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Abstract

N-version programming (NVP) and acceptance testing (AT)
are techniques for ensuring reliable computation results
from imperfect software. Various symmetric combinations
of NVP and AT have also been suggested. We take the
view that one can insert an AT at virtually any point in a
suitably constructed multi-channel computation graph and
that judicious placement of ATs will lead to cost—e#ective
reliability improvement. Hence, as a general framework
Jor the creation, representation, and analysis of combined
NVP-AT schemes, we introduce MTV graphs, and their
simplified data-driven version called DD-MTV graphs,
composed 0‘)/” corr%)utation module (M), acceptance test (T),
and voter (V) building blocks. Previous N V%—AT schemes,
such as consensus recovery blocks, recoverable N-version
blocks, and N—self-checkinf programs can be viewed as
sﬁeczal cases of our general combining scheme. Results on
the design and analysis of new NVP-AT schemes are
%esente and the reliability improvements are quantified.
¢ show, e.g., that certain, somewhat asymmetric,
combinations of M, T, and V building blocks can lead to
higher reliabilities than previously proposed symmetric
arrangements having comparable or higher complexities.

1. Introduction

Applications of highly dependable computer systems are
no longer limited to exotic space exploration and defense
systems. A multitude of information processing and
control functions in avionics, high-speed transportation,
process monitoring, and transaction-based systems also
need ultrareliable computational resources. With the
continually increasing complexity of hardware and
software systems, and the attendant impossibility of
building absolutely defect- and fault-free components, the
use of multi-channel computations with design diversity
may emerge as a practical and cost-effective approach.
Design diversity has been found useful for hardware
subsystems and for data as well, but its primary
application area is in constructing highly reliable software
systems based on one of two distinct paradigms: Voting
on multiple versions and acceptance testing [2], [5].

N-Version Programming (NVP) was proposed to allow
tolerance of software design faults {1]. In NVP, several
program modules are independently developed and executed,
with the final result is obtained by voting on the module
results. Voting, as used here, covers a wide variety of
techniques in terms of sophistication, flexibility, and
computational complexity and need not be implemented
via simple matching and majority rule [7].
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Use of acceptance tests (ATs), as proposed in the recovery-
block scheme [8], is also based on design diversity. Our
confidence in an accepted result being actually correct
depends on the thoroughness (coverage) of the acceptance
test and its own reliability. ATs come in many different
forms; from simple reasonableness checks to complex,
high-coverage validators. Alternate modules can be
invoked sequentially in some specified order until one has
produced a result passing the AT.

Several researchers have attempted to combine NVP and
AT techniques. One such attempt is that of consensus
recovery blocks (CRB) in which n versions are executed
and their results are compared. If there is agreement
between two or more versions, then their result is assumed
correct and used. Otherwise, the n disagreeing results are
subjected to an AT in some prespecified order and the first
one to pass the test is taken as the correct output [9].
Another example is that of recoverable N-version blocks
(RNVB) [3], also known as N-self-checking program [4],
in which module outputs are subjected to ATs and only
those that pass the AT are provided to the voter.

Clearly, the above are just examples of the ways in which
NVP and AT approaches can be combined. The CRB
approach essentially applies NVP (with relaxed 2-out-of-n
voting) and AT schemes sequentially and one at a time.
Because no AT is applied in the case of, say, two agreeing
results, there is some chance of an erroneous output being
propagated. Furthermore, a common AT is assumed and
design diversity is not applied to the AT. The RNVB/
NSCP approach applies ATs uniformly to all versions.
This increases the complexity considerably since ATs may
essentially be duplicates of the computational modules.

We take the view that one can insert an AT at virtually
any point in a suitably constructed multi-channel
computation graph and that judicious placement of ATs
will lead to cost-effective reliability improvement.

2. Definitions and Assumptions

The question that we have set out to answer is how to
combine the techniques of N-version programming and
acceptance testing in an optimal way in order to achieve
the best possible results. More specifically, our ultimate
goal is to be able to combine diverse software modules,
acceptance tests, and voting algorithms in a systematic
way in order to maximize the correctness probability of
the output with a given overall complexity or to achieve a
desired correctness probability at minimal cost.



