, the
algorithm is optimal asymptotically. O

We thus obtain several optimal communication al-
gorithms through emulating the hypercube.

Corollary 3.5 The total exzchange task can be opti-
mally executed on an HSN that uses N nodes of degree

O(yIog N) in ©(N/log N) time.

Proof: Total exchange can be performed on an N-
node hypercube in O(N) time [2], so it can be per-
formed in ©(N+/log N) time on an HSN that uses N
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nodes of degree ©(+1/log N) through emulation (Corol-
lary 3.4). Since the average inter-node distance in an
N-node HSN is O(log V), and the total number of
packets generated when performing total exchange is
N(N —1), the total number of hops in the paths that
these packets travel through is @(N?log N). On the
other hand, the total number of hops that can be pro-
vided in one time step by an HSN with N nodes of
degree ©(y/IogN) is at most @(Ny/IlogN). So the

minimum time required for total exchange algorithm

is 2 <N12-119(%) = Q(N+/log N). This lower bound is
g

achieved by emulating the hypercube total exchange

algorithm. O

Corollary 3.6 The multiple-node broadcast task can
be optimally exzecuted on an HSN with N nodes of de-
gree O(y/log N) in © (N//IogN) time.

Proof: Multiple-node broadcasting can be performed
on an N-node hypercube in © (N/log V) time [2], so
it can be performed in @(N/y/log N) time on an HSN
with IV nodes of degree ©(y/log N) through emulation
(Corollary 3.4). Since the degree of a node in the HSN
is O(v/1og N), and each node has to receive N — 1
packets, the minimum time required is €2 (N//log N).
O

4 Complete-Graph-Based HSNs

When HSNs use complete graphs as nuclei, they
gain a desirable topological property — asymptotically
optimal diameter with respect to the node degree.
These networks also have desirable algorithmic prop-
erties, such as efficiently emulating a hypercube or a
generalized hypercube of radix M [3, 9].

4.1 Optimal Diameter

An I-level hierarchical swapped network based on a
complete graph is denoted by HSN(l, Kjs), where K s
is a complete graph of M nodes. In this subsection,
we will show that the diameter of an HSN(I, Kys) is
always optimal (asymptotically within a small con-
stant factor) with respect to its node degree, for
M = Q (log N/loglog N).

From Eq. 4, the node degree of an HSN(l, K ) is

log, N

M+i-2=M
* +1og2M

-2

The diameter of an HSN(I, K1) is given by



from Theorem 2.1. It can be seen that the diameter
of an HSN(I, K»r) (with/without diameter links) is al-
ways smaller than that of a hypercube of the same size
for M > 4.

Theorem 4.1 The diameter of an HSN(l, K,r) is
always optimal (asymptotically within a constant
factor) with respect to its node degree for M =
Q2 (log N/loglog N), where Kpr is a complete graph
with M nodes.

Proof: It is well known that the diameter of any
N-node network with maximum node degree d is
2 (log N/logd). Substituting node degree d = M +
! — 2, the lower bound on the diameter of HSN(l, Ks)

becomes
log N

p=a () ®

For a nucleus of size M = Q (log N/ loglog N), the

diameter D = O (log N/log M) matches the lower
bound
log N < log N )
D=0 ——2"—0 =0 .
(log M+ ll_gg%_ ) log M

a

This property is the same as star graph for M =
O (log N/loglog N) and is better than hypercube.
Moreover, HSNs based on complete graphs offer wider
range of optimal diameters. They can even achieve
constant diameter ©(1/e) for M = O(N*€), where
€ = 1/l, when the number [ of hierarchical levels is
a constant.
4.2 Emulating Generalized Hypercubes

Using emulation algorithms similar to those on
hypercube-based HSNs, an HSN(I, K5s) can emulates
a hypercube of radix M [3, 9] efficiently under various
communication models. We summarize the results in
the following theorems.

Theorem 4.2 Any step of an l-dimensional radiz-M
hypercube algorithm with single-dimension communi-
cation can be emulated on an HSN(l, K1) with single-
dimension communication in 3 steps.

Theorem 4.3 Any step of an l-dimensional radiz-M
hypercube algorithm with all-port communication can
be emulated on an HSN(l, Kpr) in maz(2M + 1,1+ 1)
steps.

