
ELSEVIER

Reliability, Engineering and System Safety 52 (t996) 139-151
© 1996 Elsevier Science Limited

Printed in Northern Ireland. All rights reserved
P I I : S 0 9 5 1 - 8 3 2 0 { 9 6) 0 0 0 1 2 - 9 (1951-8320/96/$15.00

A taxonomy of voting schemes for data
fusion and dependable computation

Behrooz Parhami
Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106-9560, USA

(Received 29 July 1995; accepted 24 January 1996)

Voting is an important operation in the fusion of data originating from diverse
sources and in the realization of ultrareliable systems based on multiple
computation channels. Voting involves the derivation of an output data object
from a collection of n input data objects, as prescribed by the requirements
and constraints of a voting algorithm. The objects voted on can be quite
complex in terms of content and, explicitly specified or implicit, structure.
Regardless of implementation details (e.g., whether realized in hardware,
software, or hybrid schemes) and object space properties, voting algorithms
can be classified according to how they view the input and output data objects
and how they handle the votes (weights) at input and output. A 16-class
(binary 4-cube) categorization results from dichotomizing each of the above
voter features. This categorization leads to an abstraction that helps in the
study of voting algorithms with regard to the dependability level for the
outputs and the speed at which they are obtained; viz, the quality and
efficiency of the algorithms. The taxonomy is broad enough to cover, and
detailed enough to distinguish among, a wide variety of commonly used voting
algorithms in data fusion and dependable computation. It also provides insight
into the relationships of various voting schemes and facilitates comparison and
fine-tuning of such algorithms. © 1996 Elsevier Science Limited.

1 I N T R O D U C T I O N

Voting is an important operation in the fusion of data
originating from multiple sources and in the
realization of ultrareliable systems that are based on
the multi-channel computation paradigm. In data
fusion, voting is a possible way of combining diverse
data provided by multiple sources (such as sensors)
whose outputs may be erroneous, incomplete, tardy,
or totally missing. In ultrareliable systems, voting is
required whether the multiple computation channels
consist of redundant hardware units, diverse program
modules executed on the same basic hardware,
identical hardware and software with diverse data, or
any other combination of hardware /program/data
redundancy and/or diversity.

Depending on data volume and voting frequency,
hardware or software voting schemes may be
appropriate. Low-level, frequent voting requires the
use of hardware voters whereas high-level voting on
the results of fairly complex computations can be
performed in software without serious performance
degradation or overhead. However, the

139

hardware/software distinction is superficial: it is the
voting algorithm~ and not the implementation scheme,
that is important.

Even though voting algorithms have been studied
extensively in the context of particular applications
and for the realization of specific systems, a general
investigation of the various design options and
tradeoffs has not been attempted. There are signs,
however, that research in this area is moving towards
higher-level, application-independent (and, thus, more
widely applicable) techniques. A general study of
voting must deal with several concerns:

• minimizing the hardware cost or software
overhead associated with voting,

• achieving high throughput and/or high speed
(low latency) in voting,

• providing the flexibility of unequal/adaptive
votes for different channels,

• utilizing the information coming from multiple
channels in an optimal way,

• identifying the strengths and weaknesses of
proposed voting methods,

140 B. Parharni

• quantifying the correctness probability for the
results of voting.

The significance of low-cost or low-overhead
designs is obvious. The voting delay or latency, which
is particularly important in real-time systems with
hard deadlines, is also significant in high-performance
systems. When data to be voted on is generated at a
high rate, the voter must be able to keep up with the
processing speed. In some such cases, the actual
voting delay may not be critical but the voter
throughput must match or exceed the input data rate.
Unequal or adaptive vote weights are required in
order to accommodate a priori or acquired knowledge
about the relative trustworthiness of various data and
computational resources. With respect to the optimal
utilization of information, the voting scheme should
be neither too optimistic nor overly pessimistic.
Studying the strengths and weaknesses of proposed
voting schemes would allow more informed selection
of algorithms for each application context. Finally,
due to algorithmic limitations or implementation
flaws, no voting scheme is perfect and it is thus
important to quantify the risks associated with any
proposed approach.

The above aspects are interrelated and collectively
challenge the designers with interesting reliability,
algorithm complexity, and performance/overhead
tradeoff issues. Many of these issues are being
addressed by researchers in data fusion and
dependable computation. 53 In order to study these
aspects in a systematic way, a unified high-level view
of voting is essential. Hence, our motivation is to
propose a taxonomy that would expose the similarities
and differences of proposed voting schemes.

The rest of this paper is organized as follows.
Section 2 contains a review of voting methods and
their applications. Section 3 defines voting in a much
more general way than is commonly done, thus
serving to unify diverse views. Section 4 contains the
essence of the proposed taxonomy; viz the four
dichotomies (exact/inexact, consensus/mediation,
oblivious/adaptive, and threshold/plurality) as well as
the resulting 16 classes. Sections 5, 6, 7 and 8 contain
more detailed discussions of the four dichotomies
mentioned above. Significance of the proposed
taxonomy and directions for further research are
discussed in the concluding Section 9.

2 V O T I N G A N D ITS A P P L I C A T I O N S

The use of voting for obtaining highly reliable data
from multiple unreliable versions was first suggested
in the mid 1950s. 6~ Since then, the concept has been

practically utilized in fault-tolerant computer systems
and has been extended and refined in many different
ways. Reliability modeling of voting schemes by
considering compensating errors, 6° handling of impre-
cise or approximate data, 14 combination with standby
or active redundancy, 3s reconfigurable voting with
declining replication factor upon detected failures, 39
voting on digital 'signatures' obtained from computa-
tion states in order to reduce the amount of
information to be voted on, 63 and dynamic modifica-
tion of vote weights based on a priori reliability data 56
constitute some of these extensions and refinements.

More recently, generalized voting with unequal
input votes has been suggested for maintaining the
reliability and consistency of data stored with
replication in distributed computer systems. 2° This has
become a very active research area. Voting is also
used in the fusion of data obtained from multiple
s e n s o r s . 23"24"36"37'65 In particular, when sensor outputs
are abstracted as intervals, the voting scheme used is a
type of approval voting. 52 However, the process used
for multi-sensor data fusion is not commonly
characterized as voting, which is often equated with
majority agreement and other simple decision
schemes.

Hardware voters that have been described in the
literature are essentially 'bit-voters' that compute a
majority function on n input bits. 26"62 Combined bit
voting and disagreement detection has also been
discussed. 15 Hardware voting on words and higher-
level data objects has traditionally been handled by
using independent parallel bit-voters or feeding the
data sequentially through a single unit. Such
independent bit-voting yields results that are optimis-
tic, particularly when correlated errors are likely.
Several algorithms and design techniques for har-
dware voters with adjustable or variable vote weights
have been published. 45'4v'48 The above hardware
voting schemes all deal with voting on exact values
(typically bit strings representing logical decisions or
integer numerical values). Approximate or other
context-dependent voting algorithms have not been
implemented in hardware.