Unfortunately, due to difficuities in estimating reliability
and cost parameters, the above problems are currently
intractable when posed in their full generality. So, we
begin with a limited set of more specific questions based
on simplifying assumptions. The following definitions/
assumptions are needed in our discussions and analyses.
2.1. Definition — MTV graph: An MTV (Module-
Test-Voter) graph is a directed acyclic graph with one “In”,
one “Out”, and possibly one “Err” (error condition) node,
plus any number of nodes of three other types: Module
(M), acceptance test (T), and voter (V).

M: Computes a result data object based on its inputs and
sends it to some T or V node or to Out.
T: Accepts its input and forwards it along its output

arc(s) or rejects it and activates some M or T nodes.

Forwards the result of weighted plurality voting to
other nodes or activates some M or T nodes.

The inner workings of M and T nodes are application-
dependent. We make no assumption about these nodes
except that they have known reliability parameters. The
nodes are connected by directed edges representing data
transfers and controls (activations). K

2.2. Assumption — Reliability parameters of compu-
tation modules: Each computation module M; produces a
result which is correct with fixed probability ¢; and
incorrect with fixed probability p;, uniformly over its
input space. In case g; + p; < 1, the module may be viewed
as (partially) self-checking or fail-safe, abstaining from
producing any result with probability 1 — ¢; — p;. In the
rest of this paper, we assume ¢;+p; = 1.1

2.3. Assumption — Reliability parameters of accep-
tance tests: A correct result passes an acceptance test T;
(outgoing edge labeled “P” is taken) with fixed probability
q’; and fails it (outgoing edge labeled “F” is taken) with
fixed probability p”;, uniformly over the space of correct
inputs. Similarly, '1‘,- rejects an incorrect result with fixed
probability ¢”; and accepts it with fixed probability p”;,
uniformly over the incorrect input space. When ¢'+p’<1 or
q"#p"<1, the AT may be viewed as (partially) self'—checking
or fail-safe, abstaining from judging an input with
probability 1 — ¢’;— p’; for correct inputs and 1 - ¢”; - p”;
for incorrect ones. In the rest of this paper, we wilf
assume ¢; +p;=q";+p";=1.1

The reason we do not start by assuming ¢'; = ¢"; is that
ATs behave asymmetrically with respect to correct and
incorrect inputs. An AT that is itself defect-free, always
accepts a correct input. Thus, p’; is typically small and is
related to the probability of a defect in the AT. On the
other hand, even a defect-free AT may accept an incorrect
input due to imperfections in the coverage of the testing
algorithm. Hence, p”; lumps together two error sources:
imperfect coverage and defective design. We typically have
p"pp’; (or even, p” >>p’) for simple low-complexity ATs.
For a more comprehenswe AT, coverage can be very high
or even perfect. In such cases, the values of ¢; and ¢”; are
comparable, although not necessarily equal.

2.4. Assumption — Independence of module and AT
failures: Each M and each AT fails independently of other
Ms and ATs, unless otherwise noted. Hence, the probability
of £ modules M; (1 £i<k) coincidentally producing
erroneous results 1s [L1p;. 1
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2.5. Definition — Weighted plurality voter: Given n
input data objects x;, x,, . . . , X,, With associated non-
negative real votes (weights) v, v,,...,v,, a V node
computes the output object y and its vote w such that y is
“supported by” a number of input data objects with votes
totaling w and no other y” is supported by inputs having
more votes. If w <53i.,v, then y may be non-unique.
In such cases, an erroncous voter output will be
pessimistically assumed. The output weight w selects one
of the outgoing voter edges along which y or an
activation signal must be sent. Various definitions of the
term “supported by” lead to different voting schemes such
as exact, inexact, and approval voting (e.g., with exact
voting, an input object x; supports y iff x; = y). These
variations are not discussed in this paper [7]. I

2.6. Assumption — Perfect voters: Voters are perfect
and act instantaneously. This assumption is reasonable
since voters are simpler than modules or ATs and are
designed just once for use with many different modules and
test types. They can be made highly reliable through
careful design and extensive validation/testing. 1

2.7. Example — Consider a system, called ALTI,
consisting of 4 computation modules, an AT, and a voter
organized as follows. V receives the outputs of M1, M2,
and M3. If the 3 results agree, then the common result is
sent to Out. If 2 of 3 agree, the result is subjected to T.
If the result passes the test, it is sent to Out. If the result
fails or if there is no majority, M4 is invoked and its
result used directly with no further test or voting. The
reliability formulas are given below without proof:

Qsvp = 42(21 +2p +3p* - 6p°)

QaLm = 4711 +2p +3p* = 3p%(p" + p)]
Clearly, the reliability of ALT1 is higher than that of 5VP
provided that p“+p” < 2p. In the special case of p’'=p" =5,
the alternate scheme ALT]1 offers reliability improvement
over SVP iff s < p. In other words, ALT1 is better than
5VP if the acceptance test T is more reliable than each
module M;. In many practical situations, T can be made
simpler, and thus more reliable, than M;. i

Next, we define a modified form of MTV graphs in order
to simplify the discussion in the remainder of this paper.

