A CLASS OF PARALLEL ARCHITECTURES FOR FAST FOURIER TRANSFORM

Chi-Hsiang Yeh and Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA
{yeh@simd.| parhaimi @ }ece.ucsb.edu

ABSTRACT

We propose a new class of parallel architectures called unfolded
swapped networks (USN) for fast Fourier transform (FFT) and re-
lated problems. The VLSI area of a suitably constructed N (log, N
+o(log N))-node USN is no more than N? + o(N2), which is
smaller than the bestknown result for alog, N-dimensional butter-
fly network. USNs can be constructed using small butterfly mod-
ules, each built on a chip, and requires fewer pins than a simi-
lar-sized butterfly network by a factor of ©(log N). N-point FFT
can be executed on a USN at a speed comparable to a butterfly net-
work, assuming constant link delay; it can be executed on a USN
considerably faster than on a butterfly when link delay increases
with length and/or when inter-chip data transfers are much slower
than intra-chip ones.

1. INTRODUCTION

Fast Fourter transform (FFT) is important for numerical compu-
tation and digital signal processing. It has been applied to the so-
lution of differential equations, convolution, digital filters, image
processing, speech recognition, and many others areas. Since FFT
requires intensive computation, there has been a great deal of inter-
est in implementing FFT on parallel computers, and many parallel
architectures that support efficient FFT algorithms have been pro-
posed [2, 3, 6, 9].

In this paper, we propose a new class of parallel architectures
called unfolded swapped networks (USNs), and present efficient
FFT algorithms that run efficiently on USNs. We show that V-
point FFT can be executed on a USN at a speed comparable to a
butterfly network [2), assuming constant delay for data exchange
via a link; we also show that FFT can be executed on a USN con-
siderably faster than on a butterfly network when link delay in-
creases with length, and inter-chip communications are more ex-
pensive than intra-chip ones. We then present a simple layout for
USNs. The VLSI area of a USN is smaller than those of known
layouts for a similar-sized butterfly network under the commonly
used square grid model. USNs can also be constructed with small
butterfly (or any other FFT computation) modules, each built on a
chip, and requires fewer pins than a similar-sized N-node butterfly
network by a factor of ©(log V). Since pint limtations become a
major constraint in the implementations of highly parallel systems
[1], this feature implies a considerable reduction in the number of
chips, and thus, the hardware cost of USNs. In effect, the construc-
tion of USNs provides a systematic method to synthesize large FFT
computation networks from various smaller modules.

2, UNFOLDED SWAPPED NETWORKS

Recursive hierarchical swappednetworks (RHSNs) [9] form a class
of efficient interconnection networks that have small node degrees
and a variety of fast algorithms. The node degrees of RHSNs are,

0-7803-3636-4/97 $10.00 © 1997 IEEE 856

however, not constant, so that they may not be suitable for some
applications. In this section, we present the definition of URHSN,
which can be viewed as unfolding the structure of an RHSN along
routing paths. As a natural consequence, URHSNs can efficiently
emulate most algorithms developed for RHSNs and inherit many
advantages of RHSNs.

We first introduce butterfly networks, which can be used as a ba-
sic module for building a USN. Algorithms developed for butterfly
networks can usually be efficiently emulated on USNs having the
same number of rows.

2.1. Butterfly Networks

An n-dimensional butterfly network, denoted by B, has (n+1)27
nodes and n2™t? links (see Fig. 2a). A node in the butterfly net-
work corresponds to a pair (Y, y), where Y is an n-bit binary row
number and y € [0, n] denotes the node dimension or column.
Nodes (U, u) and (V, v) are neighbors if and only if u = v + 1
orv = u + 1 and either

a)U=V, or
b) U and V differ only in bit min(u, v).

Butterfly networks are suitable for the efficient implementation
of many important algorithms, including FFT, sorting, and other
normal hypercube algorithms [2]. In this paper, we will focus on
USNSs that use small butterfly networks as basic modules, and show
that such USNs can execute FFT efficiently and have several im-
portant advantages over a similar-sized butterfly network.

