Comparing the Performance Parameters of Two Network Structures
for Scalable Massively Parallel Processors

Ding-Ming Kwai and Behrooz Parhami
Department of Electrical and Computer Engincering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract

Packed exponential connection (PEC) networks and periodically
regular chordal (PRC) rings, proposed as enhanced versions of
linear arrays and rings respectively, introduce skip links info the

respective base networks. Both networks can be viewed as
derivatives of symmetric chordal rings with restricted or reduced
connection assignments. Thus, an interesting question arises:

How can one prune or thin the connections of a given network to

a prescribed degree such that the key network properties are still
acceplable? We show the hierarchical arvangements and
grouping strategies on which PEC networks and PRC rings are

based and examine their effects on expandability, ease of
implementation, network diameter, and routing schemes.

1 Introduction

Networks with nearest-neighbor connections, such as linear
arrays and rings, have an area complexity of O(V) with N nodes.
Although their implementation is véry compact, lack of long-
distance connections adversely affects the communication latency
and network reliability. One common approach to improving the
performance is to increase the connectivity by introducing a fixed
number of skip links or express channels into the networks.
Based on this multiple fixed-skip construction, different aug-
mented structures have been proposed to secure desired properties
of small diameter and robustness. Among these, topologics de-
rived from unidirectional and bidirectional rings have proven
quite effective in view of routing simplicity.

Homogeneous networks in which all nodes have the same
degree and uniform connection patterns offer several advantages
over arbitrary networks with respect to task scheduling and data
routing, In fact, an important reason for including end-around
ﬁxﬂsﬂmoomeaboundarynod&msomeammwcumgpchas
augmented data manipulator networks [13] and contintiously
wrapping hexagonal meshes [2}, is to introduce connection uni-
formity. On the other hand, homogeneity may lead to certain un-
desirable properties. For example, in some symmetric networks,
such as tori and chordal rings, one either has to cope with rela-
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tively large diameters or be willing to pay the cost of complex
nodes whose degree increases with network size. A natural ques-
tion, then, is: How can one do away with homogeneity and still
maintain desirable properties of a given class of networks?
Several attemnpts have been made to answer the above ques-
tion [4, 10, 13, 14, 17]. We compare two such architectures:
Packed exponential connection (PEC) networks and periodically
regular chordal (PRC) rings. The former has been proposed as an
enhanced bidirectional linear array [10] while the latter is based
on a unidirectional ring [13]. These two architectures are similar
in node degree, use of skip connections, and derivability from
symmetric chordal ring through the removal of some links.
Hence an in-depth comparison of these "locally heterogeneous"
architectures may lead to inferences about the best strategies for
"pruning" edges from a homogeneous network without signifi-
cantly altering its key topological parameters (e.g., diameter).

2 Network definitions

We assume that » — 1 types of auxiliary connections are in-
troduced into a unidirectional or bidirectional ring. Let RV, s,, s,,
.. » 8, ) denote a unidirectional symmetric chordal ring with N
nodes indexed from 0 to N — 1 and # — 1 skip links per node such
that node v is connected to # — 1 remote nodes v +s,, v+s,, ... , v
+ 5, ,, in addition to its near neighbor v + 1. R(V, s, s,, ...,
s, ) is the bidirectional version where node v is connected to
nodesvtl,vts,vis, ..., vts, . Fornotational conven-
ience, we define the local or nearest-neighbor connection as skip
distance s, = 1 and also introduce s, = N. Note that the node de-
gree for bidirectional chordal rings is even except in the special
case where N/2 constitutes one of the skips.

The symmetric chordal ring is homogeneous in that all
nodes are topologically identical. Fig. 1 shows an 8-node bidirec-
tional symmetric chordal ring with node degree 5 and skips +s, =
1, &5, =42, and s, = 4. For these networks (and their general-
ized versions with s, = 1), Wong and Coppersmith [15] have
shown that the diameter is bounded by a finction of nN'". Hence,
the diameter can be reduced by increasing the node degree n. See
also the survey by Bermond, Comellas, and Du [1].
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Fig. 1. An 8-node bidirectional symmetric chordal ring R(8, 12, 4).

2.1 PEC Networks

PEC networks use skip distances s, =2", 0 <h<n - 1, in-
ocorporating all possible skips (i.e., 7 = log,N). The skip distance
2 is assigned to a node v if v = 12" + 2" for some non-negative
integer /. Each node v has at most four links connecting to nodes
v+1,v—1,v+2"and v — 2 if these nodes exist. All odd-
numbered nodes (having IDs of the form 2i + 1) are assigned skip
distance of 2. In general, a node is assigned skip distance of 2” if
its ID ends with exactly # — 1 zeros.

