Performance Analysis and Optimization of Search and Selection Algorithms
for Highly Parallel Associative Memories

Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract

Several useful associative memory (AM) algorithms deal with
identifying extreme values (max or min) in a specified field of
a selected subset of words. Previously proposed algorithms
for such extreme-value searches are bit-sequential in nature,
even when implemented on fully parallel AMs. We show how
the multiple-bit search capability of a fully parallel AM can be
used to advantage in reducing the expected search time for
finding extreme values. The idea is to search for the all-ones
pattern within subfields of the specified search field in lieu of,
or prior 1o, examining bit slices one at a time. Optimal
subfield length is determined for fixed-size and variable-size
bit groupings and the corresponding reduction in search time
is quantified. The results are extended to rank-based selection
where the jth largest or smallest value in a given field of a
selected subset of words is to be identified. Analyses point to
significant reduction in the average number of search cycles.

1. Introduction

Associative or content-addressable memories have been
studied and used as mechanisms for speeding up time-
consuming searches and for allowing access to data by
name or partial content rather than by location or address.
An associative memory (AM) can be viewed as a hardware
device consisting of N fixed-size cells, each being marked
as empty or storing a data word or record. We denote the
number of nonempty AM words by n, where n < N.

When presented with a search key (comparand) and a mask
specifying relevant field(s), the AM responds by marking
all the words that satisfy the search requirements. Marking
is done by (re)setting a response bit or tag in the AM cell.
The N response bits together constitute the response store.
A response indicator provides information on multiplicity
(0, 1, several) or an exact count of the responders. When
there is no responder, the search outcome is negative.
With a single responder, the required data item has been
located and can be appropriately dealt with by reading it
out or modifying it in-place. With several responders, the
iate course of action might be proceeding to further
narrow down the search, simultaneously modifying all
responders in-place, or examining the responders in turn
through the use of a multiple response resolver.
Architecturally, associative memories are of four varieties:
Fully parallel, bit-serial, word-serial, and block-oriented.
Cost-cffective bit-serial systems have been dominant in
practical implementations, but fully parallel systems are
also implemented, particularly where high performance for
the basic masked exact-match search capability is required.

0-8186-7235-8/96 $5.00 © 1996 IEEE
Proceedings of MASCOTS ’96

Starting with the pioneering works of Falkoff [3] and
Estrin & Fuller [2], many algorithms have been developed
for performing search, retrieval, and arithmetic/logic
operations on data stored in AMs [1, 4, 7, 8]. Meanwhile,
innovations in hardware acceleration methods and scalable
AM architectures have made the implementation of larger
systems, as an important subclass of high-performance
SIMD architectures, attractive and practically feasible.

Even though bit-sequential arithmetic can be programmed
on virtually all AMs, and special hardware features have
been implemented/proposed for facilitating or speeding up
numerical computations, the focus of AM implementation
efforts and research studies has been searching and other
non-numerical functions [S, 6]. Besides simple exact-
match search, other types of searches can be implemented
as primitives for data manipulation and retrieval [8].
These include approximate-match searches (similarity,
adjacency, or threshold distance), relational searches (less
than, greater than or equal to, etc.), and interval searches
(combination of two relational searches).

Several useful AM search algorithms deal with identifying
extreme values (max or min) in a specified field of a
selected subset of words. In image processing, max/min
pixel "intensities” are needed for normalization and contrast
enhancement. Also, max or min pixel IDs are used for
labeling an image's connected components, a frequently
used operation in computer vision [9]. In other contexts,
max or min finding is used for leader election (designating
a processor as controller, arbiter, or coordinator) or in licu
of relational and between-limit searches to determine that a
large collection of monitored objects/subsystems are all
operating within safe margins. Selection (finding the jth
largest/smallest value among n elements), and its special
case of median finding where { = nf2, are similarly quite
useful in image processing filters and data partitioning
(e.g., in parallel divide-and-conquer algorithms for sorting).
Previously proposed algorithms for extreme-value search
are bit-sequential in nature, and therefore relatively slow,
even when implemented on high-performance fully parallel
associative memories. In this paper, we show how the
multiple-bit search capability of a fully parallel AM can be
used to advantage in reducing the expected search time for
finding extreme values. For brevity, we will discuss only
maximum finding and selection of the jth largest value,
but the proposed techniques are clearly applicable, with
trivial adjustments, to minimum finding and selection of
the jth smallest value as well.



