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Abstract

In this paper, we propose a new class of interconnec-
tion networks called recursive hierarchical swapped net-
works (RHSN) for general-purpose parallel processing. The
node degrees of RHSNs can vary from a small number to
as large as required, depending on recursive and hierar-
chical composition parameters and the nucleus graph cho-
sen. The diameter of an RHSN can be asymptotically op-
timal within a small constant factor. We present efficient
routing, semigroup computation, ascend/descend, matrix-
matrix multiplication, and emulation algorithms, thus prov-
ing the versatility of RHSNs. In particular, on suitably con-
structed RHSNs, matrix multiplication can be performed
faster than the DNS algorithm on a hypercube. Further-
more, ascend/descend algorithms, semigroup computation,
and parallel prefix computation can be done using algo-
rithms with asymptotically fewer communication steps than
on a hypercube.

1. Introduction

High performance, low node degree, and simplicity of
algorithms are all important, but often conflicting, require-
ments for interconnection networks. High-performance net-
work classes, such as the hypercube and star graph {1], tend
to have high node degree and, as a result, are not suitable for
very large scale parallel systems.

To overcome the problem of unbounded node complexity
in large hypercube and star networks, some constant-degree
variants and alternatives, such as the cube-connected cycles
(CCCQ) [17], de Bruijn graphs, butterfly networks [14], pe-
riodically regular chordal (PRC) rings [16], hypernets [10],
WK-recursive networks [18], and symmetric hypernets [11],
have been proposed and shown to have many desirable prop-
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erties. Alternative topologies that have intermediate node
degrees include reduced hypercubes (RH) [24], recursively
connected complete (RCC) networks [8, 9] hierarchical cu-
bic networks (HCN) [7], hierarchical folded-hypercube net-
works (HFN) [5], tightly connected networks (TCN) [3],
and macro-star networks [22].

In this paper, we propose a new class of interconnection
networks called recursive hierarchical swapped networks
(RHSN ) for general-purpose parallel processing. RHSNS,
a subclass of recursive hierarchical fully-connected (RHFC)
networks [21], have desirable topological and algorithmic
properties, which compare favorably with other popular
topologies. The node degrees of RHSNs can vary over a
wide range; the diameters of suitably constructed RHSNs
are asymptotically optimal with respect to their node de-
grees. Parallel algorithms on RHSNs are usually fast and
elegant. We present efficient algorithms for routing, semi-
group computation, ascend/descend computation, emula-
tion of homogeneous product networks [6, 23], and ma-
trix multiplication. Existence of many efficient algorithms,
along with desirable architectural properties, point to the
usefulness and significance of RHSNs as parallel architec-
tures.

In Section 2, we define RHSNs and derive some of their
parameters. In Section 3, we present a simple routing algo-
rithm on RHSNs. Section 4 covers efficient ascend/descend
and emulation algorithms. In Section 5, we summarize
the performance for semigroup computation and matrix-
matrix multiplication on RHSNs. We conclude by noting
that RHSNs combine sorme important advantages of both
hypercubes (e.g., rich in fast and elegant algorithms) and star
graphs (e.g., optimal diameter), with the additional advan-
tage of lower node degree.

The following notations will be used throughout the pa-
per: Kjs denotes an M-node complete graph; Q, denotes a
k-cube; and @} denotes a k-dimensional hypercube of radix
m[2,12].



2. Recursive hierarchical swapped networks

A recursive hierarchical swapped network (RHSN) is
characterized by its nucleus graph G, its recursive depth r
(henceforth simply depth) and numbers /,,/,.1, ...,I; of hier-
archical levels at various depths. We first define hierarchical
swapped networks (HSNs) [20, 21], or RHSNs of depth 1,
and then present the construction of general r-deep RHSNs.

2.1. Hierarchical construction of HSNs

An I-level hierarchical swapped network, HSN(I, G), be-
gins with a nucleus G, which forms an HSN(1,G). The nu-
cleus can be any connected graph or hypergraph (of more
than one node), such as a mesh, hypercube, complete graph,
star graph, or buslet. For simplicity, we always refer to G as
the nucleus “graph”.

To build a 2-level hierarchical swapped network, HSN(2,
G), we use M identical copies of the nucleus G, each having
M nodes. Each nucleus is viewed as a level-2 cluster, and
is given a k-bit string X as its address, where k = [log, M];
we also give each node a k-bit string X; as its address within
the nucleus to which it belongs. Node X; within nucleus
X, has a 2k-bit string XJ = X,X; as its address within the
HSN(2,G). Each of the M nucleus copies has a link con-
necting it to each of the other M — 1 nuclei, via which node
X,X; connects to node X, X;. The links connecting nodes
within the same nucleus are called nucleus links, or level-1
links.