2.2 PRC Rings

In PRC rings, the 7 — 1 skip distances of a symmetric chor-
dal ring are distributed among a sequence of nodes, each being
assigned only one skip distance. This is similar to the derivation
of cube-connected cycles (CCC) architecture [14] from a hyper-
cube. The N nodes in a PRC ring are split into Mg groups of g
consecutive nodes, where g = n — 1 divides N. Each group then
possesses a complete sequence of skip distances from s, to s,. The
skip distance s, is assigned to a node vif v=ig + (g - 4), 0 <i <
Njg—1and 1 </ <g. Node v has two outgoing links connecting
to nodes v + 1 and v + 8, and two incoming links originating
from nodesv—1andv -,

By varying these parameters, one can obtain architectures
with widely different characteristics (e.g., from polynomial to
logarithmic diameter). Assuming that s,,, is divisible by s,, the
network diameter of a PRC ring is 5% | sj.1/55 — 3 [13]. Recall
that s, = 1 and s,,, =5, = N. Given a particular value for g, the di-
ameter is minimized for s, /s, = NV, This leads to the optimal
diameter d = (g + DNYED - 3, Selecting g = (log,N)/2 — 1 mini-
mizes the diameter to 2log,N - 3.

3 Topological Properties

3.1 Node Degree

The node degree of both PEC network and PRC ring is a
small constant. The features of the two structures, however, di-
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verge due to important differences in the original networks on
which they are based. A linear array is irregular in that its node
degree is not uniform. In a PEC network, the node degree is 1, 2,
3, or 4. Consequently, if nodes have identical designs, as is nor-
mally the case in practice, some communication ports will remain
unoconnected. This apparent waste of resources may lead to better
expandability (ie., constructing a large network from smaller
building blocks).

A ring, on the other hand, is both node- and edge-
symmetric. In a PRC ring, circular symmetry is relaxed from a
node to a group of nodes. Node degree (in-degree plus out-
degree) is uniformly equal to 4. But, symmetry is in part sacri-
ficed for realizability and scalability.

We assume, for simplicity, that the PRC ring is unidirec-
tional. We will see that our results do not change appreciably for
bidirectional PRC rings. For an actual implementation, it may be
advantageous to make PRC rings possess bidirectional links. The
most important reason is to allow us to exploit locality of commu-
nication which generally involves frequent passing of messages
between near neighbors in both directions.

3.2 Connection Assignment

The differences between the two network structures are fur-
ther accentuated by their connection assignment schemes. PEC
networks adopt a simple approach to obtaining an asymmetric
network; viz, modifying a symmetric chordal ring by removing
some inter-level and all intra-level end-around links, which leads
to the distinction between interface nodes and non-interface nodes
in terms of their degrees. Hierarchical levels are introduced into
the PEC network, where each node v = 2" + 2" is located at a
unique level / and each level consists of N/2" nodes. Thus, two
oconnections of equal skip distance never overlap in a PEC net-
work.

On the other hand, groups are introduced into PRC rings
and optimal skip distances are selected to be close to powers of
NY". The periodically regular connections cluster every g =n — 1
consecitive nodes into one group. Each node v = ig + (g — h) is
identified as being at the (g — A)th position within group i. The
group size g is also the period of the connection assignment so
that if node u is connected to node v, then node » + g is connected
to node v + g for all # and v. Thus, the connection pattern is re-
peated afier every g nodes around the ring [5].

Fig. 2 shows an example of how 8-node PEC network and
PRC ring are constructed by removing some connections from
the symmetric chordal ring of Fig. 1. In the hierarchical layout of
Fig. 3 nodes of the PEC network are arranged in log,V + 1 levels.
Direct connections are provided from each higher level to the
"ground" level but niot between the higher levels. Thus, all inter-
level commmunications must go through nodes at the ground level.
The PRC ring may be scen as providing both inter-level (7 to 0
and 0 to/from 4) and intra-level (6 to 2 and 7 to 1) end-around



connections. Such differences in arrangements, together with the
absence or presence of the ring property, result in different rout-
ing strategies for these networks.

Fig. 3. Hierarchical construction of (a) PEC network and (b) PRC ring.

4. Routing Schemes

4.1 PEC Network

An imregular network structure incurs extra routing com-
plexity in view of the need to examine the boundary conditions.
H-routing [8] is a deterministic routing algorithm which favors
the greedy use of links with large skip distances subject to the
condition of no overlap between the endpoints of the links used in
the route. If level 4 is sclected to pass a message but is inaccessible
to the source and destination nodes, the routing steps must go up
and down to level # by taking two extra hops along the local
links.