Hardware voters used in actual systems include
3-way voters in MIT's FTMP design, 22 Carnegie-
Mellon University's C.vmp system, 61 and August
Systems' industrial control computers. 7~ The Jet
Propulsion Laboratory 's STAR computer 4 used a
special 2-out-of-5 voter that was symmetrically
connected to 3 active modules and 2 standby spares
for its critical Test and Repair Processor (aerospace
computers utilized hardware voters even before
STAR). The effect of switch complexity on reliability
and the design of low-complexity, and thus highly
reliable, switch-voters for hybrid redundancy was
considered by Siewiorek and McCluskey. 5~'59 This
work was instrumental in attracting attention to the

Taxonomy of voting schemes 141

importance of simple switch-voters and led to several
other designs including the self-purging 35 and sift-out 16
variations of adaptive voting with vote weights in
{0,1}.

Proposed software voters are quite varied and
possess a wide range of features. The earliest software
voters are found in the design of modular
multiprocessors with replicated software. For ex-
ample, the voter routine in SRI International's SIFT
design 7° is invoked by any task which requires inputs
for a new iteration. It uses tables provided by the local
reconfiguration task to determine which processors
contain copies of the required output (and in which of
their buffers), reads the data from the appropriate
buffers and uses a majority rule to obtain a single
value. In the Space Shuttle's 4-way software voting
scheme, 63 selected data items are computationally
combined to form 'compare words' that are
periodically exchanged and compared in 4 out of the 5
on-board computers. The 'stepwise negotiating voting'
scheme 27 essentially amounts to a 2-0ut-of-n threshold
voting strategy. The advantages of such 'relaxed'
(non-majority) voting schemes have been discussed by
others as well. ~'55

Researchers in the field of software diversity have
designed voters that are suitable for processing the
results obtained by multiple versions of a program and
have contributed techniques for handling approximate
results.5,11,29,33,68 Similar considerations would apply to
voting schemes with data diversity. 3 Software voters
have also been designed in connection with the
management of replicated data in distributed
systems 6"7"18'e°'25"64"67 to assure database reliability
and/or consistency. A common way to achieve this
goal is to assign votes to participating nodes in the
distributed system and to implement mutual exclusion
by requiring each operation agent to 'collect' a certain
number of consenting votes. Typical issues dealt with
in this area are vote assignments to maximize
reliability or to minimize average transaction response
time (e.g., by adjusting 'read' and 'write' quorums).
The delays resulting from synchronized voting in
real-time systems and the expected time to collect a
prescribed number of votes from distributed sites with
different response characteristics have been studied in
Refs. 57 and 42, respectively.

Research on voting algorithms has dealt with both
implementation and effectiveness of various voting
schemes. In the area of algorithm implementation, the
main focus has been simple majority voting, which is a
special case of the problem of finding repeated
elements in a s e t . 1°'13"21"41 In another line of attack, 34
the notion of 'approximate voting', henceforth applied
only to real-valued numerical results, has been
generalized by demonstrating that various forms of
inexact voting can be easily applied to any metric
space or, in the case of weighted averaging scheme, to

any real vector space. As for effectiveness, Ref. 34
contains a qualitative comparison of several voting
schemes under different error conditions. The
problem of selecting the best voting scheme in order
to maximize the probability of obtaining a correct
result has been investigated in Refs. 8, 9, 19 and 40.
Voting algorithms have also been studied from the
viewpoint of sequential and parallel computational
complexity. 32,46,49.52

Finally, several researchers have presented general-
ized or mixed-mode voting schemes based on
extending the voting domain, the fault model, or
assumptions about the data redundancy scheme
used. 2"28'3~ Clearly, such useful generalizations must be
covered in any systematic study of voting or proposed
taxonomy.

3 A G E N E R A L V I E W OF V O T I N G

In order to facilitate and systematize the study of
voting schemes, we have previously categorized them
according to implementation in hardware or software
(voting networks 45 or voting routines) and based on
the size and structure of the input object space (see
Fig. 1). A voting algorithm 52 specifies how the voting
result is obtained from the input data and may be the
basis for a voting network or a voting routine. For
brevity, the term 'voter' is sometimes used as an
equivalent for 'voting network' or 'voting routine',
resulting in terms such as 'bit-voter', 'word-voter', or
'inexact majority voter'.

As shown in Fig. 1, the input objects to be voted
upon can be atomic or composite. Composite objects,
consisting of structured collections of atomic objects,
have not received due attention in previous works on
voting. With atomic objects, the input object space can
be small or large. For small object spaces, further
classification is unimportant, as they support very
simple and efficient voting algorithms. For large object
spaces, whether or not a distance metric can be
defined, and as a special case, if the objects can be
ordered, is important. Finally, for an unordered space,

Ot~ect Space

Atomic Objects Composite Objects

Small Space Large Space

Metric Space General Space

Binary Totally Ordered Trans i t i ve Non-Transitive
(bits) (e.g., numbers) "Support" "Support"

Fig. 1. Voting schemes classified according to the object
space size and structure.

142 B. Parhami

voting algorithms tend to be less complex if the notion
of 'support ' , as discussed in Definition 3.1, is transitive
(X supports Y and Y supports Z implies X supports
Z).

Uses of voting in dependable multi-channel
computation are almost exclusively based on atomic
objects (primarily bits and numeric words), but data
fusion routinely involves the processing of composite
objects. However, as will become evident from the
following discussions, the distinction between atomic
and composite objects as well as the differences
resulting from the size of the object space are quite
minor compared with the other properties that we use
for our classification scheme. Hence, a byproduct of
our classification scheme is the unification of concepts
and techniques used in data fusion and dependable
computation.

Figure 2 shows an example of composite data
objects that might be used in voting. The four objects
x~, x2, x3, x4 are infinite sets corresponding to the
intervals [ll, hi], [/2, h2], [13, h3], [14, h4] o n the real
line. The voting algorithm may depend on the
semantics attached to these intervals and on
application requirements. For example, if the intervals
are interpreted as different views of the safe operating
range for a physical parameter , then the interval [/2,
h4] may be taken as the voting outcome in view of its
unanimous designation as being safe. If one of the
evaluators (combination of sensors and decision logic)
fails so that its corresponding interval is 'way off', then
majority consensus can still be reached.

