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Voting is an important operation in the fusion of data originating from diverse 
sources and in the realization of ultrareliable systems based on multiple 
computation channels. Voting involves the derivation of an output data object 
from a collection of n input data objects, as prescribed by the requirements 
and constraints of a voting algorithm. The objects voted on can be quite 
complex in terms of content and, explicitly specified or implicit, structure. 
Regardless of implementation details (e.g., whether realized in hardware, 
software, or hybrid schemes) and object space properties, voting algorithms 
can be classified according to how they view the input and output data objects 
and how they handle the votes (weights) at input and output. A 16-class 
(binary 4-cube) categorization results from dichotomizing each of the above 
voter features. This categorization leads to an abstraction that helps in the 
study of voting algorithms with regard to the dependability level for the 
outputs and the speed at which they are obtained; viz, the quality and 
efficiency of the algorithms. The taxonomy is broad enough to cover, and 
detailed enough to distinguish among, a wide variety of commonly used voting 
algorithms in data fusion and dependable computation. It also provides insight 
into the relationships of various voting schemes and facilitates comparison and 
fine-tuning of such algorithms. © 1996 Elsevier Science Limited. 

1 I N T R O D U C T I O N  

Voting is an important operation in the fusion of data 
originating from multiple sources and in the 
realization of ultrareliable systems that are based on 
the multi-channel computation paradigm. In data 
fusion, voting is a possible way of combining diverse 
data provided by multiple sources (such as sensors) 
whose outputs may be erroneous,  incomplete, tardy, 
or totally missing. In ultrareliable systems, voting is 
required whether the multiple computation channels 
consist of redundant  hardware units, diverse program 
modules executed on the same basic hardware, 
identical hardware and software with diverse data, or 
any other combination of hardware /program/data  
redundancy and/or  diversity. 

Depending on data volume and voting frequency, 
hardware or software voting schemes may be 
appropriate.  Low-level, frequent voting requires the 
use of hardware voters whereas high-level voting on 
the results of fairly complex computations can be 
performed in software without serious performance 
degradation or overhead. However,  the 
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hardware/software distinction is superficial: it is the 
voting algorithm~ and not the implementation scheme, 
that is important. 

Even though voting algorithms have been studied 
extensively in the context of particular applications 
and for the realization of specific systems, a general 
investigation of the various design options and 
tradeoffs has not been attempted. There are signs, 
however, that research in this area is moving towards 
higher-level, application-independent (and, thus, more 
widely applicable) techniques. A general study of 
voting must deal with several concerns: 

• minimizing the hardware cost or software 
overhead associated with voting, 

• achieving high throughput and/or  high speed 
(low latency) in voting, 

• providing the flexibility of unequal/adaptive 
votes for different channels, 

• utilizing the information coming from multiple 
channels in an optimal way, 

• identifying the strengths and weaknesses of 
proposed voting methods, 
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• quantifying the correctness probability for the 
results of voting. 

The significance of low-cost or low-overhead 
designs is obvious. The voting delay or latency, which 
is particularly important  in real-time systems with 
hard deadlines, is also significant in high-performance 
systems. When data to be voted on is generated at a 
high rate, the voter must be able to keep up with the 
processing speed. In some such cases, the actual 
voting delay may not be critical but the voter 
throughput must match or exceed the input data rate. 
Unequal  or adaptive vote weights are required in 
order  to accommodate  a priori or acquired knowledge 
about the relative trustworthiness of various data and 
computational resources. With respect to the optimal 
utilization of information, the voting scheme should 
be neither too optimistic nor overly pessimistic. 
Studying the strengths and weaknesses of proposed 
voting schemes would allow more informed selection 
of algorithms for each application context. Finally, 
due to algorithmic limitations or implementation 
flaws, no voting scheme is perfect and it is thus 
important to quantify the risks associated with any 
proposed approach. 

The above aspects are interrelated and collectively 
challenge the designers with interesting reliability, 
algorithm complexity, and performance/overhead 
tradeoff issues. Many of these issues are being 
addressed by researchers in data fusion and 
dependable computation. 53 In order to study these 
aspects in a systematic way, a unified high-level view 
of voting is essential. Hence,  our motivation is to 
propose a taxonomy that would expose the similarities 
and differences of proposed voting schemes. 

The rest of this paper is organized as follows. 
Section 2 contains a review of voting methods and 
their applications. Section 3 defines voting in a much 
more general way than is commonly done, thus 
serving to unify diverse views. Section 4 contains the 
essence of the proposed taxonomy; viz the four 
dichotomies (exact/inexact, consensus/mediation, 
oblivious/adaptive, and threshold/plurality) as well as 
the resulting 16 classes. Sections 5, 6, 7 and 8 contain 
more detailed discussions of the four dichotomies 
mentioned above. Significance of the proposed 
taxonomy and directions for further research are 
discussed in the concluding Section 9. 