2.2. Formal Definition of USNs

In what follows, we denote the basic building blocks (nucleus
graph) for USNs as G = ((Vg, vg), £g), where G is a multistage
network and vg is the set of stage (column) numbers. We refer to
networks and graphs interchangeably in this paper and use the short
form X;.; to represent X; X;_1--- X;41.X;.

Definition 1 (Unfolded HSN, UHSN(!, G)):

Let the nucleus graph be G = ((Vg, vg), £g) with vg € [0,k].
An l-level unfolded HSN based on the nucleus G is defined as the
graph UHSN(Z G) = (V,&),whereV = {V = (Vi.1,v)|Vi €
Ve, i =1, ...,l vE [0,1(k + 1) — 1]} is the set of vertices, and
5—{(VNU = (Ura,u),V = (Via,v) € V, satisfying u =
v+10rv—u+1andeither

a) max(u,v) mod (k+ 1) # 0, and 1)U,; = Vi1, or
2)[]l:2 = W:2 and (Ulyvvl) (S gga or

b) max(u,v)=i(k+1),U; =W, Vi = U, and
U =Viforj # 1,1, wherel <1,7 < 1.

} is the set of edges.

AUHSN(l, Bn) has 2" rows, I{n+1) columns, and [(n+41)2"*
nodes.

Definition 2 (Unfolded RHSN):

An r-deep URHSN(,,l,—1,...,l1, G) is recursively defined as
UHSN(l,, URHSN(};-1,lr—2,....,01,G)) for r > 1 and as
UHSN(l;,G) forr = 1.

We can generalize the construction of URHSN to obtain gen-
eral USN, derived from “unfolding” general swapped networks [8].
The step sizes of USN can be as small as approximately doubling
the number of nodes, as opposed to the factor (1 + 1/1)2" for a
UHSN based on B,,. The definition of USNs is, in fact, a system-
atic method to synthesize large FFT computation networks with
various smaller modules, which can be further generalized to any
graph in addition to multistage networks. An example is shown in
Fig. 2d. Note that the input and output nodes of the basic FFT mod-
ules may need to be permuted in order to perform FFT computation.

23. Recursive Construction of USNs

To better visualize the modularized construction of USNs, we
present the construction of unfolded recursive swapped networks
(URSNSs) in this subsection. An r-deep URSN based on G is de-
noted as URSN(r, G) and is a URHSN(2, 2, ..., 2, G).

e s’

r N

An r-deep butterfly-based URSN, denoted by URSN(r, By),
begins with a nucleus B,.. To build a URSN(1, B,.}, we use 27!
identical copies of the nucleus B, arranged in two stages, each con-
taining 2™ copies. We give each nucleus a pair (Y/, 1) as its ad-
dress, where Y7 is an n-bit string, and 5; € {0, 1} is the stage num-
ber. A node within the nucleus butterfly is addressed by the pair
(YY", y7'), where Y{" is the n-bit row number, and yi € [0, n] is
the column number. Node (Y;”, y{') of nucleus gY{, J1) is given
apair (Y, = YY" yi = ji(r + 1) + y7) as its address
within the URSN(1, B,.). Node (Y{'Y{’,n) has a link connect-
ing it to node (Y;"Y{,n + 1), which serves to connect stages 0
and 1. To build a URSN(2, B,,), we use 2°**! identical copies
of a URSN(1, By,). The copies of a URSN(1, B,,) are arranged in
two stages, each containing 2™ copies. We give each copy a pair
(Y2, 72) as its address, where Y5 is a 2n-bit string, and j> € {0, 1}
is the stage number. Node (Y3', y7') of copy (Y7, jz) is given a pair
(Y3YS',252(n + 1) +y¥) as its address within the URSN(2, Bx).
Node (Y2Y2", 2n+1) has a link connecting it to node (¥3' Y5, 2n+
2). URSNs with higher levels are constructed following the same
rule. Structures of a URSN(1, B;) and a URSN(2, B,) are shown

in Fig. 2. A URSN(r, B,,) has 2™’ rows and (n + 1)2" columns
and uses (n + 1)2" +" nodes of degree not exceeding 4.