Consider, as another example, the five input objects
represented as triangles in Fig. 3. Again, different
meanings may be attached to these triangles. Each
triangle may simply represent a 3-vector with elements
in the range [1, 2), providing three parameters of a
system or multiple t ime-domain measurements of the
same parameter by a single sensor. Or the triangles
may be outputs of intelligent sensors which extract
contour information from visual data. Details of
voting will be different with each interpretation. For
example, with the 3-vector view, there is majority
agreement that the smallest element is 1.5 and the
largest element is 1.8. With the visual interpretation,
on the other hand, the sensors are unanimous about
the contour shape being triangular and have majority

I 1 Xl h 1

l 2 x2 h 2
I I

13 x3 h 3
I I

/4 x4 ha
I I

Fig. 2. Voting with composite data objects represented as
intervals on the real line.

agreement on the triangle being isosceles: both of
these conclusions may be significant in a target
tracking and recognition context.

To accommodate all voting schemes of interest,
including those dealing with composite data objects as
discussed above, we present the following general
definition of weighted voting.

3.1 Definition

Weighted voting--given n input data objects Xl,
x2 ,x,,, and associated non-negative real votes
(weights) vl, v2 v,,, with ~7-J vi = V, it is required
to compute the output y and its vote w such that y is
'supported by' a number of input data objects with
votes totaling w, where w satisfies a condition
associated with the desired voting subscheme; e.g.,
w > ½ V for majority voting, w > 2 v for byzantine
voting, w - t for t-out-of-V (generalized m-out-of-n)
voting, and w corresponding to maximal 'support '
among all possible outputs in the case of plurality
voting. The term 'supported by' can be defined in
several ways, leading to different voting schemes. For
example, with exact voting, an input object xi supports
y iff x i = y . With inexact voting, approximate
inequality (~) is defined in some suitable way (e.g.,
by providing a comparison threshold e in the case of
numerical values or, more generally, a distance
measure d in a metric space) and xi supports y iff
xi = y. With approval voting, y must be a subset of the
approved set of values that x~ defines.

The Byzantine voting scheme in Definition 3.1 is a
generalized form of the unweighted version used in
distributed computing 17 where n independent n-way
voting nodes/sites must arrive at consistent conclu-
sions in the presence of fewer than n/3 faulty nodes
(Byzantine faulty nodes may try to con-
fuse other nodes by presenting to them inconsistent
values). In this generalized version, less than 1/3 of
votes/weights can be associated with faulty nodes.

Thus, we view a voter (Fig. 4) as dealing with n
input data objects x~ having the associated votes
(weights) v~, i = 1, 2 n, (i.e., n input data-vote pairs
(x,vi)) and producing the output data-vote pair (y, w).
The voting algorithm may also produce a set of n
"support bits' si, one for each input, that indicate
whether a given input "supports' or 'agrees with' y (as
discussed in Definition 3.1. The input votes v~, i - 1,
2 n, and the output vote w need not be explicitly
represented or even present at all, but rather may be
implied.

The reason we have chosen to base our
classification scheme on weighted voting is threefold.
First, weighted voting is more general than simple
voting and thus useful in a wider context. Setting all

T a x o n o m y o f voting schemes 143

1.5 1.5 1.3 1.4 1.5

Fig. 3. Example of voting with composite data objects represented as triangles.

the weights equal to 1 yields simple non-weighted
voting as a special case. Second, it turns out that in
most cases, weighted voting isn't harder to implement
than simple voting, especially in software-based
implementations (adding an arbitrary weight to a vote
tally isn't any harder than adding 1). Third, some
constant-weight voting schemes are essentially adap-
tive over the long run. For example, disabling faulty
units or reintroducing repaired units in some n-way
voting schemes is equivalent to changing their votes
from 1 to 0 or 0 to 1, respectively.

4 THE P R O P O S E D T A X O N O M Y

The four main components of a voting algorithm,
namely, input data, output data, input votes and
output vote, can be used to impose a binary 4-cube
classification scheme, leading to 16 classes. Figure 5
depicts the classification scheme.

Briefly, the four dichotomies used in the classifica-
tion of Fig. 5 are defined as follows. Detailed
descriptions and examples can be found in Sections 5,
6, 7 and 8 of the paper.

• Exact / Inexact: The exact/inexact dichotomy has
to do with whether input objects are viewed as
having inflexible values or as representing
flexible ' neighborhoods'.

• Consensus~Mediat ion: Consensus voting involves
agreement/quorum whereas mediation voting is
based on compromise (e.g., choosing the median
or mean of real-valued inputs).

• Oblivious~Adaptive: The oblivious/adaptive
dichotomy corresponds to the vzs being set at

I 0
N x 2 U

P x3 y T

U
S T

X n

Fig. 4. Elements and parameters of a generalized voter.

design time or allowed to change dynamically
(be adjustable or variable).

• Threshold~Plurality: Threshold voting requires
that w exceed a given threshold whereas
plurality voting identifies an output y with
highest support from the inputs.

Figure 6 shows the 16 classes resulting from this
4-dimensional classification. Each class corresponds to
one of the vertices of a binary 4-cube. The 4-bit vertex
labels are interpreted as shown at the bottom left of
the diagram. Alternatively, each of the dimensions of
this 4-cube may be represented by a letter (E/I for
exact/inexact, C/M for consensus/mediation, O / A for
oblivious/adaptive, T/P for threshold/plurality), lead-
ing to a 4-letter acronym for each of the 16 classes; viz
TOCE for 0000, TAME for 0110, POME for 1010,
P A C E for 1100, etc. Such four-letter acronyms are
quite important in the field of computer design and
architecture and inventing 16 of them in one go should
lead to great endearment in that community!

5 EXACT VS I N E X A C T V O T I N G

Depending on how the inputs xi are viewed, we divide
voting algorithms into two classes:

• Exact voting: inputs are viewed as 'exact' or
inflexible; y must be equal to some xi.

• Inexact voting: input objects represent 'neigh-
borhoods' and are considered flexible.

For example, bit-voting algorithms are exact since

D
a

t
a

V
o

t
e

I n p u t O u t p u t

Exact/
Inexact

Oblivious/
Adaptive

Consensus/
Mediation

Threshold/
Plurality

Fig. 5. Classification of voting schemes based on variations
in input/output data and input/output votes.

144 B. Parhami

La 2 Ol 1 o Ol 11

A d a p t i v e ~ ~ " " 010o
0 ~ ' t ' ~ 0 ,

I
I O~ o~US

..',C,----- O I / E x a c t Input Data Inexact1
...... ho,d 1ooo iooi

Input Data , "Or./
Output Data " " ' " '%0"

Input Votes " '" ' . , " " " " . . Ore
Output Vote ""... ".; ":

a 3 a 2 a 1 a 0 0 / 1 Plura l i ty
:: ",. : '.. "'--.- Exact/inexact 1

"-. ""-.., C o n s e n s u s / M e d i a t i o n a
"" " O b l i v i o u s / A d a p t i v e

. T h r ~ h o l d / P l u r a l i t y J"""

Fig. 6. Binary 4-cube representation of the classification scheme.