2 V O T I N G  A N D  ITS A P P L I C A T I O N S  

The use of voting for obtaining highly reliable data 
from multiple unreliable versions was first suggested 
in the mid 1950s. 6~ Since then, the concept has been 

practically utilized in fault-tolerant computer  systems 
and has been extended and refined in many different 
ways. Reliability modeling of voting schemes by 
considering compensating errors, 6° handling of impre- 
cise or approximate data, 14 combination with standby 
or active redundancy, 3s reconfigurable voting with 
declining replication factor upon detected failures, 39 
voting on digital 'signatures' obtained from computa- 
tion states in order to reduce the amount of 
information to be voted on, 63 and dynamic modifica- 
tion of vote weights based on a priori reliability data 56 
constitute some of these extensions and refinements. 

More recently, generalized voting with unequal 
input votes has been suggested for maintaining the 
reliability and consistency of data stored with 
replication in distributed computer  systems. 2° This has 
become a very active research area. Voting is also 
used in the fusion of data obtained from multiple 
s e n s o r s .  23"24"36"37'65 In particular, when sensor outputs 
are abstracted as intervals, the voting scheme used is a 
type of approval voting. 52 However,  the process used 
for multi-sensor data fusion is not commonly 
characterized as voting, which is often equated with 
majority agreement and other simple decision 
schemes. 

Hardware voters that have been described in the 
literature are essentially 'bit-voters' that compute a 
majority function on n input bits. 26"62 Combined bit 
voting and disagreement detection has also been 
discussed. 15 Hardware voting on words and higher- 
level data objects has traditionally been handled by 
using independent parallel bit-voters or feeding the 
data sequentially through a single unit. Such 
independent bit-voting yields results that are optimis- 
tic, particularly when correlated errors are likely. 
Several algorithms and design techniques for har- 
dware voters with adjustable or variable vote weights 
have been published. 45'4v'48 The above hardware 
voting schemes all deal with voting on exact values 
(typically bit strings representing logical decisions or 
integer numerical values). Approximate or other 
context-dependent  voting algorithms have not been 
implemented in hardware. 

Hardware voters used in actual systems include 
3-way voters in MIT's FTMP design, 22 Carnegie- 
Mellon University's C.vmp system, 61 and August 
Systems' industrial control computers. 7~ The Jet 
Propulsion Laboratory 's  STAR computer 4 used a 
special 2-out-of-5 voter that was symmetrically 
connected to 3 active modules and 2 standby spares 
for its critical Test and Repair Processor (aerospace 
computers utilized hardware voters even before 
STAR). The effect of switch complexity on reliability 
and the design of low-complexity, and thus highly 
reliable, switch-voters for hybrid redundancy was 
considered by Siewiorek and McCluskey. 5~'59 This 
work was instrumental in attracting attention to the 
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importance of simple switch-voters and led to several 
other designs including the self-purging 35 and sift-out 16 
variations of adaptive voting with vote weights in 
{0,1}. 

Proposed software voters are quite varied and 
possess a wide range of features. The earliest software 
voters are found in the design of modular 
multiprocessors with replicated software. For ex- 
ample, the  voter routine in SRI International's SIFT 
design 7° is invoked by any task which requires inputs 
for a new iteration. It uses tables provided by the local 
reconfiguration task to determine which processors 
contain copies of the required output (and in which of 
their buffers), reads the data from the appropriate 
buffers and uses a majority rule to obtain a single 
value. In the Space Shuttle's 4-way software voting 
scheme, 63 selected data items are computationally 
combined to form 'compare words' that are 
periodically exchanged and compared in 4 out of the 5 
on-board computers. The 'stepwise negotiating voting' 
scheme 27 essentially amounts to a 2-0ut-of-n threshold 
voting strategy. The advantages of such 'relaxed' 
(non-majority) voting schemes have been discussed by 
others as well. ~'55 

Researchers in the field of software diversity have 
designed voters that are suitable for processing the 
results obtained by multiple versions of a program and 
have contributed techniques for handling approximate 
results.5,11,29,33,68 Similar considerations would apply to 
voting schemes with data diversity. 3 Software voters 
have also been designed in connection with the 
management of replicated data in distributed 
systems 6"7"18'e°'25"64"67 to assure database reliability 
and/or consistency. A common way to achieve this 
goal is to assign votes to participating nodes in the 
distributed system and to implement mutual exclusion 
by requiring each operation agent to 'collect' a certain 
number of consenting votes. Typical issues dealt with 
in this area are vote assignments to maximize 
reliability or to minimize average transaction response 
time (e.g., by adjusting 'read' and 'write' quorums). 
The delays resulting from synchronized voting in 
real-time systems and the expected time to collect a 
prescribed number of votes from distributed sites with 
different response characteristics have been studied in 
Refs. 57 and 42, respectively. 

Research on voting algorithms has dealt with both 
implementation and effectiveness of various voting 
schemes. In the area of algorithm implementation, the 
main focus has been simple majority voting, which is a 
special case of the problem of finding repeated 
elements in a s e t .  1°'13"21"41 In another line of attack, 34 
the notion of 'approximate voting', henceforth applied 
only to real-valued numerical results, has been 
generalized by demonstrating that various forms of 
inexact voting can be easily applied to any metric 
space or, in the case of weighted averaging scheme, to 

any real vector space. As for effectiveness, Ref. 34 
contains a qualitative comparison of several voting 
schemes under different error conditions. The 
problem of selecting the best voting scheme in order 
to maximize the probability of obtaining a correct 
result has been investigated in Refs. 8, 9, 19 and 40. 
Voting algorithms have also been studied from the 
viewpoint of sequential and parallel computational 
complexity. 32,46,49.52 

Finally, several researchers have presented general- 
ized or mixed-mode voting schemes based on 
extending the voting domain, the fault model, or 
assumptions about the data redundancy scheme 
used. 2"28'3~ Clearly, such useful generalizations must be 
covered in any systematic study of voting or proposed 
taxonomy. 

