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Abstract

Based on the chordal ring structure, we introduce a general
framework to describe networks with periodic connection
patterns. The periodically regular chordal (PRC) ring is
proposed as an alternative for realizing massively parallel
processors. A PRC ring consists of identical nodes that are
connected cyclically via a finite set of skip links and has the
desirable propertics of bounded node degree and regular
layout. In this paper, we investigate the scalability and layout
aspects of PRC rings with fixed period and chord lengths and
show that they lead to linearly increasing area and constant
wire length without deviating significantly from optimal
architectural parameters.

1. Introduction

In order to take advantage of current VLSI technology,
constant-degree interconnection networks that allow the
construction of massively parallel processors are preferable.
In view of the effectiveness of rings in certain systems, we
have proposed the Periodically Regular Choral (PRC) ring for
massively parallel processors [8]. A PRC ring consists of
identical nodes of degree 4; each node is connected through
local ring and a small set of chordal or skip links. Since the
chordal links can act as bypass connections in the presence of
faults, the routing algorithm continues to work, leading to a
simple fault-tolerant routing scheme [6].

When physically constructing a network, the length of
some wires may depend on the number of nodes, calling into
question the common assumption that a routing step can be
completed in constant time [2, 5, 10]. It may be more reason-
able to assume that a longer wire will take more time to trans-
mit data. The single-step assumption will force us to adopt
the worst case, thus penalizing communications over shorter
wires. The issues involving layout area and its corresponding
wire length concern the feasibility of building such a network.

In this papet, we consider the physical layout of PRC rings

. with bounded wire length. In particular, we will focus on the
impact of this constraint on the layout area and network
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diameter. Our presentation is organized as follows. Section 2
introduces a general framework used to describe networks
with periodic connection patterns. Section 3 discusses the
connection assignment of the PRC ring and some of its
topological properties. Section 4 deals with layout issues.
Section 5 contains our conclusions.

2. Periodic Connections

Consider a ring of N nodes; each node is labeled by an
index from 0 to N — 1. With this cyclic ordering, topological
neighbors « and v are connected by a bidirectional link if
there exists a chord or a skip s such thatw + s=voru—s=v.
Here and throughout, it will be understood that all node-index
expressions are evaluated modulo N. Because of the modulo
N reduction, if a skip N - s is replaced by —s, the connectivity
remains unchanged; that is, the set of skips is still the same.
Thus, without loss of generality, we assume that the chord
length or skip distance is in the range: 1 <s<[N2]-1.

With respect to a pair of neighboring nodes  and v in a
chordal ring [1], a link from # to v = u + s corresponds to
assigning a forward skip s to » and a backward skip —s to v. If
whenever node u is connected to node v by a skip s, node
u + g is also connected to node v + g in the same fashion [4],
the connection assignment is said to be periodically regular
with the period g, implying that the connection pattern
repeats after every g nodes around the ring,

3. PRC Rings

Unlike the way in which the cube-connected cycles (CCC)
is derived from the hypercube, where the period is restricted
and skip distances are uniquely determined, the choice of
period and skip distances for the PRC rings can be more
flexible. In a PRC ring, the N nodes are split into N/g groups
of g nodes, where g divides N. A node index v = ig + j
identifies the node being at the jth position in the ith group.

With group size g, a sequence {s;, Se-1, ... , s} of skip
distances is selected, subject to the conditions s, > s, > ... >
51, where s, is a multiple of g. The later condition is imposed



so that each node is the destination of one and only one of the
skip link types, thus ensuring uniformity in node degree. For
notational convenience, we define sg+, = NV and 5o = 1 as the
boundaries of the above sequence. The skip distances are thus
distributed around the ring with the period g. Hence, each
node v has two near neighbors v — 1 and v + 1 connected by
circumferential links and two remofe neighbors v — s,-; and
v + s, connected by chordal links.

The PRC ring can be derived by substituting g nodes for
each node in an N/g-node symmetric chordal ring and distrib-
uting the g types of skip distances among the g nodes. The
node degree is reduced from 2(g + 1) to 4 by connecting any
two groups via at most one chordal link. As an example,
Fig. 1 shows a 16-node PRC ring with group size g = 2 and
skip distances s, = 4 and s, =2.
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Fig. 1. A 16-node PRCringwithg=2,s,=4, 51 =2,

3.1. Network Diameter

Before deriving the diameter of PRC ring networks, it is
helpful to discuss a simple routing scheme that performs quite
well in cases where nodes 1 and v are not close to each other.
The routing scheme is based on reducing the ring distance to
the destination by taking the largest available skip. The ring
distance between nodes # and v is defined as min(u ~ v, v— u),
since the packet can be sent either forward or backward
around the ring.