1111

1011

the output y must equal one of the inputs x,
(regardless of the voting scheme used, it does not
make sense to have y = 0 when all the xi are ls or vice
versa). Word-voting algorithms on floating-point data,
on the other hand, may be inexact, since floating-point
numbers are expected to contain errors resulting from
finite representation and approximate computation.
Bounds on such errors can define the neighborhood,
or interval, containing the actual intended result.

Exactness or flexibility refers to how the data is
viewed for the purpose of voting. This view need not
be consistent with other views of the same data. Thus
both exact and inexact voting may be meaningful on
either a discrete or continuous space, depending on
possible output distributions and the utility value
assigned to the correct output(s) and various classes of
incorrect outputs. For example, integer-valued vari-
ables are considered exact in most contexts. However,
if integers represent pixel intensities in a gray-scale
image, it is perfectly acceptable for a median voting
scheme (used to smoo.th the image by replacing each
pixel value with the median of the values in its 8
immediate neighbors or 24 two-step neighbors) to
deliver a voting output that is not equal to any of the
inputs.

In the simplest case, exact voting involves
determining which input value is repeated a given
number of times (threshold voting) or more than any
other value (plurality voting). This is what has been
studied in the past and implemented efficiently in
actual systems. However, a more general view does

not necessarily lead to inefficiency since the space of
possible outputs is limited to no more than n distinct
values (the inputs). In this general case, voting can be
done in O(n 2) time by computing a 'support ' level for
each pair of inputs and then choosing an input with
maximal total support. More efficient algorithms, e.g.,
with O(n log n) or O(n) complexity, may be
applicable in special cases such as when the input
objects can be sorted or for some threshold voting
schemes.

Algorithms for inexact voting are in general more
complex than their exact-voting counterparts, prima-
rily due to the non-transitivity of approximate
equality. Although the notion of approximate or
inexact voting and its applications have been discussed
in the literature, the first provably correct inexact
voting algorithm was published only recently. 4''52 The
algorithm starts by identifying all compatible pairs of
inputs, as defined by a generalized distance function
and a comparison threshold. It then proceeds to build
compatibility classes and a maximal-compatible cover
in the same way as is done for minimizing
incompletely specified Boolean functions. 3° In the
example of Fig. 7, input objects are points on the 2-D
plane and the distance function is the Euclidean
distance. Each circle encloses a set of points whose
pairwise distance is no more than e. There are 4
maximal-compatible classes. The final voting decision
is often based on the inputs in a largest maximal-
compatible class (the circle enclosing 5 points in Fig.
7). Details of selection are application-dependent.

Taxonomy of voting schemes 145

The following simple example illustrates the
complete procedure.

5.1 Example

Consider the following 5 object-vote pairs (xi a real
value and vg an integer) as inputs to an inexact
8-out-of-15 (majority) voting algorithm with the
comparison threshold of e = 0.02. The distance
function is defined a s d(xi , xj) = Ix i - x j [.

Objects Votes

x~ = 1.300 v~ = 1
x 2 ~" 1.310 v2 = 2
x3 = 1.330 v3 = 5
x4 = 1.340 v4 = 4
x5 = 1.350 v5 = 3

The compatible pairs are: (xl,x2), (X2, X3), (X3, X4),
(x3, xs), (x4, xs). The maximal-compatible cover is thus
(xl, xe)(x2, x3)(x3, x4, xs) with class vote tallies being 3,
7 and 12, respectively. Thus, w = 12 satisfies the
threshold. The maximal-vote selection rule in (x3, x4,
xs) yields y = 1.330, while the weighted median and
weighted mean rules result in y = 1.340 and y = 1.338,
respectively. In this case, the total order imposed on
the inputs (sorting) would have yielded a faster
algorithm, so the above was used only for illustrating
the general method.

It is interesting to note that inexact voting problems
with real-valued inputs can be formulated as approval
voting problems 49"52 with input sets given by the
intervals [x i - e/2, xi + e/2]. Figure 8 depicts the 5
input intervals corresponding to Example 5.1 and
shows the approval level for each segment and for the
three maximal-compatible classes (arrows).

6 CONSENSUS VS M E D I A T I O N V O T I N G

Depending on how the output data is obtained, there
are two classes of voting algorithms:

• Consensus voting: A subset of inputs with votes
totaling w 'agrees with' or 'supports' y.

° Mediation voting: The output y
minimizes/maximizes an objective function of all
inputs.

Although it is possible to consider more compli-
cated combining functions for the votes in consensus
voting, we only consider the summing function here.
This is consistent with the notion of voting in other
contexts. In consensus voting, one must determine the
level of support provided by each input to each
possible output. When the output space is large, the
structure of the space and application semantics
should be used to make the computation tractable.

For example, we saw at the end of Section 5 that for
inexact voting with real-valued inputs, the set of all
values supported by each input can be characterized
as an interval. Then, one can examine a small number
of intervals and interval end points, instead of an
infinite number of real values, to determine the
output.

Mediation voting covers rank-based voting schemes
such as median voting whereby the median of n input
values is selected not because of 'majority' or
'maximum' support but as a form of moderation. The
objective function minimized in the case of median is
the maximum distance between any input and the
output. Note that median can be defined for any
metric space and not just for numerical inputs (see
below). As another example, mean voting minimizes
the sum of distances between all inputs and the
output. Other objective functions, such as sum of the
squares of distances, may be appropriate in other
contexts.

Assuming a metric space (i.e., where a distance
function is defined on pairs of input objects), we
define the generalized median of a set recursively as
follows. For a single-element set, that one element is
the median. For a 2-element set, the median is defined
as a special case depending on the application context.
For example, when the objects are points on a
Euclidean plane, the median may be defined as the
midpoint of the straight line segment connecting the
two points. For a set with n > 2 elements, the median
of the set is defined as the median of the
(n - 2)-element set obtained by removing a pair of
points having the largest distance between them from
the set (akin to removing the highest and lowest
scores in gymnastics competitions). Note that in case
of a tie in distances, the particular pair chosen for
removal may affect the final result only if the set has
been already reduced to 3 or 4 elements.

6.1 Example 1

Consider the 9 input objects (points) shown in Fig. 7.
Assume equal votes for all inputs. For this example,

Largest
Maximal

Compatible Ill~, " ~
Class)

Fig. 7. Maximal-compatible classes for inexact voting on
2-D data points.