3 A G E N E R A L  V I E W  OF V O T I N G  

In order to facilitate and systematize the study of 
voting schemes, we have previously categorized them 
according to implementation in hardware or software 
(voting networks 45 or voting routines) and based on 
the size and structure of the input object space (see 
Fig. 1). A voting algorithm 52 specifies how the voting 
result is obtained from the input data and may be the 
basis for a voting network or a voting routine. For 
brevity, the term 'voter' is sometimes used as an 
equivalent for 'voting network' or 'voting routine', 
resulting in terms such as 'bit-voter', 'word-voter', or 
'inexact majority voter'. 

As shown in Fig. 1, the input objects to be voted 
upon can be atomic or composite. Composite objects, 
consisting of structured collections of atomic objects, 
have not received due attention in previous works on 
voting. With atomic objects, the input object space can 
be small or large. For small object spaces, further 
classification is unimportant, as they support very 
simple and efficient voting algorithms. For large object 
spaces, whether or not a distance metric can be 
defined, and as a special case, if the objects can be 
ordered, is important. Finally, for an unordered space, 

Ot~ect Space 

Atomic Objects Composite Objects 

Small Space Large Space 

Metric Space General Space 

Binary Totally Ordered Trans i t i ve  Non-Transitive 
(bits) (e.g., numbers) "Support" "Support" 

Fig. 1. Voting schemes classified according to the object 
space size and structure. 
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voting algorithms tend to be less complex if the notion 
of 'support ' ,  as discussed in Definition 3.1, is transitive 
(X supports Y and Y supports Z implies X supports 
Z). 

Uses of voting in dependable multi-channel 
computation are almost exclusively based on atomic 
objects (primarily bits and numeric words), but data 
fusion routinely involves the processing of composite 
objects. However,  as will become evident from the 
following discussions, the distinction between atomic 
and composite objects as well as the differences 
resulting from the size of the object space are quite 
minor compared with the other properties that we use 
for our classification scheme. Hence,  a byproduct of 
our classification scheme is the unification of concepts 
and techniques used in data fusion and dependable 
computation. 

Figure 2 shows an example of composite data 
objects that might be used in voting. The four objects 
x~, x2, x3, x4 are infinite sets corresponding to the 
intervals [ll, hi], [/2, h2], [13, h3], [14, h4] o n  the real 
line. The voting algorithm may depend on the 
semantics attached to these intervals and on 
application requirements. For example, if the intervals 
are interpreted as different views of the safe operating 
range for a physical parameter ,  then the interval [/2, 
h4] may be taken as the voting outcome in view of its 
unanimous designation as being safe. If one of the 
evaluators (combination of sensors and decision logic) 
fails so that its corresponding interval is 'way off', then 
majority consensus can still be reached. 

Consider, as another  example, the five input objects 
represented as triangles in Fig. 3. Again, different 
meanings may be attached to these triangles. Each 
triangle may simply represent a 3-vector with elements 
in the range [1, 2), providing three parameters of a 
system or multiple t ime-domain measurements of the 
same parameter  by a single sensor. Or the triangles 
may be outputs of intelligent sensors which extract 
contour information from visual data. Details of 
voting will be different with each interpretation. For 
example, with the 3-vector view, there is majority 
agreement that the smallest element is 1.5 and the 
largest element is 1.8. With the visual interpretation, 
on the other  hand, the sensors are unanimous about 
the contour shape being triangular and have majority 

I 1 Xl h 1 

l 2 x2 h 2 
I I 

13 x3 h 3 
I I 

/4 x4 ha 
I I 

Fig. 2. Voting with composite data objects represented as 
intervals on the real line. 

agreement on the triangle being isosceles: both of 
these conclusions may be significant in a target 
tracking and recognition context. 

To accommodate all voting schemes of interest, 
including those dealing with composite data objects as 
discussed above, we present the following general 
definition of weighted voting. 

3.1 Definition 

Weighted voting--given n input data objects Xl, 
x2 .... ,x,,, and associated non-negative real votes 
(weights) vl, v2 ..... v,,, with ~7-J vi = V, it is required 
to compute the output y and its vote w such that y is 
'supported by' a number of input data objects with 
votes totaling w, where w satisfies a condition 
associated with the desired voting subscheme; e.g., 
w > ½ V for majority voting, w > 2 v for byzantine 
voting, w - t  for t-out-of-V (generalized m-out-of-n) 
voting, and w corresponding to maximal 'support '  
among all possible outputs in the case of plurality 
voting. The term 'supported by' can be defined in 
several ways, leading to different voting schemes. For 
example, with exact voting, an input object xi supports 
y iff x i = y .  With inexact voting, approximate 
inequality ( ~ )  is defined in some suitable way (e.g., 
by providing a comparison threshold e in the case of 
numerical values or, more generally, a distance 
measure d in a metric space) and xi supports y iff 
xi = y. With approval voting, y must be a subset of the 
approved set of values that x~ defines. 