2. Bit-Sequential Max Finding

2.1. Associative Memory Model

The AM model of interest here is the fully parallel model.
Each AM cell compares the entire comparand, as masked
by the content of a mask register, to its own content and
sets a response tag if they match. The availability of a
response indicator is assumed. A 3-valued indicator (0, 1,
several) is adequate for the simpler algorithms while a
response count 1s required for optimal adaptive versions.
All N comparisons, setting of the AM tags, and response
indication are performed within a single basic cycle which
will be taken as unit time in the rest of the paper.

Clearly, a larger AM needs a longer cycle time compared
to a smaller AM in view of the additional time required for
instruction/operand broadcasting and multiple response
indication and/or resolution. These variations, however,
are irrelevant in the context of this paper in that we
assume the availability of a fully parallel AM of a given
size and compare our algorithms, in terms of the number
of cycles, to the ones proposed for the same architecture
using exactly the same assumptions.

2.2. A Bit-Sequential Algorithm

The following algorithm is described assuming an
unsigned integer field. Modification to signed and non-
integer values is straightforward [8]. The bit-sequential
max-finding algorithm scans the field of interest, starting
from the most significant bit. At the start of a typical
step, corresponding to bit position i, a set of AM words
are candidates for being maximum. The candidate set is
identified by setting of one of several tag bits or by the
contents of a specific bit-slice in the AM cells. A search
is performed for the value of 1 in bit position i. With no
responder, the candidate set remains the same, while with
several responders, the candidate set is replaced by the set
of responders. For a &-bit field, a maximum of ¥ AM
cycles, as defined in Subsection 2.1, are required.

2.3. Approximate Average-Case Analysis

The bit-sequential max-finding algorithm described in
Subsection 2.2 may terminate before all k bits in the
given field have been examined. To analyze the average-
case behavior of this algorithm, let us assume that the
candidate set is initially of size m and that bit values are
randomly distributed (i.e., in any given cell and bit
position, the probability of having a 1 is 0.5, independent
of all other cells and bit positions).

Let k (w) be the (remaining) number of bits in the search
field and T}, ,, denote the expected number of search cycles.
We write an approximate recursive formula for T, | based
on the observation that with probability x/2* the search is
terminated after inspecting the most-significant bit of the
w-bit field (the probability that of the x bits in one bit-
slice, exactly one is 1). If the search continues, however,
there will be an expected number of x/2 candidates with a
remaining search field of length w — 1. Thus:
Ty x=1+Q =27 pwithTy =T, ;= ¢))
If one plots the variations of T,, , with the candidate set
size x for several field widths w, it becomes apparent that,
consistent with intuition, when x is greater than 2%, the
number of search cycles is roughly w, while for x < 2%,
the expected search time is a logarithmic function of x.

218

Eq. (1) is approximate since on its right-hand side, a single
term with the expected number x/2 of remaining candidates
is used instead of x different terms, one for each possible
size of the remaining candidate set, appropriately weighted
with its occurrence probability. For example, from Eq. (1)
we getT,, 5 = 1 whereas a more “precise formulation yields
T, ,=1+(/2)T,_, ,=2-2"" based on the observation
tha'tzboth cells remain candidates with probability 1/2 (i.e.,
when they hold equal bits). However, this is a worst-case
example and Eq. (1) usually gives fairly accurate results.
2.4. Exact Average-Case Analysis

The following is an exact probabilistic analysis. Let y be
the number of responders after searching for 1 in a bit slice
and thus spending one search cycle. If y = 0 (no responder,
probability of event = 27), the search continues with the
same number x of candidates in the remaining w — 1 bits.
For y = 1, the search ends. Finally, for y > 2 (probability
()27 for each y), the search continues with y candidates
in the remaining w — 1 bits. Thus:

T, =1427°T,, | +27* )‘1(;‘)T,‘,_1 S WithTy =T, ;=0 (2)

Fig. 1 shows the variation of T,, , with the candidate set
size x for several residual widths w. Eq. (2) is computa-
tionally much more intensive than Eq. (1), but the results
of this exact analysis closely match those obtained through
approximate analysis, particularly for large x.