146 B. Parhami

the generalized median-finding algorithm described
above, successively removes the 4 pairs of points
marked with 1, 2, 3, and 4 in Fig. 9, leading to the
designation of the remaining point as the 'median'.

Similarly, generalized mean can be defined as an
object that has the smallest total distance to all the
input objects. In the case of 2-D or 3-D Euclidean
space, the generalized mean is the 'center of gravity'
for the set of input points, each with its associated
'weight'.

Some consensus voting schemes may be viewed as
special cases of mediation voting in the same way that
certain exact voting schemes constitute limiting cases
of inexact voting (e.g., with e =0). The objective
function to be maximized for such consensus voting
scheme is defined based on 'support'. However, there
are consensus voting schemes that cannot be
characterized as mediation voting. For example in the
approval voting problem depicted in Fig. 8, maximiz-
ing the objective function 'total support' (where an
output value is supported by an input interval if it is
belongs to the interval) leads to the unique solution
1.34 (total suppor t=12) . However, the original
formulation of the problem in Definition 5.1 required
only majority support which is satisfied by the interval
[1.33, 1.34].

Besides pure consensus or mediation voting, it is
also possible to have a two-stage voting process
whereby first a subset of mutually supportive inputs is
identified through consensus voting and then media-
tion voting is applied to this subset. The reverse
process of applying consensus voting to multiple
results obtained via mediation voting, though
theoretically possible, does not appear to be
practically useful.

1.28

Again consider the 9 input objects (points) shown in
Fig. 7 and assume equal votes for all inputs. Here, one
may first form the maximal-compatible sets, as
discussed in Section 5, and then find the median in a

Fig. 9. Generalized median voting on a set of points.

largest set, as shown in Fig. 10. This method has been
found particularly useful for removing inputs that are
'way off' from further consideration (e.g., in some
algorithms for synchronizing multiple clocks).

7 OBLIVIOUS VS A D A P T I V E VOTING

Depending on how the input votes vi are specified or
presented, we divide voting algorithms into two
classes:

• oblivious voting: the input votes v, are fixed (i.e.,
built into the voting algorithm),

• adaptive voting: the votes vj are stored in
writable memory or provided as inputs.

An important special case of oblivious voting is
when the input votes vi are all equal and can thus be
ignored. Adaptive voting may be implemented by
'adjustable' votes (stored in writable memory) or by
"variable" votes (presented as inputs along with the
data). This distinction is important from the
standpoint of voter complexity/cost and algorithm
speed. Whereas the voting algorithm itself is the same
for adjustable and variable votes, a hardware
realization with variable votes needs more I /O pins
and thus implies higher cost. Also, with adjustable
votes, it may be possible to precompute some
intermediate results needed to reach a voting decision

1.34 1.30
I I

xa[

1.32
I

Xai

1.36

6.2 Example 2

3 7 12

Fig. 8. Approval-voting formulation of an inexact voting problem.

x41
xsi

Taxonomy of voting schemes 147

)
Fig. 10. Generalized median voting on a selected subset of

inputs.

at the time when new votes are loaded in order to
speed up the subsequent voting process.

A commonly used special case of adaptive voting is
when vi • {0, 1}, where vi = 0 corresponds to an input
data source that abstains from participation in view of
internal conditions (e.g., self-test results) or one that
has been disabled by a system-level control function
(perhaps due to repeated disagreements with the
voting result). An example of this type of adaptive
voting is depicted in Fig. 11. In this scheme, known as
hybrid redundancy, there are a total of n = a + s
modules connected to a voter with adjustable input
votes in {0, 1}. The a active modules have vote weights
of 1 and thus influence the voting decision equally.
The s spare modules have vote weights of 0, so they
have no effect on the voter 's output. These spare
modules may be completely shut down (cold standby),
up and running like the active modules (hot standby)
so that they can be switched in with minimal latency
when needed, or operating in an intermediate mode
(warm standby). The voter itself is really a
combination of disagreement detection, switching, and
decision elements.

Adaptive voting with completely variable input
votes has been used to a lesser extent in practice. A
natural environment for the application of such voting
schemes is in the author's data-driven dependability

assurance method, 43"44 where data objects carry with
them 'dependability tags' that convey information
about their trustworthiness. As data objects arc
manipulated, they become less and less trustworthy in
view of the potential for error in each such
'dependability-lowering' operation. Dependability tags
may be viewed as vote weights, or can be used to
derive vote weights, for the data objects when they are
used in 'dependability raising" operations exemplified
by voting on multiple independent results.

As a more concrete example of this approach to
adaptive voting, consider a hybrid software redun-
dancy scheme 54 based on n-version programming and
acceptance testing, as depicted in Fig. 12. In n-version
programming, several program modules are executed
independently and the final result is obtained by
voting on the module outputs. In acceptance testing,
results obtained from a program module are subjected
to an acceptance test and alternate program modules
are invoked if the results do not pass the test.
Invocation of alternates continues until one produces
results that pass the test. Figure 12 shows a particular
combination of these methods, where one of the n
program modules of a pure n-version scheme is
replaced with an acceptance test. Furthermore, the
acceptance test (T) is applied to the result obtained by
voting on k of the n - 1 module outputs (V1), with the
tested result, along with outputs from the remaining
n - 1 - k modules entering into a second-level voter
(V2). Assuming program modules Mi with identical
reliabilities, an optimal second-level voter in this
scheme would attach a vote to its leftmost input that is
a function of k, the voting decision in V, (e.g., the

active
units

spare
units

Fig. 11. Hybrid redundancy viewed as an adaptive voting
scheme.

_)I)

Fig. 12. Adaptive voting is desirable with asymmetric
multi-channel computation.

148 B. P a r h a m i

number of disagreements), and the outcome t of the
test T. For example, w + l and w - 1 have been
suggested as suitable weights for 'pass" and "fail" test
outcomes, respectively, where w is the weight attached
by VI to its output. Details are beyond the scope of
this paper.

8 THRESHOLD VS PLURALITY VOTING

Finally, depending on how the output vote is handled,
two classes of voting algorithms can be distinguished:

• threshold voting: the output vote exceeds a given
(implicit or explicit) threshold,

• plurality voting: the sum of votes w is no less
than that of any other possible output value.

Common majority voters fall within the threshold
voting category, as do m-out-of-n voters, where the
data output y implies that at least m of the n data
inputs x~ were supportive of v. In both of the above
special cases, the output vote is implicit and at most a
binary indication of "quorum' or "lack of quorum" is
provided. With plurality voting, output votes arc
computed for each candidate output and one of the
candidates that obtains the highest vote w is selected.
The output vote w may itself be implicit or explicit
(presented at the output). Note that the output may
be non-unique for both threshold and plurality voting.
For example, 2-out-of-5 voting may yield two valid
outputs and unweighted 5-way plurality voting may
lead to 2 possible outputs with 2 votes each. In such
cases, the choice of output may be arbitrary or based
on secondary criteria, depending on the application
context.