The Byzantine voting scheme in Definition 3.1 is a 
generalized form of the unweighted version used in 
distributed computing 17 where n independent n-way 
voting nodes/sites must arrive at consistent conclu- 
sions in the presence of fewer than n/3  faulty nodes 
(Byzantine faulty nodes may try to con- 
fuse other  nodes by presenting to them inconsistent 
values). In this generalized version, less than 1/3 of 
votes/weights can be associated with faulty nodes. 

Thus, we view a voter (Fig. 4) as dealing with n 
input data objects x~ having the associated votes 
(weights) v~, i = 1, 2 ..... n, (i.e., n input data-vote pairs 
(x,vi)) and producing the output data-vote pair (y, w). 
The voting algorithm may also produce a set of n 
"support bits' si, one for each input, that indicate 
whether a given input "supports' or 'agrees with' y (as 
discussed in Definition 3.1. The input votes v~, i -  1, 
2 ..... n, and the output vote w need not be explicitly 
represented or even present at all, but rather may be 
implied. 

The reason we have chosen to base our 
classification scheme on weighted voting is threefold. 
First, weighted voting is more general than simple 
voting and thus useful in a wider context. Setting all 
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1.5 1.5 1.3 1.4 1.5 

Fig. 3. Example of voting with composite data objects represented as triangles. 

the weights equal to 1 yields simple non-weighted 
voting as a special case. Second, it turns out that in 
most cases, weighted voting isn't harder to implement 
than simple voting, especially in software-based 
implementations (adding an arbitrary weight to a vote 
tally isn't any harder than adding 1). Third, some 
constant-weight voting schemes are essentially adap- 
tive over the long run. For example, disabling faulty 
units or reintroducing repaired units in some n-way 
voting schemes is equivalent to changing their votes 
from 1 to 0 or 0 to 1, respectively. 

4 THE P R O P O S E D  T A X O N O M Y  

The four main components of a voting algorithm, 
namely, input data, output data, input votes and 
output vote, can be used to impose a binary 4-cube 
classification scheme, leading to 16 classes. Figure 5 
depicts the classification scheme. 

Briefly, the four dichotomies used in the classifica- 
tion of Fig. 5 are defined as follows. Detailed 
descriptions and examples can be found in Sections 5, 
6, 7 and 8 of the paper. 

• Exact / Inexact:  The exact/inexact dichotomy has 
to do with whether input objects are viewed as 
having inflexible values or as representing 
flexible ' neighborhoods'. 

• Consensus~Mediat ion: Consensus voting involves 
agreement/quorum whereas mediation voting is 
based on compromise (e.g., choosing the median 
or mean of real-valued inputs). 

• Oblivious~Adaptive:  The oblivious/adaptive 
dichotomy corresponds to the vzs being set at 

I 0 
N x 2 U 

P x3 y T 

U 
S T 

X n 

Fig. 4. Elements and parameters of a generalized voter. 

design time or allowed to change dynamically 
(be adjustable or variable). 

• Threshold~Plurality: Threshold voting requires 
that w exceed a given threshold whereas 
plurality voting identifies an output y with 
highest support from the inputs. 

Figure 6 shows the 16 classes resulting from this 
4-dimensional classification. Each class corresponds to 
one of the vertices of a binary 4-cube. The 4-bit vertex 
labels are interpreted as shown at the bottom left of 
the diagram. Alternatively, each of the dimensions of 
this 4-cube may be represented by a letter (E/I  for 
exact/inexact, C/M for consensus/mediation, O / A  for 
oblivious/adaptive, T/P for threshold/plurality), lead- 
ing to a 4-letter acronym for each of the 16 classes; viz 
TOCE for 0000, TAME for 0110, POME for 1010, 
P A C E  for 1100, etc. Such four-letter acronyms are 
quite important in the field of computer design and 
architecture and inventing 16 of them in one go should 
lead to great endearment in that community! 

5 EXACT VS I N E X A C T  V O T I N G  

Depending on how the inputs xi are viewed, we divide 
voting algorithms into two classes: 

• Exact voting: inputs are viewed as 'exact' or 
inflexible; y must be equal to some xi. 

• Inexact voting: input objects represent 'neigh- 
borhoods' and are considered flexible. 

For example, bit-voting algorithms are exact since 

D 
a 

t 
a 

V 
o 

t 
e 

I n p u t  O u t p u t  

Exact/ 
Inexact 

Oblivious/ 
Adaptive 

Consensus/ 
Mediation 

Threshold/ 
Plurality 

Fig. 5. Classification of voting schemes based on variations 
in input/output data and input/output votes. 
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Fig. 6. Binary 4-cube representation of the classification scheme. 
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the output y must equal one of the inputs x, 
(regardless of the voting scheme used, it does not 
make sense to have y = 0 when all the xi are ls or vice 
versa). Word-voting algorithms on floating-point data, 
on the other  hand, may be inexact, since floating-point 
numbers are expected to contain errors resulting from 
finite representation and approximate computation. 
Bounds on such errors can define the neighborhood, 
or interval, containing the actual intended result. 