3. FFT COMPUTATION

One of the reasons for our proposing USN is that FFT (and as-
cend/descend [2]) algorithm maps efficiently on this class of par-
allel architectures.

The discrete Fourier transformof an N -vector ¥ is a linear trans-
formation of £ defined by # = FnZ, where the ¢, j entry of Fiy is
w¥ for0 < i, < N withwy = e 727/Y [2], The key idea
behind the FFT algorithm is to decompose the computation of the
N-point DFT into successively smaller DFTs using the divide and
conquer paradigm. In other words, we can reduce the problem of
computing Z = Fv to the problem of computing

ZTo T
z2 Z3
o L4 - s
u"FN/2 . andU=FN/2 X s
IN~-2 IN-1

123456789101112131415

|

Figure 1. Partial layout of a URSN(1, B:) = UHSN(2, B:).

where wyy, = w%. We can then obtain Z by computing
2= ui +wivi for0 <i< N/2,
T U;_ny2 t+ w}vvi_N/Q for N/2<i< N,
where z; is the i** clement of . By unfolding the recursive
algorithm, we can easily map the N-point FFT on a log, N-
dimensional butterfly network [2].

The FFT algorithm for USNs can be viewed as emulating the
FFT computation for butterfly networks. An example of perform-
ing 8-point FFT on a UHSN(3, B,) is illustrated in Fig. 3. The ini-
tial distribution of data for FFT computation on a UHSN(!, B») is
the same as that for an rl-dimensional butterfly network. Let y €
[0,(r+1)l—1},41 = |y/(n+1)], and yo = y mod (n+1). That
18,y = (y1,Y0)i,n41- If yo = 0, no computation is required for
node Y = (Y11, y) in the UHSN; otherwise, node Y in the UHSN
emulates the computation required for a node in Column v of the
butterfly, wherev = y—y; . If y1 = 0, node Y emulates the nodein
Row Yy.1; if y1 = 1, node Y emulates the node in Row Y;.3Y1 Ya;
if y1» > 1, node Y emulates the node in the same row as the one in
the emulated butterfly that node (Yi.y, 42 Y1 Yy, 2 Yy 41,y —n—1)
emulates, and so on. The row numbers being emulated on the
UHSN(3, B1) is given in the circles in Columns 2 and 4 of Fig.
3. Note that the output of the FFT computation is unordered.

The time required for these algorithms with problem size N ona
URHSN basedon B, is (1+1/n) log, N —1, which is the number
of columns minus 1, assuming unit time for addition, multiplica-
tion, and data exchange via a link. FFT algorithms on 2 URHSN
can be applied on a USN with similar performance after minor
modifications. Pipelining these algorithms on USNs is straightfor-
ward and similar to pipelining on butterfly networks. The algo-
rithm can, in fact, be generalized to the class of ascend/descend
algorithms, making USNs efficient architectures for many other
problems, such as sorting and matrix multiplication.

4. HARDWARE COST AND DELAY

In this section, we present a simple VLSI layout and compute the
associated area and delay bounds. We also compare the implemen-
tation of USNs with that of similar-sized butterfly networks under
the consideration of pin limitation for large parallel architectures.

4.1. VLSILayoutand Area

In this subsection, we present a simple layout for a URSN and an
upper bound on the area required under the grid model [6].

857

The area of the layout of a URSN(1, By} is dominated by the
links connecting the central columns n and n + 1. We place the
nodes in column n along a vertical line, and the nodes in column
n + 1 along a horizontal line as shown in Fig. 3. A link goes right
from anode V' in column » and then turns upward toward its neigh-
bor in column'n + 1. Clearly, this part of layout requires area at
most equal to N(N + 1), where N = 22" is the number of rows.