Let H(r) be the number of hops used by H-routing for pass-
ing a message from node 1 to node 2” - 1. The path length from
node 0 to node 2" — 1 is thus H() + 1. The greedy use of skip dis-
tance s, = 2" will exhaust all the 2" — 1 links in the middle of the
PEC network. The process then repeats for the remaining non-
overlapped 2 — 1 nodes at either end by selecting the next avail~
able level. This divide-and-conquer approach leads to the recur-

rence

H(1) = min, QH(: — 1) +2"") +1
The initial condition H(1)=0 leads to H(n) = ©(J/m 2> ) [ 9].
Unfortunately, this algorithm is centralized and we see no way of
modifying it to run in a distributed manner such that routing deci-
sions are made distributively on a hop-by-hop basis.

275

4.2 PRC Ring

An important property of PRC rings, inherited from simple
rings, is the modulo V reduction that allows the use of relative ad-
dressing scheme, or the "distance" from the current node to the
destination, as opposed to using the actual destination address. A
routing algorithm for unidirectional symmetric chordal rings is
given in [7]. The same routing rule is used at each node: Reduce
the distance to destination by the largest possible amount without
overshooting the destination. Unlike the complex centralized al-
gorithm needed for PEC networks, the price of asymmetry is
much lower in the case of PRC rings, for which the following
two-phase routing algorithm has been proposed [13].

In phase 0, which is the initial condition, the message is sent
to a node at the first position within its group (with the largest
skip distance s,). This ensures that the message routing can take
the largest available skip. At most g — 1 extra hops are implied by
this phase. The next phase determines whether reducing the dis-
tance to the destination by the skip distance leads to a non-
negative residue. If so, the message is sent along the correspond-
ing skip link. Otherwise, the message is moved along the local
link to the node which has the next longest skip distance s, ,. The
routing algorithm stays in this phase until the message reaches its
destination. At most g — 1 extra hops are required for such cir-
cumferential transitions from one skip distance to the next.

This simple routing algorithm does not incur significant
overhead. On the contrary, the reduced connectivity simplifies the
decision making process. In a symmetric chordal ring, we need to
examine several skip distances at each node in order to select the
outgoing link. In PRC rings, we only need to examine one skip
distance. The worst-case routing distance d, satisfies

dy<n([N"1+1)-4

This upper bound is 2» — 4 hops more than that of a symmetric
chordal ring with node degree 2.

We can derive an optimal group size that minimizes the
worst-case routing distance. This optimal group size increases
with the number of nodes . Fig. 5 shows the worst-case routing
distances in N-node PEC network and PRC ring. One can see
that lack of inter-level connections in the PEC network does lead
to a higher communication overhead.

S. Other Properties

5.1 Bisection Width

The bisection width of a network is the minimum number of
links cut when dividing the network into two equal halves. The
bisection width b for a PEC network is

b=log,N
which depends only on the network size V. The network is incre-
mentally extensible by concatenating two N-node PEC networks.



The number of additional connections to be established is the new
bisection width b + 1.

The bisection width b of an N-node PRC ring with group
sizeg =n—lisequalto2+2 ) s4/(n— 1) . When N*" is an
integer and s, is optimally chosen to be N#", the exact bisection
width becomes

2 (N_Nlln)
n-1 N]/n_l

which depends on both the network size N and the group size g.
One disadvantage of PRC rings is that the optimal networks are
not incrementally extensible. By fixing the bisection width and
sclecting a constant set of skip distances, the use of a smaller PRC
ring as a building block incurs the penalty of greater routing dis-
tances and increased diameter. This effect is shown in Table 1,
where the skip distances 4, 16, 64 and 256 are used to construct
PRC rings from 256 to 4096 nodes with g = 4.

b=2+

Table 1. PRC Rings Using Fixed Skip Distances

Number ofnodesN | 256 512 | 1024 | 2048 4096
Diameter d 14012 | 1504 | 17 | 2108) | 29¢20)
Average distance @ | 8.1(7) | 8.88.1)| 10 [12.1(10.9)] 16.1(12)
Worst-case routing

16(15) | 17(16 19 | 2322) | 31(26
distance d, (15) (16) (22) (26)
Averagerouting | g g0¢ 6y110.390.7)| 113 [13.4(12.8)17.416.4
dnnd, 8(8.6) [1039.7)| 113 [13.4(12.8)17.4(16.4)

Note that even though the diameter with respect to the opti-
mal value (shown in parentheses if different) is relatively large for
N = 4096 nodes, both the worst-case routing distance d, and the
average routing distance d;, exhibit smaller differentials. From a
practical standpoint, the average routing distance is a more accu-
rate predictor of performance than the worst-case routing dis-
tance, which is in turn more relevant than the diameter 4. Hence,
these results are quite encouraging.