12 1 i I

1 Twx w=16 [
10 w=12 -
8 1 w=8 -
5 r
4 /&—G—Q—G—H w=d C
2 7 r
[s] T T T X

100 1000 10
Fig. 1. Expected number of cycles in bit-serial max search.

1 10

3. Max Finding with Uniform Groups
3.1. Benefit of Multi-Bit Search

Intuitively when m is much larger than 2k it is very
likely that the maximum value is 2* — 1, represented by
the all-ones bit pattern. Thus, in such a case, it makes
sense to first search for the all-ones pattern and resort to a
bit-serial max-finding algorithm only if the first search
yiclds no match. Let the probability that a match is not
found in the first step be py . Iéfch word contains the
all-ones pattern with probability 27%, Thus, the probability
that none of the given m words holds the all-ones pattern
is py m=(1-27)™. The search time is thus
T'w,x=1+pw,xTw,x=1+(1—2_W)ITW,X 3
where T, | is the bit-serial search time of Eq. (2). Plots
of T",, . a¥'a function of x for different values of w appear
in Figfﬁ. Comparing Figs. 1 and 2 reveals advantages of
this new strategy when x is larger than 2".



CwWe12

1 10 100 1000

Fig. 2. Expected number of cycles in bit-serial max search
with initial search for the w-bit all-ones pattern.
In order to achieve better performance for cases where x is
smaller than or comparable to 2", one can perform g-bit
block searches for the all-ones pattern rather than using the
entire w-bit field. Intuitively, if the candidate set size is
larger than 2%, g bits may be relaxed in a single cycle.

3.2. Approximate Average-Case Analysis

We write a recursive formula for 7®), _ (the expected time
for max finding using uniform groups of size g) based on
the o§>§_e1rvation that with probability

x/28 3, (/257!

the search is terminated after inspecting the most-
significant g bits of the w-bit field (this is the probability
that of the x g-bit fields, exactly one has the value v and
all others are less than v for some v in the range 1<v<28),
If the search continues, however, there will be an expected
number of x/28 candidates with a remaining search field of
length w — g. If the candidate set size is x, the probability
that a match is not found when searching for the all-ones
pattern in the current g-bit block is (1-27%)*. In this case,
one can resort to bit-sequential search for the current block
and treat the subsequent blocks izg tlhe same way. Thus:

IO, = 1+(1-28) T, +(1-2/28 T T, g p0(4)

8

1.0
: TW,X

ge2

1 T T T
1 10 100 10*

Fig. 3. Expected number of cycles in max search in a
_ field of width w = 12 with fixed group size g.
The initial conditions for Eq. (4) are the's;x&)g, as those for
Eq. (1). Fig. 3 shows the variation of wx With the
candidate set size x for several values of group size g

1000

219

assuming w=12. The reader should not be misled by the
straight lines drawn through the points in Fig. 3 in order
to show the trends. A detailed plot with more points
would reveal significant jitter (resulting from divisibility
and rounding effects) which is typical of situations when
continuous analysis is used for integer-valued parameters.
As an example, for x = 64, the group size g = 3 is better
than g = 4, whereas Fig. 3 seems to indicate otherwise.
3.3. Exact Average-Case Analysis

We write the following recurrence, for expected search time:

1(:)%‘ =1+(1-287T, .+ yZQq""” 7“)“,_3’, ®
where ¢, . . is the probability of candidate set size being
reduced from

x to y after relaxing a g-bit blfxik. At the end
of this recursion, when w<g, we set 7%’ 0T, ..
Note that the first two terms on the right-hand side of (g)
are identical to those in sg)i The probability 9%y is:

- X\ i =
Ggxy=2Fdx-3+ 3 ()2® ey ©
The first term in Eq. (6) corresponds to the case of no 1 in
any of the g bit slices of the current group, with d(x - y)
being the step function which is 1 if x=y and 0 otherwise.
In other words, the maximum value in the g-bit field is 0
with probability 278* and in this case, y will be equal to x.
Each term in the summation corresponds to the y
responders having the value v (1<v<2%-1) and all the x—y
non-responders having values less than v. Again, results
from the exact analysis closely match the approximate
ones for large x. Observe that in the limiting case of g=w,
the sum term in (5) becomes zero and the scheme leading

to Eq. (3) results. Thus 7("),,’ 2= Ty, x> as expected.
! ! 1

(g}
T

w.x

2 T T T - x
1 10 100 1000 10*
F}g. 4. Expected number of cycles in max search in a

1eld of width w = 12 with fixed g (exact analysis).
Fig. 4 shows the variation of 7€), _ with x and g for
w=12. The jitter and periodic variations due to divisibility
and rounding effects are evident here. However the overall
trend of larger group sizes doing better as x gets larger is
also clearly seen. The periodic variation is due to the tail
end of the recursion, as discussed earlier. As an example,
g = 6 does better than g =2, 3, or 4 for x = 128 = 27 and
again becomes better as x is increased beyond 214,
3.4. On Optimal Group Size
Intuitively, an optimal value for g exists since for g 00
large, block searches are unlikely to be successful, while if
g is too small, we won't do much better than bit-sequential
search. Even though the optimal value for g cannot be



derived in closed form, the above analyses help in selecting
a good value for g. Figs. 3 and 4 show that the optimal
graup size g°P* for w = 12 (giving the lowest value of
T® ) shifts from 2 to 3 and from 3 to 4 as the candidate
set size x grows beyond 8 and 32, respectively.

4. Max Finding with Adaptive Groups
4.1. A Greedy Max-Finding Algorithm

If g can be picked arbitrarily, then it can be adjusted at each
step to minimize the expected residual search time. As an
approximation to this globally optimal approach, one may
try a greedy strategy of minimizing the per-bit search time
for the next few bits. This is called greedy since it is
based on maximizing the immediate gain as opposed to
following a globally optimal course.

Consider the following algorithm. In Phase i, a block size
g is selected and a search for the all-ones pattern within
that block is conducted. If matches are found, Phase i + 1
is initiated. Otherwise, Phase i is completed by performing
g bit-sequential searches. Our greedy strategy is based on
minimizing the per-bit search time for the current phase.
To execute this algorithm, an exact or approximate count
of the number of responders is required in each phase.

The probability of not finding an all-ones pattern in a g-bit
field of x words is (1 — 27%)*. Thus, the expected per-bit
search time within the current g-bit block is

tg,x =1lg+(1- 28y @)
where 1/g is the per-bit overhead of the initial g-bit search.
Fig. 5 shows the logarithmic growth of g with x. The
least-squares straight line through the data points is really
g = (67/84)log,x —5/28. Ignoring the first two points for
log,x<4 in view of boundary effects, the least-squares fit
becomes g = (61/70)logyx-38/35. This line (dotted in
Fig. 5) matches the data points for log, x > 6 perfectly, to
within the jitter expected for an integer-valued function.

"o gm
/Q
12
10
3
s
o
4 !
2
‘og x
L]
2 “ 8 8 10 12 14 16
Fig. 5. The optimal group size when bit-sequential
search is used after an unsuccessful block search.

These results are consistent with intuition. A block size
of log, x yields an average of one responder. Therefore, in
some cases there will be no responder and the block search
cycle goes to waste. A block size slightly less than log, x
increases the likelihood of finding some all-ones patterns
while at the same time it relaxes a relatively large number
of bits in the event of finding such matching patterns.