Although many threshold voting schemes of
practical interest can be implemented through
plurality voting followed by a simple comparison of
the resulting output vote with the threshold, the result
may be much less efficient that direct implementat ion
of threshold voting (see below). As an example
showing that, even ignoring the comparison needed at
the end, threshold voting cannot be viewed as a
special case of plurality voting, consider a 5-way
majority voting scheme. Applying plurality voting to
the inputs may result in identifying the sole candidate
output that is supported by, say, 4 of the inputs.
However , another candidate output supported by 3 of
the inputs may be an equally valid result for the
majority w)ter (recall that one input may support
several candidate outputs).

Threshold voting is fundamentally simpler than
plurality voting. ~ Algorithm 8.1 shows that n-way
weighted t-out-of-V exact threshold voting (where
"support" is defined as object equality and such
equality can be established in unit time) has time
complexity O (n p) and needs working storage space

for only p objects, where p - [_ V / t] . Thus, unless t is
much smaller than V. threshold voting is considerably
more efficient. As a corollary, weighted majority
voting can be per formed in linear time with working
storage for a single input object. This should be
contrasted to the O(n 2) time and O (n) space needed
for plurality voting under the same conditions when
the object space is not totally ordered. ~ If the object
space is ordered, sorting can be used to reduce the
time complexity of plurality voting to O(n log n),
which is still significantly higher than O (n p) in most
cases of practical interest.

8.1 Algorithm

Exact Threshold Vot ing- -Large Unordered Object
Space

We need working .s torage space or 'slots' for
p = [_V/t.] different objects z~, z2 z1,, each with an
associated vote tally u,.

1. ~ l : = X ~ ; U t : = v l ; u j : = 0 (2 - < j - < p)
2. f o r i = 2 t o n d o
3. if 3u~ # 0 such that x~ = ~
4. then u,: = u~ + v,
5. else if 3uj = 0
6. then zi = x~ ; u / = v~
7. else let m = uk be a minimum of all u/s

(1 -<j-< p)
8. if vi ~ m
9. t h e n u i : - u i v~ (l <- / -< p)

IlL else gk: - - A ' i ; I lk: = Ui; l t l : = l l i - - Ell

(1 - < j - < p)
endif 11.

12. endif

13. endif

14. endfor
15. u / = O (l <-j <-p)
16. f o r i = l t o n d o
17. if 3J such that xs = z / then ill: - - I t i + Vi endif
18. endfor
19. Output z/with u i -> t •

Following is a textual description of the algorithm.
The first input object and its associated vote are stored
in the first slot and all other u/s are initialized to 0,
thus designating the remaining p - 1 slots as empty
(Line 1). Input objects x2 x,, are then examined in
turn (Line 2). The next input object x~ to be
considered is compared to the stored objects (Line 3).
If .r, = z~ for some j , then l 9 is incremented by v, (Line
4). If x~ is not equal to any z~ and fewer than p objects
have been stored in the p slots, then (&, v~) is stored
in an available slot (Line 6). If all of the p slots are
occupied, then the minimum vote tally m - u a for the
stored objects is found (Line 7). If 9 , -<m, then the
new input .v, is discarded and all stored vote tallies are
reduced by vi (Line 9). If v~ > 1,7, then all vote tallies

Taxonomy o f voting schemes 149

are decremented by m and (xi, vi - m) replaces one of
the objects which is left with 0 vote tally (Line 10). A
second pass through the input, comparing each xi to
all remaining zjs, and tallying the actual vote for each
z/, completes the algorithm (Lines 15-18).

8.2 E x a m p l e

Consider 6-way, 8-out-of-15 voting with the vote
weights 4, 3, 3, 2, 2, 1. Take an instance of the voting
problem with inputs (a, 3), (b, 2), (b, 2), (a, 1), (c, 3),
(a, 4) in presentation (input) order. Since V = 15,
t = 8, and p = 1_15/8J = 1, a single working storage slot
(z~, u~) is required. This slot will hold the values (a,
3), (a, 1), (b, 1), (-, -), (c, 3), and (a, 1) successively as
we proceed through the steps of the algorithm.
Therefore , a is a candidate value for the voting result
and a second pass through the input will yield its
actual vote tally for comparison with 8.11

9 C O N C L U S I O N S

We have presented a taxonomy of voting algorithms
as a unified view of methods used in multi-source data
fusion and dependable multi-channel computation.
Although the voting algorithms that have been used in
practice occupy a small fraction of the space defined
by our taxonomy, other portions of this space are
being increasingly populated by new voting schemes
as well as generalizations of older ones. Thus, the
proposed taxonomy covers virtually all voting schemes
proposed to date and also points to areas that have
not received due attention in the past.

We have taken a very general view of voting. As
such, our discussion of voting covers not only many
methods used in connection with multi-sensor data
fusion and multi-channel computation, with identical
or diverse designs for the hardware or software
components, but also other domains where combining
or merging of data occurs. 53 One example is image
processing filters where during each pass, pixel values
may be replaced by values determined from voting on
a predefined neighborhood of nearby pointsJ 2
Another example is in distributed fault diagnosis
where voting might be used to determine the signature
of a fault-free processor from the self-diagnosis
signatures of participating nodes. 66 This latter example
can be viewed as data fusion, though not as
multi-sensor data fusion.

Armed with this unified view of voting in diverse
application contexts, one can proceed in many
different directions. Clearly, existing voting algorithms
can be studied, evaluated, and extended in light of the
proposed taxonomy. Voting schemes can be combined
into a small number of "generic' algorithms that can
yield the specific algorithms of interest, with little or

no overhead, by proper setting of their parameters. It
is important to note that voting is but one of many
operations needed in data fusion and dependable
computations. Combined analyses of voting and other
key system functions is also facilitated by the pro-
posed taxonomy. Analysis of real-time scheduling in
an environment where voting delays and other factors,
such as resource exhaustion or imperfect coverage,
contribute to system failure is one example. 5°

R E F E R E N C E S

1. Agrawal, P., Fault tolerance in multiprocessor systems
without dedicated redundancy. IEEE Trans.
Computers, 37 (1988) 358-362.

2. Ahamad, M., Ammar, M.H. & Cheung, S.Y.,
Multidimensional voting. A CM Trans. Computer
Systems, 9 (1991) 399-431.

3. Ammann, P.E. & Knight, J.C., Data diversity: an
approach to software fault tolerance. IEEE Trans.
Computers, 37 (1988) 418-425.