2.8. Definition — Data-driven MTV graph: A data-
driven MTV (DD-MTYV) graph is a modified MTV graph
with no “Err” node, and single-output M, T, and V nodes.
M;: Attaches the vote weight w;to its output y;.

T; Modifies the weight w of y tow + a(w) or w — r{w)
upon acceptance/rejection of its input.
V; Produces an output data object y of weight w from
its inputs, as detailed in Definition 2.5.
The elimination of control edges and the resultant
uniformity of the graph simplifies the enumeration and
analysis of various alternatives, while still retaining the
power to accurately model most useful hybrid schemes.
The weight augmentation function a,(w) and the weight
reduction function r{w), are used to adjust the weight of
an accepted and rejected input, respectively. I
Fig. 1 depicts 4 DD-MTV graphs, each having 6 M/T
nodes (alternatives to 6VP). These examples demonstrate
the wide variety of multi-channel architectures that can be
easily modeled by DD-MTYV graphs.



2.9. Assumption — Uniformity of modules and ATs:
In the rest of this paper, modules will be assumed to have
identical reliability, complexity, and execution-time
parameters. Thus, the subscript i will be omitted form
parameters such as p;, q; and the weight w = 1 is attached
to all module outputs. Similarly, the subscript i will be
removed for ATs. ATs will be assumed to have perfect
coverage and lower or equal complexity compared to
modules; thus the assumptions p’ < p and p” <p. I

2.10. Assumption — Weight augmentationireduction
functions for ATs: Selection of appropriate weight
augmentation and reduction functions, a(w) and r(w), can
have important effects on the overall reliability of the
system modeled by a DD-MTV graph. Here, we assume
a(w) = r(w) = 1. These simple constant functions can be
intuitively justified when ATs have near-perfect coverage
and are of comparable complexity to modules. §

Fig. 1. Examples of DD-MTYV graphs with six
M/T nodes (alternatives to 6VP).

3. Replacing One Version with an AT

When one module of nVP is replaced by an AT, an asym-
metric hybrid architecture is obtained (Fig. 1d for n = 6).
For n = 3, this yields a systems whose reliability is equal
to that of the recovery block scheme with 1 alternate,
Denoting the system with 2 modules and an AT at the
output of M1 as ALT2, we have:

Osvp=q"+3¢°p = q(1 +p-2p?)

OALT2=99'+9P'q+pq"q = ql1 +p-pp’+p")]
From the above, we have Q10 > Qayp iff p'+ p" < 2p.
Hence the discussion in Exam%le 2.9 applies here also.
Fig. 2 shows the unreliability P = 1 — Q of 3VP and
ALT2 schemes when p’=p”.
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Fig. 2. Unreliability P = 1-Q of 3VP and ALT2,
assuming p’=p” = s.
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We next generalize the above analysis to the comparison
of nVP and the alternative hybrid scheme ALT3 (similar
to Fig. 1d, but with n~1 modules). But we first need some
notation. Let R, ,, be the reliability of a homogeneous
k-out-of-m systém in which each module fails with
probability p (the parameter p is not explicitly shown).
m
. e

Rim=3, (el
Ry m is defined to be 0 for k > m and 1 for k < 0. We now
write reliability equations for nVP and ALT3 as follows.
To simplify the reliability expressions, let & =Ln/2].
Each of the following expressions is written by
considering the four possible cases with respect to the
presence of faults in two modules (nVP) or in one module
and its associated AT (ALT3) and for each case figuring
out how many of the remaining n — 2 modules must be
fault-free in order to guarantee a correct result.