220

4.2. Alternate Adaptive Strategies

Instead of resorting to bit-sequential search within a group

of size g when the search for the all-ones pattern produces
no responder, one can try again with a smaller group size.
Possible choices for reduced group size are g-1, g/2, etc.
Following is an approximate analysis for a class of
algorithms in which the group size is reduced from g to
flg) after any unsuccessful block search. Using a {greedy
strategy to minimize the expected search time for the

®

immediately following bit, we get:

ty,x =g+ (1-27%)7 the),x With 1) ;=1

Fig. 6 shows g™ for f(g)=g/2]. The least-squares straight
line through the points is g = (6/7)log,x—3/14. The first
two data points corresponding to x<4 exhibit the boundary
effect more drastically here. Ignoring these points, the
least-squares fit becomes g = log, x — 2 (dotted line).
The optimal group size is slightly larger here, as expected.

) /

fog , x
o

Fig. 6. The optimal group size when g is halved after
an unsuccessiul block search.

4.3. On Exact Average-Case Analyses

Strategies with adaptive groups do not lend themselves to
exact analytical evaluation. In some cases, even numerical
evaluation becomes impractical for large x in view of the
exponential growth of the number of terms to be evaluated
recursively. For example, let T°Pt, . be the overall optimal
search time with x candidates in 3 Tield of width w, using
the algorithm of Subsection 4.1; i.e., resorting to bit-
sequential search in the event that the search with optimal
group size g(x) yields no responder. The optimal group
size function g(x) must be determined from a recursive
equation involving two x-term sums, with each term being
the product of an event probability and a residual optimal
time expression of the form T°, ., .. The situation is
much worse for the algorithms of gﬁgsection 4.2 since
both the g(x) and flg) must be determined.

In all cases where we have been able to perform numerical
experimentation, the logarithmic growth rate of the
optimal group size g°® is observed asymptotically. The
differences between various strategies are significant only
for boundary cases involving small values of x. Itis,
therefore, quite possible to begin the search with one
strategy that exhibits good performance for large x and to
then switch to a different strategy as x becomes smaller.
Ways of combining such strategies and the optimal
switching point need further study.

2 4 [}



5. General Rank-Based Selection
5.1. A Bit-Sequential Selection Algorithm

Assuming that an exact count for the number of responders
is available after each search, the jth largest value held
within a set of m candidate fields of length k can be
identified through bit-sequential searching as follows.
There are k steps in the algorithm. Step i (0<i<k) starts
with x candidates among which the rth largest must be
identified (r < x; initially, x = m, r = j). Let there be y
responders to the search for 1 in the ith most significant
bit of the field. If y > r, then the search continues among
the responders for the rth largest value. If y <7, then the
required value must have a 0 m the current bit slice. Thus,
the search continues among the non-responding subset of
the original set of candidates for the (r—y)th largest value.

Average-case time complexity of this algorithm is found
in a manner similar to that of bit-sequential max finding:

x r-1
S W, 7, X =1+ ;6)2-15“0—1, 7, y+ yzb(;')2—-xs w1, r=y, x-y (9)
Boundary conditions for Eq. (9)are S,, 1 1=Sp , x= 0.
§.2. Selection with Block Searches

Consider a g-bit subfield starting at position i and let there
be x candidates at this point. Approximately x/2¢ of the
candidates have the all-ones pattern in the next g positions.
Thus if 7 < x/2%, it is likely that g bits can be relaxed with
a single search for the g-bit all-ones pattern. If the search
does in fact produce at least 7 responders, then we simply
continue from bit position i+g, looking for the rth largest
value among the responders. If, on the other hand, there
are fewer than r responders, we repeat from bit position i,
using single-bit searches within the current g-bit group or,
more generally, with a smaller group size h(g).

5.3. A Greedy Adaptive Selection Algorithm
The greedy adaptive strategy for selection is quite similar
to that used for max finding in Subsection 4.2. Using an
integer-valued group size reduction function h(g) and a
greedy strategy to minimize expected search time for the
immediately {ollowing bit, the quantity to be minimized is

S, x =1/g +[,§b(;)2—8y0_2—3)1—y]sh(g)' x With 5, =1 (10)

It is instructive to analyze the algorithm's behavior in the
important special case of median finding; i.e., for r = Lx/2.
In the initial step, the optimal group size is f:l, leading
to y=x/2 responders. If y21x/2frt?1en the rth largest value
among the responders is sought. The optimal group size
in this second step is likely to be large in view of the fact
that r is likely to be very close to y and a search for the
all-zeros pattern can be done to relax several bits at once.
For y<lx/2], the (r—y)th largest value among the non-
responding candidates must be identified. Again, 7~y is
likely to be small, leading to a large optimal group size.