4. Avizienis, A., Gilley, G.C., Mathur, F.P., Rennels,
D.A., Rohr, J.A. & Rubin, D.K., The STAR
(self-testing-and-repairing) computer: an investigation
of the theory and practice of fault-tolerant computer
design. IEEE Trans. Computers, 20 (1971) 1312-1321.

5. Avizienis, A., The N-version approach to fault-tolerant
software. IEEE Trans. Software Engng, 11 (1985)
1491-1501.

6. Babaoglu, O., On the reliability of consensus-based
fault-tolerant distributed computing systems. ACM
Trans. Computer Systems, 5 (1987) 394-416.

7. Barbara, D. & Garcia-Molina, H., The reliability of
voting mechanisms. IEEE Trans. Computers, 36 (1987)
1197 - 1208.

8. Blough, D. M. & Sullivan, G. F.. A comparison of
voting strategies for fault-tolerant distributed systems.
In Proc. 9th Symp. Reliable Distributed Systems,
October 1990, pp. 136-145.

9. Blough, D.M. & Sullivan, G.F., Voting using predis-
positions. IEEE Trans. Reliab., 43 (1994) 604-616.

10. Boyer, R. S. & Moore, J. S., MJRTY--a fast majority
vote algorithm. In Automated Reasoning: Essays in
Honor of Woody Bledsoe, (ed. R. S. Boyer) Kluwer,
Dordrecht, The Netherlands, 1991.

11. Brilliant, S.S., Knight, J.C. & Leveson, N.G., The
consistent comparison problem in n-version software.
Software Engng Notes, ACM SIGSOFT, 12 (1987)
29-34.

12. Brownrigg, D.R.K., The weighted median filter. Comm.
ACM, 27 (1984) 807-818.

13. Campbell, D. & McNeill, T., Finding a majority when
sorting is not available. The Computer J., 34 (1991) 186.

14. Chen, L. & Avizienis, A., N-version programming: a
fault tolerance approach to reliability of software
operation. In Proc. Int. Symp. Fault-Tolerant
Computing, Toulouse, France, 21-23 June 1978, pp.
3-9.

15. Chem Y. & Chen, T., Implementing fault tolerance via
modular redundancy with comparison, IEEE Trans.
Reliab., 39 (1990) 217-225.

16. DeSousa, P.T. & Mathur, F.P., Sift-out modular
redundancy. IEEE Trans. Computers, 27 (1978)
624-627.

17. Dolev, D., Lamport, L., Pease, M. & Shostak, R., The
Byzantine generals. In Concurrenc T Control and

150 B. Parhami

Reliability in Distributed Systems, (ed. B. K. Bhargava)
Van Nostrand Reinhold, NY, 1987, pp. 348-369.

18. Garcia-Molina, H. & Barbara, D., How to assign votes
in a distributed system. J. Ass. for Computing
Machinery, 32 (1985) 841-860.

19. Gersting, J. L., Nist, R. L., Roberts, D. B. & Van
Valkenburg, R.L., A comparison of voting algorithms
for n-version programming. In Proc. 24th Hawaii Int.
Conf. System Sciences, Kauai, Hawaii, 8-11 January
1991 pp. 253-262.

20. Gifford, D. K., Weighted voting for replicated data. In
Proc. 7th ACM SIGOPS Syrup. Operating System
Principles, Pacific Grove, CA, December 1979, pp.
150-159.

21. Gries, D., A hands-in-the-pocket presentation of a
k-majority vote algorithm. In Formal Development of
Programs and Proofs, (ed. E. W. Dijkstra) Addison-
Wesley, Reading, MA, 1990, pp. 43-45.

.22. Hopkins, A.L., Smith, T.B. & Lala, J.H., FTMP---a
highly reliable fault-tolerant multiprocessor for aircraft.
Proc. IEEE, 66 (1978) 1221-1239.

23. Iyengar, S., Sitharama, S., Kashyap, R.L. & Madan,
R.N., Special section on distributed sensor networks.
IEEE Trans. Systems, Man, and Cybernetics, 21 (1991)
1027-1031.

24. Iyengar, S.S., Jayasimha, D.N. & Nadig, D., A versatile
architecture for the distributed sensor integration
problem. IEEE Trans. Computers, 43 (1994) 175-185.

25. Jajodia, S. & Mutchler, D., Dynamic voting algorithms
for maintaining the consistency of a replicated database.
ACM Trans. Database Systems, 15 (1990) 230-280.

26. Johnson, B. W., Design and Analysis of Fault-Tolerant
Digital Systems, Addison-Wesley, 1989.

27. Kanekawa, N., Maejima, H., Kato, H. & Ihara, H.,
Dependable onboard computer systems with a new
method--stepwise negotiating voting. In Proc. Int.
Symp. Fault-Tolerant Computing, Chicago, 21-23 June
1989, pp. 13-19.

28. Kieckhafer, R.M. & Azadmanesh, M.H., Reaching
approximate agreement with mixed-mode faults. IEEE
Trans. Parallel Distributed Systems, 5 (1994) 53-63.

29. Knight, J.C. & Leveson, N.G., An experimental
evaluation of the assumption of independence in
multi-version programming. IEEE Trans. Software
Engng, SE-12 (1986) 96-109.

30. Kohavi, Z., Switching and Finite Automata Theory,
McGraw-Hill, NY, 1978, pp.333-347.

31. Krol, T., Interactive consistency algorithms based on
voting and error-correcting codes. In Proc. 25th Int.
Syrup. Fault-Tolerant Computing, Pasadena, CA, 27-30
June 1995, pp. 89-98.

32. Lei, C.-L. & Liaw, H.-T., Efficient parallel algorithms
for finding the majority element. J. lnfo. Science and
Engng, 9 (1993) 319-334.

33. Leveson, N.G., Cha, S.S., Knight, J.C. & Shimeall, T.J.,
The use of self checks and voting in software error
detection: an empirical study. IEEE Trans. Software
Engng, 16 (1990) 432-443.

34. Lorczak, P. R., Caglayan, A. K. & Eckhardt, D. E., A
theoretical investigation of generalized voters for
redundant systems. In Proc. Int. Symp. Fault-Tolerant
Computing, Chicago, 21-23 June 1989, pp. 444-451.

35. Losq, J., A highly efficient redundancy scheme:
self-purging redundancy. IEEE Trans. Computers, 25
(1976) 569-578.

36. Luo, R.C. & Kay, M.G., Multisensor integration and
fusion in intelligent systems. IEEE Trans. Systems.
Man, and Cybernetics, 19 (1989) 901-927.