2 2
QnVP = Rh+l,n =q Rh-l,n—2 + ZPthﬂ"z tp Rh+1r"“2

QALT3 =99 R)-1,n 2P Ry p ¥ PA Ry 23 DP " Rpi1 nn
The difference of reliabilities, AQ = Qp1 3 — Q,yp» iS:

qO-PIR, 1 5 o PO-P)-q0-PIR,, P D-P" )Ry 1 5 o

= qP-PWR a2 Ry 2] + PO-P)Ry 5 Ryi1 50]

Since each of the two terms within square brackets is
positive, a sufficient condition for reliability improvement
over nVP is immediately obtained as max(p’, p"”) <p,
which always holds by Assumption 2.9. To continue the
analysis, we note that:

m n
Ry =R = (C0)g" 1!

=m! ¢ PR Y- 1) m -k + D]
After some manipulation, we can rewrite AQ as:

(-2l (n-h-1)!] ¢"p" 7 [(n-1)p-hp'~(n—h-1)p"]
Therefore, the sign of AQ depends on the sign of the last
expression within square brackets. For n odd, h = (n-1)/2
and AQ>0 iff p+p” < 2p. For n even, we have h=n/2 and
AQ>0iff (n2-1)(p’+p")+p’ < (n-1)p. In this case, p’is
somewhat more important than p”. As an example, for
n=6, we must have 3p+2p” < 5p if the alternative with
one AT (Fig. 1d) is to be more reliable than 6VP,



4. Replacing k Versions with ATs

'We now consider the case where k of the n modules are
removed (k < n/2) and replaced by ATs following k of the
remaining n — k modules. As in Section 3, let R, ,, be the
reliability of a homogeneous k-out-of-n system 1n which
each module fails with probability p and use h = Ln/2] for
notational convenience. We can then write:

Oup=Rpi1n= i=%1(';)11‘})”'i

k k—i g . . P
QALT4=;]Z;)(§) (k;l)(PP Vg +qpYqq ’)k_‘_th+2i+j—21¢+lﬁ—2k

The reliability expression Q51 14 is derived as follows.
Assume that of the k branches containing ATs, i have
faults in both the module and in the AT, j have a fault in
either the module or the AT but not both, and k — i —j are
fault-free. The i branches with double faults all potentially
produce incorrect results with weight 2. The j branches
containing single faults produce results with weight 0,
whether the fault is in M or in T. Finally, the k —i -
fault-free branches produce correct results of weight 2. If ¢
of the remaining n —~ 2k modules produce correct results,
the following condition must be met for the output to be
guaranteed correct:

¢ + 2(k—i—j) > (n—2k—c) + 2i or ¢ 2 h+2i+j-2k+1
This justifies the term Ry o;.: 9441 2% in the expression
for Qo1 14. The other terﬁfs2 alrjezslimp'nly2 l{he probabilities of
the indicated number of faults raised to appropriate
powers. For example, the probability that M is faulty but
T catches the error or M is fault-free but T erroneously
rejects its output is pg” + gp"=p + p’' - pp’ - pp".
As written, the expressions for Q,yp and Q4 14 are
difficult to compare without resorting to numerical
calculation. To facilitate comparison, we rewrite Q,yp in
the following way. Divide the set of » modules nto k
module pairs plus n — 2k individual modules. Each of the
k pairs can have 2, 1, or 0 faults. Leti,j,and k—i—jbe
the number of such pairs, respectively. The & module
pairs contribute incorrect results with total weights of up
to 2i + j and correct results with total weights of at least
2k ~ 21 —j. Again, if the remaining n — 2k modules
produce ¢ correct results and n — 2k — ¢ incorrect ones, we
must have ¢ + 2k - 2i-j>(n -2k ~¢c)+2i +j, or
c2h+2i+j-2k+ 1, to guarantee a correct output.
The probabilities of lﬁaving 2, 1, gre O faulty modules iri a
pair of m(idxg_t;,s are p“, 2pq, and ¢°, respectively. Thus:

w3, 3, O CPaY (PR i ms

Comparing the corresponding ij terms in the expression
for 0 5114 to the above expression for 0, yp provides
some imnsight. For example, for p’= p" = 5, corresponding
terms become identical and the two schemes are equivalent
with respect to reliability. For p’=p" =g, the ij term in
QaLr4 divided by the ij term in Q,yp yields the ratio:

(sip) [@ + 5 - 2p5)2pq)¥ [(1 - s)/q}™
For particular values of s and p satisfying s < p, the first
and the second term above are always less than 1 while the
third term is always greater than 1. Hence, the above ratio
can be less than or greater than 1 depending on the values
of i and j and no conclusion can be drawn based on this
naive term-by-term comparison.
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For n = 3, the only acceptable value for k is 1 and Fig. 2
depicts the corresponding changes in the unreliability P =
1 - Q. To observe the effect of changing k, Q,yp and
O a1 74 have been evaluated for n =5, withk=1or 2, and
p= 5.1, 0.01, or 0.001, assuming p'=p”=s. Fig. 3 depicts
the resulting unreliabilities as functions of s. As expected,
the unreliabilities are identical when s = p (crossover
points in Fig. 3). The SVP scheme is uniformly better
for s > p. In the case of s < p, both alternates are
uniformly better than SVP and the alternate with k = 2 is
better than the one with k = 1. It is worth noting that the
improvement in reliability for s < p is smaller than the
degradation for s > p, particularly for larger k. Therefore,
modules must be replaced with ATs only if the condition
s < p is reasonably certain.

P=1-Q
1
-2
10
—4
10
-6
10
-8
10
""“" ....... sVP
- -.m— Ikll:léllllll ALT4
10" L i 1 8
—4 -3 -2 ~1
10 10 10 10 1

Fig. 3. Unreliability P = 1-Q of SVP and ALT4,
with k = 1 or 2, assuming p’=p” = s.

5. More General Schemes

As seen from the examples in Fig. 1, DD-MTV graphs
and the systems they model can be composed in many
different ways. The systems discussed and analyzed in
Sections 3 and 4 all involve a single level of voting.
In this section, we discuss a system involving two levels
of voting as an example of more general architectures.

Consider the DD-MTV graph ALTS which is similar to
Fig. 1b, except that the 1st level of voting involves k
modules and the 2nd level involves n—k—1 other modules.
This may be viewed as a generalized recovery block
scheme in which the primary computation is a k-way
voted block and the alternate consists of an (n—k-1)-way
parallel block. In an actual implementation, modules in
the alternate block may be executed sequentially until
sufficient votes are collected, given the outcome of the
primary voting block. The reliability of ALTS is:



Lkf2)
kN i ki "
OALTS =;>(i)qu 1q R\ n-drsni1+P RL(n—i)rzHl,u—k—l]

k
ky i keir ,
* iqg;Hx(i) 7P (4R s yrin 1P R kot ot ]

The above expression for Q15 is derived as follows.
Let there be i correct results among the k channels of the
primary voting block; this event has probability (;)¢'p*™.
Now if i < lk/2], the plurality voting result must be
assumed incorrect in the worst case. If T rejects this
incorrect result (probability g"), its weight becomes i~1
and a correct final output will be produced as long as
L(n—i)/2] of the remaining n—k—1 modules are fault-free.
On the other hand, if T erroneously accepts the incorrect
result (probability p"), increasing its weight to i+1, then
at least L(n—i)/2+1 of the remaining n—k-1 modules must
be fauit-free for the final result to be guaranteed correct.
Recall that R; ,,=0 for j>m. Similarly, if i 2 [k/2}+1, then
the voter output is correct and has weight i. The second
half of the expression for Q 5 15 is similarly justified.

To compare the above reliability expression to Q,vp, we
divide the » modules into 3 groups of k, 1, andn -k -1
modules. Let i be the number of fault-free modules in the
first group. kThen, Q,vp can be written as:

k . k__.
Quvp =‘§)(i)q'1’ '[(‘IRL(H-,)m,n—k—l+PRr(n-k-i)m,»-k-1]

The two terms within square brackets correspond to the
case of the single module in the second group being fault-
free (probability ¢) or faulty (probability p), respectively,
leading to different requirements for the number of fault-
free modules in the third group (i+1+c¢ > n—k—1—c in the
first case and i+c > n—k—1—c in the second, where ¢ is the
required number of fault-free modules in the third group).
Again comparison of the expressions for Q51 15 and Q,yp
leads to no general conclusion. For examf;llé, in the case
of p’= p” = p, we note that of the corresponding pairs of
terms in the expressions for Q1 15 and Q,,yp, some are
larger in Q o1 75 and others are larger in Q, yp.