5.2 Number of Links

In an N-node PEC network, we have 1 node with degree 1
(node 0), 2 nodes with degree 2 (nodes N/2 and N — 1), 2 log,N —
3 nodes with degree 3, and N — log,V nodes with degree 4. The
total number of bidirectional links is therefore 2V — log,N — 2.
The number of unidirectional links in an N-node PRC ring is 2V,
Thus, link count is roughly the same for both networks. However,
one must note that, depending on the implementation technology,
time overhead may be involved in switching a bidirectional link
from one direction to the other. Hence, higher-performance (and
thus higher-cost) bidirectional links may be needed to provide the
same throughput as a corresponding unidirectional link.

Becanse PEC networks have a larger number of short links
and a smaller number of long links compared to PRC rings, link
oost (e.g,, as measured by VLSI area) is lower for PEC networks.
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5.3 Cartesian Product Networks

A natural way to extend a network topology is to combine
basic graphs by their Cartesian product [16). Packed exponential
connections, as originally proposed, are built on top of a 2D mesh
[10]. The resulting topology is the Cartesian product of two 1D
PEC networks as shown in the 8x8 example of Fig. 4(a). The
Cartesian product is equally applicable as a composition tool to
PRC rings, where the periodically regular connections are built
on top of a 2D torus. Fig. 4(b) shows an 8x8 PRC ring (edge di-
rections are not shown to avoid clutter and to facilitate compari-
son). Although the node degree is doubled in both cascs, the
extent to which the network diameter is affected is different for
the two networks.
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Fig. & Improvement of worstcase routing distance in 2D product
networks,

We compare the worst-case routing distances obtained by an
NxN 2D structure and an N*-node 1D structure for both PEC net-
works and PRC rings (Fig. 5). For an N*-node 1D PEC network,

the worst-casc routing distance ©( /log,N 2°4"**" ) is consid-
erably greater than ©( flog,N 27V"*2" ) of an NxN 2D PEC
network. The worst-case routing distance for an NxV 2D PRC



ring with group size g = n — 1 is bounded by 2n(N*"] + 1) - 8.
This is comparable to that of an A*-node 1D PRC ring with group
size g = 2n — 1, which has diameter 22( N*| + 1) — 4. Thus, the
improvement is not significant. However, since the skip distances
and connection patterns are different for the 2D version of PRC
rings, their use may be justified on the basis of lower implementa-
tion cost as opposed to smaller diameter. This issue merits further
investigation.

6 Conclusions

In this paper, we have compared two distributed and reduced
connection assignment strategies. PEC networks arrange nodes
in hierarchical levels and PRC rings cluster nodes in groups.
These two "thinning" strategies lead to different routing schemes
and architectural properties. The cost/performance parameters of
the two networks are summarized in Table 2.

Table 2. Cost/Performance Parameters for Different Degree-4 Networks

Bidirectional Unidirectional

PEC 2D Torus | PRC Ring { 2D MSN
Worst-case rout-| -—— A ANV -4 N4 1
ing distance d,, log, V2 "
A.verage routing N.ot ~dy 2 >d2 ~d 12
distance d,, available
Bisection -

! 2N 2N-N"T) 2N'?
width b oeN e B
Total number

2N- -2 2N 2N 2N

of links log,V

For a fixed number of nodes, the number of edges captures
the cost of links and I/O ports, and hence is a reasonable first ap-
proximation to the cost of different network topologies. However,
a single overall measure for the performance of networks is hard
to define and little agreement over a standard measure exists. De-
spite their shortcomings, the worst-case and average routing dis-
tances and bisection width are listed in Table 2 as performance
indicators. For completeness, 2D torus and its unidirectional vari-
ant, known as Manhattan street network (MSN), with same node
degrees are also shown [3]. It is noteworthy that the PEC network
and MSN [11] require more complicated routing schemes, while
the PRC ring has the same routing simplicity as the torus.

Although in such heterogeneous networks certain links may
become more congested than others, PRC rings are expected to be

. both more resilient and less prone to congestion when there is a
significant level of non-local or random communication. This can
be explained by observing that PRC rings preserve periodic regu-
larity while PEC networks have fewer links for larger skip dis-
tances (the number of skip links provided is hatved with each
doubling of the length). The price that one pays for the above ad-
vantages of PRC rings is limited expandability and a more com-
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plex oconnection pattern which translates into greater area or
space for interconnections.
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