It is well known that an n-dimensional butterfly network can be
laid out within a O(N) area [6]. However, we have to allocate two
horizontal (or vertical) tracks to a node in column 2 (or n + 1) for
the construction of the nucleus butterfly to which it belongs. Since
a nucleus Br, requires only small area O(N), it is easy to build
the remaining ©(+v/N) B,,’s within o(N?) area. A naive method
for constructing columns 0, 1, ..., n is as follows. We first add VN
horizontal tracks at the upper-left side of the previous layout. The
top two new tracks are used to implement the links incident to node
(0, n) and are connected using a vertical wire as shown in Fig. 3.
The next two new tracks are for node (1, n) and are connected us-
ing a vertical wire located at the left-hand side of the previous verti-
cal wire, and so on. We are then ready to use the construction given
in [6] to lay out the nucleus B, that includes rows 0,1,..., VN — 1.
Note that the positions of the nodes except for node (0, n) are virtu-
ally shifted left and up and relocated at the intersection of its lower
horizontal track and vertical wire.

To implement the 4-th Bn, i = 1,2, ..., YN ~ 1, we extend
the horizontal wires and shift all the nodes to the left of the previ-
ous B, layout, and then construct it using the same rules. We can
then repeat this procedure for the second group of ¥ N By’s by
first adding tracks between the tracks originally for rows v N — 1
and VN, and so forth.

Columns n + 1,n 4+ 2,...,2n + 1, can be built using similar
strategies. Since the increased width and height are both O(¥/IV3),
the total area required for the URSN(1, B,,) is no more than N2 4+
o(N?). We can see that the layout area can be further reduced by
placing columns n and n + 1 in parallel since the number of paral-
lel tracks can be considerably reduced. Although the nondominant
terms of the area may not be negligible for small or moderate N,
and the layout for URSNs can be further refined, the obtained upper
bound on the area is asymptotically better than known results (un-
der the grid model) for a butterfly network that has the same number
of rows. This layout rule can be generalized to URHSNs without
difficulty. It can be shown that a USN requires O(N?) area and
O(log N) time per cycle when pipelined for each column, the re-
quired AT? is ©(N? log? N) and is thus optimal for N-point FFT
computation [6, 71,

4.2. Pin Limitations

‘When interconnection networks grow very large, pin limitation be-
comes a major constraint in their implementations [1]. In this sub-
section, we give an example to illustrate the advantage of USNs
under this consideration.

Assume that N is very large and that no more
than O(+/N log N) nodes can be put onto a single chip. In orderto
implement an N-row URSN(r, B,), we can partition the network
into 2/N subnetworks, each of which is a URSN(r — 1, B.). By
the definition of URHSN and the construction presented in Sub-
section 2.3., it is clear that only vN inter-chip links are required
to connect the network, and usually O(v/N) additional inter-chip
links are required for I/O. On the other hand, O(v/N log N) off-
chip connecting links are needed when building a butterfly network
under this assumption. This brief comparison implies that a con-
siderably larger number of chips (or boards) will be required when
the number of pins per chip (or connectors per board) is the limiting

858

factor for implementation.

4.3. Computation Delay
Another advantage of USNs is that their communication patterns
tend to be localized. For example, only one step during FFT com-
putation requires routing data outside a chip (that is, the central
step) in the previous URSN implemented using O{+/N) chips.
This feature leads to better performance than hypercube and butter-
fly networks when link delay increases with length, and inter-chip
communications are more expensive than intra-chip ones. For ex-
ample, if the delay for an inter-chip transmission is larger by a fac-
tor of d than an intra-chip transmission, the FFT computation on a
URSN will be faster by a factor of ©(d log N/(d+log N}) than on
butterfly networks. As another example, if the delay of a long link
is proportional to the logarithm of its length, and the delay of a short
link is constant, the time required for FFT computation (which
originally ran in O(log N) time with constant delay links) becomes
©(log® N on hypercube and butterfly networks. In contrast, the
delay of FFT computation on USN remains ©(log V), with the
hidden constant increased only slightly. If we assume logarithmic
delay for all links, the time required for the FFT computation on a
URSN(r, By,) with r = log, log, NV, is O(log N log log N).
When the delay of a link grows faster than the logarithm of its
length, the advantage of FFT computation on a USN over hyper-
cube and butterfly networks will become even more pronounced.