Corollary 4.4 An HSN(l,Kyr) that uses N nodes
of degree © (logN/loglogN) can emulate any
step of an l-dimensional hypercube of radizx M
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with degree © (log® N/(loglog N)?) under the all-
port communication model with optimal slowdown
O (log N/loglog N).

5 HSNs Based on Other Graphs

HSNs based on low-dimensional meshes have small
node degrees, while their performance is similar to
high-dimensional meshes with single-dimension com-
munication. HSNs based on folded-hypercubes have
diameters smaller than that of a hypercube of the same
size. In this section, we briefly present the properties
of HSN based on these nucleus graphs. We also discuss
other subclasses of HSNs that have asymptotically op-
timal diameters.
5.1 Mesh-Based HSNs

For a constant number [ of hierarchical levels and
an n-D mesh nucleus M,,, an HSN(I, M,,) has constant
node degree [ + 2n — 1.

Let M, be an n-dimensional m; X ma- - X m,
mesh, and M,; be an nl-dimensional m; X --+ x mz X

1
Mg X +++ X Mg X+« X My X -+ Xmy, mesh. Using
—_——— ——————

I
emulation algorithms similar to those on hypercube-
based HSNs, an HSN([, M,,) can emulates the high-
dimensional mesh M, efficiently under various com-
munication models. We summarize the results in the
following theorems.

Theorem 5.1 Any step of an algorithm on the nl-
dimensional mesh My, with single-dimension com-
munication can be emulated on an HSN(I, My) with
single-dimension communication in 8 steps.

Theorem 5.2 Any step of an algorithm on an nl-
dimensional mesh M, with all-port communication
can be emulated on an HSN(l, M,,) in maz(dn+1,1+1)
steps.

5.2 Folded-Hypercube-Based HSNs and
Folded HSNs

If the nucleus of an HSN is a k-dimensional folded
hypercube F'Qi, the nucleus has node degree k+1 and
diameter [g] As a consequence, HSN(l, F'Q;) has
node degree k+1 = 1—°§,§iv— +% and diameter % logy N +
©(!) from Eq. 4 and Theorem 2.1.

Since HSN(!, Qx) is a subgraph of HSN(I, FQy),
HSN(l, FQy) can emulate hypercube algorithms ef-
ficiently. However, such networks cannot emulate a
folded hypercube efficiently since emulation of the ad-
ditional complementary link would require { steps.

A variation of HSN is to add the complemen-
tary links to an HSN(I,Q), which we call folded



HSN(l, Q). Such networks not only emulate folded
hypercube efficiently, but also have diameters smaller
than hypercube and the corresponding HSN(I, FQy).

5.3 Generalized Hypercubes, Star
Graphs, and Other Nucleus Graphs

A generalized-hypercube-based HSN can emulate a
corresponding generalized hypercube (GQ) efficiently.
For example, let GQp, n, be a 2-dimensional GQ
with mixed-radix (ni,n2), then an HSN(!,GQn, n,)
can emulate a 2/-dimensional GQ with mixed-radix
(n1,m2,n1,n9,...,N1,n2) with constant slowdown, as-
suming single-dimension communication. By properly
choosing the nucleus size and the dimension of the
nucleus GQ, such networks can have asymptotically
optimal diameters with respect to the node degrees.

When HSNs use star graphs (of at least
Q(y/log N/loglog N) nodes) as nucleus graphs, they
also have the desirable topological property of asymp-
totically optimal diameter.

Petersen graphs, buslets, and some other graphs
or hypergraphs may also be desirable candidates for
nucleus graphs. Detailed analysis of these and other
subclasses of HSNs will be reported in future.

6 Conclusion

We have proposed HSNs as a new class of inter-
connection networks for the construction of massively
parallel computers. HSNs have desirable algorithmic
and topological properties, use nodes of low degree,
and are modularized.

Several emulation algorithms were developed. It
was shown that HSNs can emulate corresponding high-
degree interconnection networks efficiently. HSNs
based on various nucleus graphs were discussed. In
particular, HSNs based on complete graphs, gener-
alized hypercubes, or star graphs can have asymp-
totically optimal diameters. These results demon-
strate that HSNs are attractive candidates for high-
performance networks with reasonable cost. With var-
ious nucleus graphs and arbitrary number of hierarchi-
cal levels, HSNs can fit the needs of a wide range of
applications, and satisfy the requirements of general-
purpose as well as special-purpose parallel architec-
tures.
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