Exactness or flexibility refers to how the data is 
viewed for the purpose of voting. This view need not 
be consistent with other views of the same data. Thus 
both exact and inexact voting may be meaningful on 
either a discrete or continuous space, depending on 
possible output distributions and the utility value 
assigned to the correct output(s) and various classes of 
incorrect outputs. For example, integer-valued vari- 
ables are considered exact in most contexts. However,  
if integers represent pixel intensities in a gray-scale 
image, it is perfectly acceptable for a median voting 
scheme (used to smoo.th the image by replacing each 
pixel value with the median of the values in its 8 
immediate neighbors or 24 two-step neighbors) to 
deliver a voting output that is not equal to any of the 
inputs. 

In the simplest case, exact voting involves 
determining which input value is repeated a given 
number  of times (threshold voting) or more than any 
other value (plurality voting). This is what has been 
studied in the past and implemented efficiently in 
actual systems. However,  a more general view does 

not necessarily lead to inefficiency since the space of 
possible outputs is limited to no more than n distinct 
values (the inputs). In this general case, voting can be 
done in O(n 2) time by computing a 'support '  level for 
each pair of inputs and then choosing an input with 
maximal total support. More efficient algorithms, e.g., 
with O(n log n) or O(n) complexity, may be 
applicable in special cases such as when the input 
objects can be sorted or for some threshold voting 
schemes. 

Algorithms for inexact voting are in general more 
complex than their exact-voting counterparts,  prima- 
rily due to the non-transitivity of approximate 
equality. Although the notion of approximate or 
inexact voting and its applications have been discussed 
in the literature, the first provably correct inexact 
voting algorithm was published only recently. 4''52 The 
algorithm starts by identifying all compatible pairs of 
inputs, as defined by a generalized distance function 
and a comparison threshold. It then proceeds to build 
compatibility classes and a maximal-compatible cover 
in the same way as is done for minimizing 
incompletely specified Boolean functions. 3° In the 
example of Fig. 7, input objects are points on the 2-D 
plane and the distance function is the Euclidean 
distance. Each circle encloses a set of points whose 
pairwise distance is no more than e. There are 4 
maximal-compatible classes. The final voting decision 
is often based on the inputs in a largest maximal- 
compatible class (the circle enclosing 5 points in Fig. 
7). Details of selection are application-dependent. 



Taxonomy of  voting schemes 145 

The following simple example illustrates the 
complete procedure.  

5.1 Example 

Consider the following 5 object-vote pairs (xi a real 
value and vg an integer) as inputs to an inexact 
8-out-of-15 (majority) voting algorithm with the 
comparison threshold of e = 0.02. The distance 
function is defined a s  d(xi ,  xj) = Ix i - x j [ .  

Objects Votes 

x~ = 1.300 v~ = 1 
x 2 ~" 1.310 v2 = 2 
x3 = 1.330 v3 = 5 
x4 = 1.340 v4 = 4 
x5 = 1.350 v5 = 3 

The compatible pairs are: (xl,x2), (X2, X3), (X3, X4), 
(x3, xs), (x4, xs). The maximal-compatible cover is thus 
(xl, xe)(x2, x3)(x3, x4, xs) with class vote tallies being 3, 
7 and 12, respectively. Thus, w = 12 satisfies the 
threshold. The maximal-vote selection rule in (x3, x4, 
xs) yields y = 1.330, while the weighted median and 
weighted mean rules result in y = 1.340 and y = 1.338, 
respectively. In this case, the total order  imposed on 
the inputs (sorting) would have yielded a faster 
algorithm, so the above was used only for illustrating 
the general method. 

It is interesting to note that inexact voting problems 
with real-valued inputs can be formulated as approval 
voting problems 49"52 with input sets given by the 
intervals [ x i -  e/2, xi + e/2]. Figure 8 depicts the 5 
input intervals corresponding to Example 5.1 and 
shows the approval level for each segment and for the 
three maximal-compatible classes (arrows). 

6 CONSENSUS VS M E D I A T I O N  V O T I N G  

Depending on how the output  data is obtained, there 
are two classes of voting algorithms: 

• Consensus voting: A subset of inputs with votes 
totaling w 'agrees with' or 'supports'  y. 

° Mediation voting: The output y 
minimizes/maximizes an objective function of all 
inputs. 

Although it is possible to consider more compli- 
cated combining functions for the votes in consensus 
voting, we only consider the summing function here. 
This is consistent with the notion of voting in other  
contexts. In consensus voting, one must determine the 
level of support provided by each input to each 
possible output. When the output  space is large, the 
structure of the space and application semantics 
should be used to make the computation tractable. 

For example, we saw at the end of Section 5 that for 
inexact voting with real-valued inputs, the set of all 
values supported by each input can be characterized 
as an interval. Then, one can examine a small number  
of intervals and interval end points, instead of an 
infinite number  of real values, to determine the 
output. 