5. CONCLUSION

‘We have proposed a new class of parallel architectures, unfolded
swapped networks (USN), for FFT computation and related prob-
lems. We showed that FFT can be executed on a USN at a speed
comparable to, or faster than, a butterfly network. USNs have
highly modularized constructions, thus facilitating implementation
concems such as routing and layout, and faring quite well on scal-
ability. They appear to be attractive alternatives to butterfly net-
works, especially when the network size is large.

REFERENCES

[1] Franklin, M.A., D.F. Wann, and W.J. Thomas, “Pin limita-
tions and partitioning of VLSI interconnection networks,”
IEEE Trans. Comput., Nov. 1982, vol. C-31, pp. 1109-1116.

[2] Leighton, ET., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

[3] Loan, C.V., Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, PA, 1992.

[4] Swartzlander, E.E. Ir,, VK. Jain, and H. Hikawa, “A radix-8
wafer scale FFT processor,” J. VLSI Signal Processing, May
1992, vol. 4, no. 2-3, pp. 165-176.

[5]1 Tanno, K., T. Taketa, and S. Horiguchi, “Parallel FFT al-
gorithms using radix 4 butterfly computation on an eight-
neighbor processor array,” Parallel Computing, Jan. 1995,
vol. 21, no. 1, pp. 121-136.

[6] Thompson, C.D., “Fourier transforms in VLSL,” IEEE Trans.
Comput., Nov. 1983, vol. C-32, pp. 1047-1057.

[7] Vuillemin, J., “A combinatorial limit to the computing power
of VLSI circuits,” Proc. Symp. Foundations of Computer Sci-
ence, 1980, pp. 294-300.

[8] Yeh, C.-H. and B. Parhami, “Swapped networks: unifying
the architectures and algorithms of a wide class of hierarchi-
cal parallel processors,” Proc. Int’l Conf. Parallel and Dis-
tributed Systems, 1996, pp. 230-237.

[S] Yeh, C.-H. and B. Pathami, “Recursive hierarchical swapped
networks: versatile interconnection architectures for highty
parallel systems,” Proc. IEEE Symp. Parallel and Distributed
Processing, 1996, to appear.

2-D butterfly networks g, 1-D butterfly networks B,

\ column \ column / \ \ column .

row\0 1 2 3 4 001 273 4NS N0 12 (3. 4ANS 6 7
o , ; & v

0.0 00 O—0: 0000; - -
] o1 0001 :O—Q D D
2 02 = Gy
’ 03 o011 G0 o)
: 10 € 0100 o
° ”‘ 0101 >
i 12 0110 5
’ 13 0—Q\k ot g

1000 -

Rl o

10 XA D
7Nl o
11 & “;vvi’, \" 23 1011 D
12 QR é"#‘#‘él‘\\@ 30 R 1100 >
W/l <
13 & @"‘?lA\‘ﬂilﬁ 31 1101 &
14 a.ﬁ“'g.gf.’ 32 1110 >
15 @‘ﬁ O—0—0© 33 111 € ¢)
(@) (b) © (@

Figure 2. Structures of a butterfty and USNs. (a)B4-(b) UHSN(Z, B;). Row numbers are represented in radix 4.
(¢) URSN(2, B,). (d) Synthesis of a 32-point FFT computation network using 8-input and 4-input modules.

NG RO N N W
wl=1

Z,

Z;

Zs

)

o+ @5+ F02x5 4o Zg

w®

4
O Qs DyEdnms -

)

o
QAGoADom ommmDeTm T
oy

3 .,.,6
W) =w? w;=w

T
>
D>

Figure 3. Entire calculation of an 8-point FFT on a UHSN(3, B;). The row numbers of the B; being emulated is
given in the circles in Columns 2 and 4.

859