To get an intuitive feeling for the relative values of
QaLts and Q,yp and conditions under which the
alternative scheme offers a higher reliability than NVP,
consider the special case depicted in Fig. 1b (n =6, k = 3).
The relevant reliability equations in this case are:

Reyp = q*(1 + 2p + 3p% - 16p> + 10p%)

Ryips.63=a°[142p+3p-3p°p*(142p)p’- 3p*(1-p)p"]
To compare the above reliabilities, let us compute their
difference AQ = Q5 15:63 ~ Dovp*

AQ = ¢'p*p (13- 10p) - (1 + 2p)p’ - 3(1 - p)p”]
Hence for the alternative scheme to be better than 6VP,
we must have (1+2p)p” + 3(1-p)p"<p(13-10p). Observe
that p” is somewhat more important than p’ in that it is
multiplied by a larger term. In the special case of p'=p"=s,
The above condition becomes s < p (13-10p)/(4—-p) or
s <.3p + p(1-7p)/(4-p). Thus, for p reasonably small,
reliability improvement is guaranteed as long as s € 3p.
One cannot draw general conclusions from one example,
but it is interesting to find the cause of the improved
reliability. Both 6VP and the scheme of Fig. 1b produce
the correct result when 4 or more M/T nodes are fault-free.
To see this for Fig. 1b, consider the following 5 cases
which exhaust all possible double failures. .
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Case 1: 2 failures in {M{,M,,M3}: Fault-free T rejects the
incorrect voter output, reducing its weight from 2 to 1.
Correct output is produced since My and M5 are fault-free.

Case 2: 1 failure in {M;,M3,M3} and 1 in T: T rejects the
correct voter output, reducing its weight from 2 to 1. The
output would be correct even if My or M5 were faulty.

Case 3: 1 failure in {M;,M;,M3} and 1 in {M4,Ms}:
T accepts the correct voter output, increasing its weight
from 2 to 3. The output is independent of My or Ms.

Case 4: 1 failure in T and 1 in {M4,Ms}: T rejects the
correct voter output, reducing its weight from 3 to 2. The
healthy module in {My4,Ms} creates a correct majority.

Case 5: 2 failures in {M4,Ms): T is fault-free and accepts
the unanimous voter output, increasing its weight from 3
to 4. M4 and M5 cannot affect the correct output.

Cases 2 and 3 above show that some ftriple failures are
also tolerated by ALTS; hence the improved reliability.
In certain instances, as in Cases 3 and S above, the output
of T obviates the need for executing My or Ms. These
cases correspond to up to one fault in {M;,M>,M3], with
T fault-free, and have a probability of ¢%(1 + 2p)(1 - s).

One should note that if there were no AT between the two
voting levels in Figure 1b, reliability would actually
degrade compared to a single-level scheme with the same
number of modules. The reason is that correct minority
results in the first level would be discarded whereas they
may help establish a correct majority if combined with
correct outputs from the remaining modules. So the AT is
a key element in this multi-level voting configuration.

6. Dealing with Correlated Failures

Analysis of various hybrid redundancy schemes with
correlated failures becomes significantly more complex.
In this section, we present a simplified analysis based on a
highly pessimistic view of correlated failures: that they
affect a set of modules and ATs in the worst possible way,
causing the modules to produce identical incorrect results
and an AT to reject (accept) any correct (incorrect) result.
We obtain lower bounds for the reliabilities of pure and
hybrid schemes and show the bounds for certain hybrid
schemes to be higher. This does not necessarily imply
that the hybrid schemes are more reliable (a>b, a>b’, and
b>b" do not imply a>a’). On the other hand, the exact
reliability of a complex system is not computable and we
usually settle for lower bound guarantees. From this
viewpoint, a system for which the lower-bound or
guaranteed reliability is higher must be considered better.

In what follows, we compare nVP and ALT3 schemes
with regard to correlated failures and show ALT3 to be
superior. Since nVP and ALT3 differ only in the use and
placement of M;, M,, and T, our model postulates the
occurrence of correlated failures in ¢ modules among
{M3, ..., M, 1] and includes probability parameters
relating to how Mj, M,,, and/or T may be affected. The
parameters 8, §, o, i, T, v, V', defined below, should be
interpreted as “probability of event, given that ¢ modules
in {Mp, ... , M,,_1} contain correlated/common failures”.
Nodes unaffected by correlated failures can still suffer from
random failures, with corresponding parameters as defined
in Section 2. The events associated with the conditional
probabilities for nVP and ALT3 are:



Both M; and M,, are affected

M,; (M,) is affected but M,, (M) is not
Neither M; nor M,, is affected

Both M; and T are affected

M, is affected but T is not

T is affected but M; is not

Neither M; nor T is affected

Clearly, we have B+20+v = '+u+7+v = 1. Also, given
that two modules are more similar than a module and an
AT, the following are reasonable assumptions:
7<o<u and B'<B<so<svsv