Mediation voting covers rank-based voting schemes 
such as median voting whereby the median of n input 
values is selected not because of 'majority'  or 
'maximum' support but as a form of moderation.  The 
objective function minimized in the case of median is 
the maximum distance between any input and the 
output. Note that median can be defined for any 
metric space and not just for numerical inputs (see 
below). As another  example, mean voting minimizes 
the sum of distances between all inputs and the 
output. Other  objective functions, such as sum of the 
squares of distances, may be appropriate in other 
contexts. 

Assuming a metric space (i.e., where a distance 
function is defined on pairs of input objects), we 
define the generalized median of a set recursively as 
follows. For  a single-element set, that one element is 
the median. For a 2-element set, the median is defined 
as a special case depending on the application context. 
For example, when the objects are points on a 
Euclidean plane, the median may be defined as the 
midpoint of the straight line segment connecting the 
two points. For a set with n > 2 elements, the median 
of the set is defined as the median of the 
( n -  2)-element set obtained by removing a pair of 
points having the largest distance between them from 
the set (akin to removing the highest and lowest 
scores in gymnastics competitions). Note that in case 
of a tie in distances, the particular pair chosen for 
removal may affect the final result only if the set has 
been already reduced to 3 or 4 elements. 

6.1 Example 1 

Consider the 9 input objects (points) shown in Fig. 7. 
Assume equal votes for all inputs. For this example, 

Largest 
Maximal 

Compatible ...... Ill~, " ~  
Class ) 

Fig. 7. Maximal-compatible classes for inexact voting on 
2-D data points. 
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the generalized median-finding algorithm described 
above, successively removes the 4 pairs of points 
marked with 1, 2, 3, and 4 in Fig. 9, leading to the 
designation of the remaining point as the 'median'. 

Similarly, generalized mean can be defined as an 
object that has the smallest total distance to all the 
input objects. In the case of 2-D or 3-D Euclidean 
space, the generalized mean is the 'center of gravity' 
for the set of input points, each with its associated 
'weight'. 

Some consensus voting schemes may be viewed as 
special cases of mediation voting in the same way that 
certain exact voting schemes constitute limiting cases 
of inexact voting (e.g., with e =0).  The objective 
function to be maximized for such consensus voting 
scheme is defined based on 'support'. However, there 
are consensus voting schemes that cannot be 
characterized as mediation voting. For example in the 
approval voting problem depicted in Fig. 8, maximiz- 
ing the objective function 'total support' (where an 
output value is supported by an input interval if it is 
belongs to the interval) leads to the unique solution 
1.34 (total suppor t=12) .  However, the original 
formulation of the problem in Definition 5.1 required 
only majority support which is satisfied by the interval 
[1.33, 1.34]. 

Besides pure consensus or mediation voting, it is 
also possible to have a two-stage voting process 
whereby first a subset of mutually supportive inputs is 
identified through consensus voting and then media- 
tion voting is applied to this subset. The reverse 
process of applying consensus voting to multiple 
results obtained via mediation voting, though 
theoretically possible, does not appear to be 
practically useful. 

1.28 

Again consider the 9 input objects (points) shown in 
Fig. 7 and assume equal votes for all inputs. Here, one 
may first form the maximal-compatible sets, as 
discussed in Section 5, and then find the median in a 

Fig. 9. Generalized median voting on a set of points. 

largest set, as shown in Fig. 10. This method has been 
found particularly useful for removing inputs that are 
'way off' from further consideration (e.g., in some 
algorithms for synchronizing multiple clocks). 

7 OBLIVIOUS VS A D A P T I V E  VOTING 

Depending on how the input votes vi are specified or 
presented, we divide voting algorithms into two 
classes: 

• oblivious voting: the input votes v, are fixed (i.e., 
built into the voting algorithm), 

• adaptive voting: the votes vj are stored in 
writable memory or provided as inputs. 

An important special case of oblivious voting is 
when the input votes vi are all equal and can thus be 
ignored. Adaptive voting may be implemented by 
'adjustable' votes (stored in writable memory) or by 
"variable" votes (presented as inputs along with the 
data). This distinction is important from the 
standpoint of voter complexity/cost and algorithm 
speed. Whereas the voting algorithm itself is the same 
for adjustable and variable votes, a hardware 
realization with variable votes needs more I /O pins 
and thus implies higher cost. Also, with adjustable 
votes, it may be possible to precompute some 
intermediate results needed to reach a voting decision 

1.34 1.30 
I I 

xa[ 

1.32 
I 

Xai 

1.36 

6.2 Example 2 

3 7 12 

Fig. 8. Approval-voting formulation of an inexact voting problem. 
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) 
Fig. 10. Generalized median voting on a selected subset of 

inputs. 

at the time when new votes are loaded in order  to 
speed up the subsequent voting process. 