37. Marzullo, K., Tolerating failures of continuous-valued
sensors. ACM Trans. Computer Systems, 8 (1990)
284-304.

38. Mathur, F. P. & Avizienis, A., Reliability analysis and
architecture of a hybrid-redundant digital system:
generalized triple modular redundancy with self-repair.
In AFIPS Conf. Proc., vol. 36, AFIPS Press, Montvale,
NJ, 1970, pp. 375-383.

39. Mathur, F.P. & DeSousa, P., Reliability modeling and
analysis of general modular redundant systems. IEEE
Trans. Reliab., R-24 (1975) 296-299.

40. McAllister, D.F., Sun, C.-E. & Vouk, M.A., Reliability
of voting in fault-tolerant software with small output
spaces. IEEE Trans. Reliab., 39 (1990) 524-534.

41. Misra, J. & Gries, D., Finding repeated elements.
Science of Computer Programming, 2 (1982) 143-152.

42. Moser, L. E., Kapur, V. & Melliar-Smith, P. M.,
Probabilistic language analysis of weighted voting
mechanisms. In Proc. ACM Sigmetrics Conf. Measure-
ment and Modeling of Computer Systems, Boulder, CO,
May 1990, pp. 67-73.

43. Parhami, B., A framework for the study of computer
system dependability. In Proc. 23rd Asilomar Conf.
Signals, Systems, and Computers, Pacific Grove, CA, 30
October-1 November 1989, pp. 1017-1021.

44. Parhami, B., A data-driven dependability assurance
scheme with applications to data and design diversity. In
Dependable Computing for Critical Applications
(Dependable Computing and Fault-Tolerant Systems,
vol 4), Springer-Verlag, Wien, 1991, pp. 257-282.

45. Parhami, B., Voting networks. IEEE Trans. Reliab., 40
(1991) 380-394.

46. Parhami, B., The parallel complexity of weighted voting.
In Proc. Int. Syrup. Parallel and Distributed Computing
and Systems, Washington, DC, 8-11 October 1991, pp.
382-385.

47. Parhami, B., High-performance parallel pipelined voting
networks. In Proc. Int. Parallel Processing Symp.,
Anaheim, CA, 30 April-2 May 1991, pp. 491-494.

48. Parhami, B., Design of m-out-of-n bit-voters. In Proc.
25th Asilomar Conf. Signals, Systems, and Computers,
Pacific Grove, CA, 4-6 November 1991, pp. 1260-
1264.

49. Parhami, B., Optimal algorithms for exact, inexact, and
approval voting. In Proc. Int. Symp. Fault-Tolerant
Computing, Boston, USA, 8-10 July 1992, pp. 444-
451.

50. Parhami, B. & Hung, C. Y., Scheduling of replicated
tasks to meet correctness requirements and deadlines.
In Proc. 26th Hawaii Int. Conf. System Sciences, vol. 2,
Kihei, Hawaii, 5-8 January 1993, pp.506-515.

51. Parhami, B., Threshold voting is fundamentally simpler
than plurality voting. Int. J. Reliab., Quality and Safety
Engng, 1 (1994) 95-102.

52. Parhami, B., Voting algorithms. IEEE Trans. Reliab., 43
(1994) 617-629.

53. Parhami, B., Multi-sensor data fusion and reliable
multi-channel computation: Unifying concepts and
techniques. In Proc. 29th Asilomar Conf. Signals,
Systems, and Computers, Pacific Grove, CA, 30
October-I November 1995.

54. Parhami, B., Design of reliable software via general
combination of n-version programming and acceptance
testing, submitted for publication.

55. Paris, J.-F., Voting with a variable number of copies. In
Proc. Int. Symp. Fault-Tolerant Computing, Vienna,
1-3 July 1986, pp. 50-55.

56. Pierce, W. H., Adaptive decision elements to improve

Taxonomy o f voting schemes 151

the reliability of redundant systems. IRE Int. Cony.
Record, March 1962, pp. 124-131.

57. Shin, K.G. & Dolter, J.W., Alternative majority-voting
methods for real-time computing. IEEE Trans. Reliab.,
38 (1989) 58-64.

58. Siewiorek, D.P. & McCluskey, E.J., Switch complexity
in systems with hybrid redundancy. IEEE Trans.
Computers, 22 (1973) 276-282.

59. Siewiorek, D.P. & McCluskey, E.J., An iterative cell
switch design for hybrid redundancy. IEEE Trans.
Computers, 22 (1973) 290-297.

60. Siewiorek, D.P., Reliability modeling of compensating
module failures in majority voted redundancy. IEEE
Trans. Computers, 24 (1975) 525-533.

61. Siewiorek, D.P., C.vmp: a voted multiprocessor. Proc.
IEEE, 66 (1978) 1190-1198.

62. Siewiorek, D. P. & Swarz, R. S., Reliable Computer
Systems: Design and Evaluation, 2nd edition, Digital
Press, Bedford, MA, 1992, pp. 138-146.

63. Sklaroff, J.R., Redundancy management techniques for
space shuttle computers. IBM J. Research and
Development, 20 (1976) 20-28.

64. Spasojevic, M. & Berman, P., Voting as the optimal static
pessimistic scheme for managing replicated data. IEEE
Trans. Parallel Distributed Systems, 5 (1994) 64-73.

65. Stotts, L. & Stewart, C., Sensor fusion. In 27th Asilomar

Conf. on Signals, Systems, and Computers, Pacific
Grove, CA, 1-3 November 1993, pp. 258-304.

66. Su, S.Y.H., Cutler, M. & Wang, M., Self-diagnosis of
failures in VLSI tree array processors. IEEE Trans.
Computers, 411 (1991) 1252-1257.

67. Tong, Z. & Kain, R.Y., Vote assignments in weighted
voting mechanisms. IEEE Trans. Computers, 40 (1991)
664-667.

68. Voges, U., Use of diversity in experimental reactor
safety systems. In Software Diversity in Computerized
Control Systems, Springer-Verlag, Wien, 1988, pp.
29-49.

69. von Neumann, J., Probabilistic logics and the synthesis
of reliable organisms from unreliable components. In
Automata Studies, (Annals of Mathematics Studies, no
34) (eds C. E. Shannon and J. McCarthy) Princeton
Univ. Press, 1956, pp. 43-98.

70. Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W.,
Levitt, K.N., Melliar-Smith, P.M., Shostak, R.E. &
Weinstock, C.B., SIFT: design and analysis of a
fault-tolerant computer for aircraft control. Proc. IEEE,
66 (1978) 1240-1255.

71. Wensley, J.H. & Harclerode, C.S., Programmable
control of a chemical reactor using a fault tolerant
computer. I E E E Trans. Industrial Electronics, 29 (1982)
258-264.