6. Conclusions

We have shown how the multiple-bit search capability of
fully parallel AMs can be used to improve the average-case
performance of extreme-value searches and rank-based
selection algorithms. Other searches for which these

up techniques are applicable include identifying the j
largest values (rather than the jth largest) in a given field
of a set of x words, finding the next larger/smaller value

221

(greater-than or less-than search combined with min or
max finding), and range searches. The improvement results
from the ability to relax several bits of the field under
consideration at once. Analyses were offered for fixed-size
and adaptive groups and optimal group size was discussed.
The expected speedup offered by our extreme-value search
algorithms depends on the width of the search ficld and the
initial size of the candidate set. With optimal fixed group
length, speedups in the range 3-5 have been observed.
Adaptive groups, implying somewhat more complicated
control computations to set up the required comparands and
masks in successive steps, offer speedups that are typically
2-3 times larger than those with fixed-size groups.

The results presented in this paper can be extended in many
directions. These include experimental verification of the
derived complexity and optimality results via simulation.
Also of interest are refinements of some of the analytical
results to obtain good approximations or computationally
more tractable exact formulae. Finally, the entire class of
useful AM search functions, including more complicated
approximate and multidimensional searches, could be
examined in order to determine the applicability of these
and similar speedup and optimization techniques.

The techniques presented here are not only relevant to fully
parallel systems but may also find applications in bit- and
byte-serial systems. Designers of bit-serial AMs, e.g.,
typically provide multiple-bit searches as part of the basic
instruction set with built-in control of bit-sequential steps.
On such systems, an instruction for a g-bit search is likely
to execute much faster than a sequence of g single-bit
search instructions. In these cases, similar optimality
results can be obtained, although optimal group sizes are
likely to be much smaller compared to our results.

References

[1] Davis, W.A. and D.-L. Lee, "Fast search algorithms for
associative memories”, /[EEE Trans. Computers, Vol. 35,
No. 5, pp. 456-461, May 1986.

Estrin, G. and R.H. Fuller, "Algorithms for content-
addressable memories”, Proc. IEEE Pacific Computer
Conf., 1963, pp. 118-130.

Falkoff, A.D., "Algorithms for parallel search
memories”, J. ACM, Vol. 9, pp. 488-511, Oct. 1962.

Feng, T.-Y., "Search algorithms for bis-sequential
machines”, J. Parallel & Distributed Computing, Vol. 8,
No. 1, pp. 1-9, Jan. 1990.

Jalaleddine, S.M.S. and L.G. Johnson, "Associative IC
memories with relational search and nearest match
capabilities”, IEEE J. Solid-State Circuits, Vol. 27,
No. 6, pp. 892-900, June 1992.

Kapralski, A., "The maximum and minimum selector
SEERAM and its application for developing fast sortin;
machines”, IEEE Trans. Computers, Vol. 38, No. 11,
pp. 1572-1577, Nov. 1989.

[7] Lee, D.-L. and W.A. Davis, "An O(n+k) algorithm for
ordered retrieval from an associative memory", IEEE
Trans. Computers, Vol. 37, pp. 368-371, Mar. 1988.

Parhami, B., "Search and data selection algorithms for
associative processors”, In Associative Processing and
Processors, A. Krikelis and C. Weems (Eds.), IEEE
Computer Society Press, to appear.

Weems, C.C. and D. Rana, "Reconfiguration in the low
and intermediate levels of the image understanding archi-
tecture”, Reconfigurable Massive }yl Parallel Computers,
H. Li & Q. Stout (Eds.), Prentice-Hall, 1991, pp. 88-105.

{2]

3]
(4]

(51

{6l

(8]

(91