These inequalities are essentially the crux of our
comparison, in much the same way that the condition
D'+ p" < 2p was essential in proving improvements with
independent failures. One last item of notation: Since the
k-out-of-(n—c-2) reliability, R .2, is used repeatedly in
the following analysis, we denote it by Ry for brevity.
Recall that h was defined as /2],

We next derive upper bounds on the reliability reduction
due to correlated failures in nVP and ALT3. The “=” sign
denotes proportionality rather than equality.
AQ,vp = B(1 — Rpv1) + 2019(1 - Rp) + p(1 ~ Rpy1)]
+ VIg2(1 - Ry1) + 2pq(1 = Ry) + p*(1 = Ry,
=1 - [(B+20p+VpPRp41 + 29(C+ VPR + VE*R 1]
AQpy 13 = B (1 = Rp,1) + plg"(1-Rp) + p"(1-Rpy1)]
+ Tg(1-Ry) + p(1-Rpe 1) + Vigq(1 - Ri-1)
+p'q(1 = Rp) + pq"(1 - Rp) + pp"(1 — Rp41)]
=1-[(B'+up” + p+ Vpp")Rpyy
+(Uq" + 19+ VP'q + Vpq")Rp + V4qRy1]
Aang—AQ QLT:; = (ﬁ’—ﬂ+up"+1p—20p+V'pp "—,VPZ)RhH
HUG " +1q-209+VP'q+V P R p-2VpRp+q(V g ~VR 1
To simplify the above expression for AQ,vp — AQa1 T3,
note the following e(iualities:

h g

Ry=Rpa+ ("%
-2 _ 2\ e -
Rpo1 = Rysy + (TR )02+ O et

Substituting the above in the expression for AQ, yp —
AQ 1,13, the coefficient for 215;‘,“ becomes 0. Dividing
both sides by (n—c-2)tq"p"* *<™"/[hl(n—c~1-h)!], yields:

AQ,vp — AQ 113 = (n—c-1-h)[q(ugq"/q+T-20+V-V)
¥ PVa—VI+ hp(vVa'—va)
Since by our assumptions both v'¢” —vq and v'¢'-vq are
non-negative, a sufficient condition for AQ,vp — AQ A1 13
to be non-negative is to have uq”/q+1:—2c;+\y—Pv 20.

Uq"[q+7-20+v-v = L(q"—q)Iq + (U+T+V) — (20+V)
= ug"-q)lq + 1-B) - (1-P) = 1q"-lg+B-§
This last expression is non-negative by our assumptions;

hence AQ,yp = AQ s1.13 and the conclusion that correlated
failures aflfggt nVvPp fess favorably than ALT3.

TR Q™

~

<9

7. Conclusions

We have introduced a general framework for the creation,
representation and analysis of combined NVP-AT schemes
which covers previously proposed NVP-AT combinations,
such as CRB, RNVB, and NSCP, as special cases. MTV
graphs, and their simplified version called DD-MTV
graphs in this paper, facilitate the discussion and analyses
of various fault-tolerant system architectures for critical
applications. Preliminary results on new hybrid NVP-AT
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schemes demonstrate the potential for significant
reliability improvement with judicious placement of the
various component types.

Continued research in this area will enhance the utility of
the proposed general framework for the study of hybrid
NVP-AT schemes, leading to specific design techniques,
performance comparisons, and tradeoff guidelines. Results
of such extended studies will contribute both to a basic
understanding of voting and acceptance testing as
dependability enhancement mechanisms and to their
application in realizing ultrareliable computations.
Specific problems for future investigation include:

@ Optimal weight augmentation and reduction policies;
the a(w) and r(w) functions of Definition 2.8,

® Effects of unequal module complexities and reliabilities
as well as imperfect voters.

® Optimal number of modules to be replaced by ATs (the
parameter k of Section 4).

@ Optimal partitioning of n modules for 2-level voting.

® More general multi-level voting schemes and their
attendant design tradeoffs.

® Effect of combined correctness/timeliness requirements
in highly reliable real-time systems.

The ultimate goal is to solve the following problem:
Given values for p, p’, p”, as well as other system cost
and reliability parameters, what is the most cost-effective
configuration of computation modules, ATs, and voters?
As this problem is quite difficult, any approach to its
solution will necessarily use a number of intermediate
problems. For example: What is the best arrangement of
n M/T modules to maximize the overall reliability?
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