A commonly used special case of adaptive voting is 
when vi • {0, 1}, where vi = 0 corresponds to an input 
data source that abstains from participation in view of 
internal conditions (e.g., self-test results) or one that 
has been disabled by a system-level control function 
(perhaps due to repeated disagreements with the 
voting result). An example of this type of adaptive 
voting is depicted in Fig. 11. In this scheme, known as 
hybrid redundancy, there are a total of n = a  + s  
modules connected to a voter with adjustable input 
votes in {0, 1}. The a active modules have vote weights 
of 1 and thus influence the voting decision equally. 
The s spare modules have vote weights of 0, so they 
have no effect on the voter 's output. These spare 
modules may be completely shut down (cold standby), 
up and running like the active modules (hot standby) 
so that they can be switched in with minimal latency 
when needed,  or operating in an intermediate mode 
(warm standby). The voter itself is really a 
combination of disagreement detection, switching, and 
decision elements. 

Adaptive voting with completely variable input 
votes has been used to a lesser extent in practice. A 
natural environment for the application of such voting 
schemes is in the author's data-driven dependability 

assurance method,  43"44 where data objects carry with 
them 'dependability tags' that convey information 
about their trustworthiness. As data objects arc 
manipulated, they become less and less trustworthy in 
view of the potential for error in each such 
'dependability-lowering' operation. Dependability tags 
may be viewed as vote weights, or can be used to 
derive vote weights, for the data objects when they are 
used in 'dependability raising" operations exemplified 
by voting on multiple independent results. 

As a more concrete example of this approach to 
adaptive voting, consider a hybrid software redun- 
dancy scheme 54 based on n-version programming and 
acceptance testing, as depicted in Fig. 12. In n-version 
programming, several program modules are executed 
independently and the final result is obtained by 
voting on the module outputs. In acceptance testing, 
results obtained from a program module are subjected 
to an acceptance test and alternate program modules 
are invoked if the results do not pass the test. 
Invocation of alternates continues until one produces 
results that pass the test. Figure 12 shows a particular 
combination of these methods, where one of the n 
program modules of a pure n-version scheme is 
replaced with an acceptance test. Furthermore,  the 
acceptance test (T) is applied to the result obtained by 
voting on k of the n - 1 module outputs (V1), with the 
tested result, along with outputs from the remaining 
n -  1 -  k modules entering into a second-level voter 
(V2). Assuming program modules Mi with identical 
reliabilities, an optimal second-level voter in this 
scheme would attach a vote to its leftmost input that is 
a function of k, the voting decision in V, (e.g., the 

active 
units 

spare 
units 

Fig. 11. Hybrid redundancy viewed as an adaptive voting 
scheme. 

_)I) 

Fig. 12. Adaptive voting is desirable with asymmetric 
multi-channel computation. 
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number  of disagreements),  and the outcome t of the 
test T. For example,  w + l  and w - 1  have been 
suggested as suitable weights for 'pass" and "fail" test 
outcomes,  respectively, where w is the weight attached 
by VI to its output. Details are beyond the scope of 
this paper.  

8 THRESHOLD VS PLURALITY VOTING 

Finally, depending on how the output vote is handled, 
two classes of voting algorithms can be distinguished: 

• threshold voting: the output vote exceeds a given 
(implicit or explicit) threshold, 

• plurality voting: the sum of votes w is no less 
than that of any other possible output value. 

Common  majority voters fall within the threshold 
voting category, as do m-out-of-n voters, where the 
data output y implies that at least m of the n data 
inputs x~ were supportive of v. In both of the above 
special cases, the output vote is implicit and at most a 
binary indication of "quorum' or "lack of quorum" is 
provided. With plurality voting, output votes arc 
computed  for each candidate output and one of the 
candidates that obtains the highest vote w is selected. 
The output  vote w may itself be implicit or explicit 
(presented at the output).  Note that the output may 
be non-unique for both threshold and plurality voting. 
For example,  2-out-of-5 voting may yield two valid 
outputs and unweighted 5-way plurality voting may 
lead to 2 possible outputs with 2 votes each. In such 
cases, the choice of output may be arbitrary or based 
on secondary criteria, depending on the application 
context. 

Although many threshold voting schemes of 
practical interest can be implemented through 
plurality voting followed by a simple comparison of 
the resulting output  vote with the threshold, the result 
may be much less efficient that direct implementat ion 
of threshold voting (see below). As an example 
showing that, even ignoring the comparison needed at 
the end, threshold voting cannot be viewed as a 
special case of plurality voting, consider a 5-way 
majority voting scheme. Applying plurality voting to 
the inputs may result in identifying the sole candidate 
output that is supported by, say, 4 of the inputs. 
However ,  another  candidate output supported by 3 of 
the inputs may be an equally valid result for the 
majority w)ter (recall that one input may support  
several candidate outputs).  

Threshold voting is fundamentally simpler than 
plurality voting. ~ Algorithm 8.1 shows that n-way 
weighted t-out-of-V exact threshold voting (where 
"support" is defined as object equality and such 
equality can be established in unit time) has time 
complexity O ( n p )  and needs working storage space 

for only p objects, where p - [ _ V / t ] .  Thus, unless t is 
much smaller than V. threshold voting is considerably 
more efficient. As a corollary, weighted majority 
voting can be per formed in linear time with working 
storage for a single input object. This should be 
contrasted to the O(n 2) time and O ( n )  space needed 
for plurality voting under the same conditions when 
the object space is not totally ordered. ~ If the object 
space is ordered, sorting can be used to reduce the 
time complexity of plurality voting to O(n  log n),  
which is still significantly higher than O ( n p )  in most 
cases of practical interest. 