The routing to node v can be described from the view-
point of an intermediate node # and executed in a distributed
manner as follows. If the chords at node # do not take the
packet as close to node v as the chords of a neighbor, the
packet is forwarded to that neighbor. The routing decision is
simplified by noting that the forward skip s» and backward
skip —s; assigned to cach node cannot be usable at the same
time. Hence, only one of them will be used to deliver the
packet, once the routing direction is determined.
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Theorem 1: An upper bound on the diameter D of a PRC
ring with group size g and chord lengths {sg, Sg-1, ... , 51} is

D< g [ntlsn— D21+ max(s - )22 -1 (1)

Proof: Due to the symmetric connection of groups in the
PRC ring, we consider a routing path from a source node at
group 0. The maximum number of hops in which the skip s,
is taken need mot exceed | (syn/sy — 1)/2] Intuitively, this
bound corresponds to a routing strategy where the skip s,
need to take us about half the distance of s;+; around the ring;
other distances up to s+ can be reached through a forward
skip of s;+1 and backward skips made possible by bidirectional
links. A worst-case path takes the maximum number of hops
using each skip and also needs g — 1 intra-group hops to gain
access to the next skip distance after it has exhausted the use
of the current skip. Thus, the length of the longest routing
path is bounded by

D< ir(shﬂ/sh -D2l+g-1
h=0

In the above analysis, [ (s; — 1)/2] hops around the ring
using the s, links are already included in the summation term.
Because the circumferential links are bidirectional, the transi-
tions among g types of skips are the same as taking the skip
s0. Hence, the number of hops taking the skip so is at most the
maximum of [ (s, — 1)2]andg. m

With the optimal skip distances chosen as s, = N*&", the
diameter D becomes

@+DIVFT —D)2<D<gN#+D2 ()
where the lower bound follows directly from the results for
the symmetric chordal ring [11]. It is then easy to see that
choosing the group size g = (1/2)log, N — 1 minimizes the
upper bound for the diameter to (3/2)log, N — 4.

3.2. Bisection Width

The complexity at which the network can be physically
constructed is limited by wire density [3]. Bisection width is a
good measure to account for wire density. The bisection width
is defined as the minimum number of links that must be
removed in order to sever the network into two halves. The
relationship between bisection width and physical layout of
the PRC ring will be further clarified in the next section.

Theorem 2: The bisection width of a PRC ring with group
size g and chord lengths {sg, So1, ... , 51} is at most

B< 2(1 +h2i‘,l s;,/g) 3)

Proof: Given an arbitrary cut between two adjacent nodes
around the PRC ring, there are s/g chordal links of length s,
going from one side of the cut to the other side. The bisection
width is obtained by summing the resulting terms, adding one
for the circumferential link, and doubling to account for the
opposite side of the ring. W



Corollary 1: The bisection width of a PRC ring with
group size g and chord lengths {s;, S;, ... , s} cannot
exceed 25, —g(g - 1) +2.

Proof: Recall that the chord lengths are multiples of g and
Sg>85e1> ... >5. Wehave s, 25,1 +g2 ... 251 +g - 1);
ie., s, <8, — g(g — h). Substituting s, with s; — g(g — #) in eq.
(3) leads to the upper bound for the bisection width. B

4. VLSI layout issues

In this section, a VLSI layout for the PRC ring is
presented. We assume the rectangular grid model [7, 9] in
which the nodes are placed at grid points and connected by
links routed through evenly spaced horizontal and vertical
grid lines on two wiring planes, respectively. The layout area
is estimated by the product of the number of horizontal grid
lines and the number of vertical grid lines which contain a
node or link segment of the network.

Theorem 3: An N-node PRC ring with group size g and
chord lengths {s,, Sg1, ... , 51} can be laid out in O(Ns,/g)
area with the longest wire being of length O(sy/g).

Proof* We arrange the nodes in a snake-like fashion; each
group is aligned in one column and each subring in one row.
Hence, the vertical grid lines are assigned to the circumferen-
tial links, with the horizontal grid lines used for the chordal
links. The long end-around connections of the PRC ring can
be avoided and the wire length in each subring balanced by
the standard technique of folding, which is applicable in both
vertical and horizontal directions. Each subring then has to
occupy two rows. Fig. 2 shows the layout of a 32-node PRC
ring with group size g =2 and chord lengths s, = 4, 51 = 2.
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Fig. 2. Layout of a folded 32-node PRC ring with g=2, 5, =4, 51 = 2.

©-
||

The nodes are placed in N/g columns and 2 X3 s,/g
rows. Such layout requires N/g + 2 vertical grid lines and
23%  su/g + 4 horizontal grid lines to connect the grid
points occupied by the nodes. The latter is related to the upper
bound for the bisection width of the PRC ring as derived in
Theorem 2. The layout area of the PRC ring is 4 = (Nig + 2)
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(23%_, splg + 4). Using the result from Corollary 1, we
obtain ~
A< (WVig +2)(2s, —glg — 1) +4) = O(Ns,/2)

The longest wire in our layout is in the smallest subring,
where N/s, nodes are connected by the grid line with total
length 2(V/g + 3). The wire length L is upper bounded by

L =2sg/g +3=s/g)
The maximum wire length L thus depends only on the group
size g and the largest chord length s,. ®

One can select a particular group size and set of chord
lengths (corresponding to a fixed height for the layout area) to
construct a large PRC ring by concatenating smaller ones.
The layout of the 32-node PRC ring shown in Fig. 2 can be
seen as formed by abutting two 16-node PRC rings with the
same group size and chord lengths. Theorem 3 proves that
the layout area increases linearly with the number of nodes
and that the maximum wire length remains the same. Such a
PRC ring is thus readily scalable. However, the diameter of
the composite PRC ring will no longer be minimal.

In Fig. 3, we use group size g = 4 and chord lengths {256,
64, 16, 4} to construct PRC rings. The selected group size
and chord lengths minimize the diameter for the PRC ring
with 1024 nodes and allow us to expand the network size
within a certain range, while maintaining the diameter close
to the minimum. For comparison, we also show the diameter
for the 2D torus, which has similar node complexity. It
appears that such a selection makes the diameter fall between
those of the 2D torus and the optimal PRC ring. In this
example, we see that near-optimal diameter is maintained as
we scale from a factor of 16 below to a factor of 4 above the
optimal size, thus allowing practical expansion of size by a
factor of 256 (from 64 to 4096 nodes).
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Fig. 3. Diameter for PRC rings with fixed group size g = 4 and fixed
chord lengths {256, 64, 16, 4}.
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Figs. 4 and 5 plot the layout area and the longest wire
length as a function of N in PRC rings. We note that the
layout of the CCC network has similar curves as those for the
optimal PRC ring. For massively parallel processors, the
contribution of wire delay to the communication latency is no
longer negligible. Whereas networks with small diameter and
large bisection width are desirable, their cost/performace ratio
suffers from dramatically increased layout area and wire
length. As we fix the period and chord lengths, the diameter
will increase while the layout area decreases and the longest
wire length remains constant. The exact result is dependent
on how we sclect these parameters to strike a balance.
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Fig. 4. Layout area for PRC rings with fixed group size g = 4 and
fixed chord lengths {256, 64, 16, 4}
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Fig. 5. The longest wire length of the optimal PRC ring.
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5. Conclusion

We have studied the PRC ring structure as a candidate for
realizing massively parallel processors. PRC rings combine

151

the benefits of low node degree, small diameter, and a simple
routing framework, By varying the group size and chord
lengths, one can obtain different characteristics. Thus, the
PRC ring provides a convenient mechanism for tradeoffs,
leading to a family of interconnection networks that share
basic properties and algorithms. This flexibility has important
implications for architectural scalability.

Alongside the primary goal of minimizing the communi-
cation latency so that it can support fine-grain parailelism, the
physical realization of the interconnect should be taken into
consideration, Clearly, the wire length growing with the
number of nodes has an adverse effect on cost and perform-
ance. Unfortunately, optimized networks achieve their
logarithmic diameters at the expense of long wires. We have
shown that with fixed group size and chord lengths, PRC
rings possess the desirable properties of linearly increasing
layout area and constant wire length while allowing signifi-
cant expansion of network size with diameter close to the
optimum.
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