8.1 Algorithm 

Exact Threshold Vot ing- -Large  Unordered  Object 
Space 

We need working .s torage space or 'slots' for 
p = [_V/t.] different objects z~, z2 ..... z1,, each with an 
associated vote tally u,. 

1. ~ l : = X ~ ; U t : = v l ; u j : = 0 ( 2 - < j -  < p)  
2. f o r i = 2 t o n d o  
3. if 3u~ # 0 such that x~ = ~ 
4. then u,: = u~ + v, 
5. else if 3uj = 0 
6. then zi = x~ ; u / =  v~ 
7. else let m = uk be a minimum of all u/s 

(1 -<j-< p)  
8. if vi ~ m 
9. t h e n u i : - u  i v~ ( l <- / -< p ) 

IlL else gk:  - - A ' i ;  I lk:  = Ui; l t l :  = l l i  - -  Ell 

( 1 - < j - < p )  
endif 11. 

12. endif 

13. endif 

14. endfor 
15. u /  = O (l <-j <-p) 
16. f o r i = l  t o n d o  
17. if 3J such that xs = z / then  ill: - -  I t  i + Vi endif 
18. endfor 
19. Output  z/with u i -> t • 

Following is a textual description of the algorithm. 
The first input object and its associated vote are stored 
in the first slot and all other u/s are initialized to 0, 
thus designating the remaining p -  1 slots as empty 
(Line 1). Input objects x2 ..... x,, are then examined in 
turn (Line 2). The next input object x~ to be 
considered is compared  to the stored objects (Line 3). 
If .r, = z~ for some j ,  then l 9 is incremented by v, (Line 
4). If x~ is not equal to any z~ and fewer than p objects 
have been stored in the p slots, then (&, v~) is stored 
in an available slot (Line 6). If all of the p slots are 
occupied, then the minimum vote tally m - u a  for the 
stored objects is found (Line 7). If 9 , -<m,  then the 
new input .v, is discarded and all stored vote tallies are 
reduced by vi (Line 9). If v~ > 1,7, then all vote tallies 
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are decremented by m and (xi, vi - m) replaces one of 
the objects which is left with 0 vote tally (Line 10). A 
second pass through the input, comparing each xi to 
all remaining zjs, and tallying the actual vote for each 
z/, completes the algorithm (Lines 15-18). 

8.2 E x a m p l e  

Consider 6-way, 8-out-of-15 voting with the vote 
weights 4, 3, 3, 2, 2, 1. Take an instance of the voting 
problem with inputs (a, 3), (b, 2), (b, 2), (a, 1), (c, 3), 
(a, 4) in presentation (input) order. Since V = 15, 
t = 8, and p = 1_15/8J = 1, a single working storage slot 
(z~, u~) is required. This slot will hold the values (a, 
3), (a, 1), (b, 1), (-, -), (c, 3), and (a, 1) successively as 
we proceed through the steps of the algorithm. 
Therefore ,  a is a candidate value for the voting result 
and a second pass through the input will yield its 
actual vote tally for comparison with 8.11 

9 C O N C L U S I O N S  

We have presented a taxonomy of voting algorithms 
as a unified view of methods used in multi-source data 
fusion and dependable multi-channel computation. 
Although the voting algorithms that have been used in 
practice occupy a small fraction of the space defined 
by our taxonomy, other  portions of this space are 
being increasingly populated by new voting schemes 
as well as generalizations of older ones. Thus, the 
proposed taxonomy covers virtually all voting schemes 
proposed to date and also points to areas that have 
not received due attention in the past. 

We have taken a very general view of voting. As 
such, our discussion of voting covers not only many 
methods used in connection with multi-sensor data 
fusion and multi-channel computation,  with identical 
or diverse designs for the hardware or software 
components,  but also other  domains where combining 
or merging of data occurs. 53 One example is image 
processing filters where during each pass, pixel values 
may be replaced by values determined from voting on 
a predefined neighborhood of nearby pointsJ 2 
Another  example is in distributed fault diagnosis 
where voting might be used to determine the signature 
of a fault-free processor from the self-diagnosis 
signatures of participating nodes. 66 This latter example 
can be viewed as data fusion, though not as 
multi-sensor data fusion. 

Armed with this unified view of voting in diverse 
application contexts, one can proceed in many 
different directions. Clearly, existing voting algorithms 
can be studied, evaluated, and extended in light of the 
proposed taxonomy. Voting schemes can be combined 
into a small number  of "generic' algorithms that can 
yield the specific algorithms of interest, with little or 

no overhead,  by proper  setting of their parameters.  It 
is important to note that voting is but one of many 
operations needed in data fusion and dependable 
computations. Combined analyses of voting and other 
key system functions is also facilitated by the pro- 
posed taxonomy. Analysis of real-time scheduling in 
an environment where voting delays and other factors, 
such as resource exhaustion or imperfect coverage, 
contribute to system failure is one example. 5° 
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