To build an /-level hierarchical swapped network, HSN
(I, G), we use M identical copies of HSN(/ — 1,G). Each
copy of the HSN(! — 1,G) is viewed as a level-! cluster,
and is given a k-bit string X; as its address; each node is
already given a k(I — 1)-bit string X;_; = X;_;.; as its ad-
dress within the level-/ cluster to which it belongs, where
X;.j =XiXi_1---X;41X;. Node X]_, within the level-/ clus-
ter X; has a ki-bit string X] = X;X]_| = X as its address
within the HSN(/,G). Each of the M level-/ clusters has
M'~1 nodes and M?~? links connecting it to each of the other
M — 1 level-! clusters, via which node X;X;_;.,X; connects
to node X1 X;_1:2X;.

This connectivity and the hierarchical construction are
the reasons we call such networks “hierarchical swapped
networks.” The connecting links are called level-l inter-
cluster links, or simply level-l links, | > 2. The recursive
definition allows us to construct arbitrary-level HSNs based
on any type of nucleus.

The nodes that do not have a level-/ inter-cluster link are
called the leaders of that level-I cluster. Leaders can be used
as I/O ports or be connected to other leaders via their unused
ports to provide better fault tolerance or to improve the per-
formance and reduce the diameter of HSNs without increas-
ing the node degree of the network. If leader X/ X;._;.,X] con-
nects to leader X;'X;_12X]’, where X/ = M — X]' — 1, the av-
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erage distance between nodes and, in most cases, the diam-
eter of the network will be reduced. This type of HSN is
called HSN with diameter links. Varying the connectivity
between leaders results in other classes of HSNs.
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Figure 1. Structure of l-level hierarchical
swapped networks, 1 < 3. (a) nucleus 2-cube,
Q5. (b) HSN(2,Q,). (c) The complete structure
of HSN(3,Q,). Node addresses are expressed
as radix-4 numbers.

Fig. 1 shows HSN(/,0,), | = 1,2,3. Several previ-
ously proposed interconnection networks are special cases
of HSNs. For example, HCN(n, ) is a 2-level HSN(2,0,,)
with diameter links, and HFN is a 2-level HSN(2,FQ,),
where F'Q, denotes an n-dimensional folded hypercube.

2.2. Recursive definition of RHSNs

An r-deep RHSN(/,,/,_1,...,1],G) begins with an HSN
(11, G), which forms a 1-deep RHSN(!, G), where “i-deep”
stands for “i recursive levels deep.”

To build a 2-deep RHSN, RHSN(/;,1;,G), we view the
HSN(I;,G) as a depth-2 nucleus, and construct the net-
work as an HSN(L,,HSN(/;,G)). To build an r-deep
RHSN, RHSN(Z,,l,_y,...,l;,G), we view the (r — 1)-deep
RHSN(I,_1,1,-2,...,11,G) as a depth-r nucleus, and con-
struct it as an /,-level HSN(/,,RHSN(/,_1,1,_2,...,11,G)).



The recursive definition allows us to construct networks of
arbitrary depth and level based on any type of nucleus.

The level-j inter-cluster links of an HSN(/;, RHSN(/;_,
li_z, ...,11,G)) within the r-deep RHSN are called its depth-
i level-j inter-cluster links or simply depth-i level-j links.
The level-j clusters of an HSN(/;, RHSN(/;_y,l;_»,...,1;,
G)) within the r-deep RHSN are called its depth-i level—
clusters.

It is worth noting that RCC networks [8, 9] form a
subclass of RHSNs, RHSN(2,2,...,2,G) without diameter
links.

2.3. Basic properties

Let the nucleus G be a graph with M nodes of maximum
degree dg. The number of nodes in an HSN is increased by
a factor M when the level is increased by 1. Therefore, the
number of nodes N, of an RHSN(!,,1,_1,...,1;,G) is given

by

Ny =N, = M=k, (1)
where N; is the number of nodes in an RHSN(/;,/; i,

-11,G).
From Eq. (1), we have
H;:l ll - logMNr. (2)
For an r-deep RHSN(!, 1, ...,1,G) of N, nodes, the recursive
depth r is given by
r = (log, log, N, —log, log, M)/ log, I

Clearly, the recursive depth is usually a small integer for an
RHSN of practical size.

According to the definition of HSNs, the node degree is
increased by 1 with each additional level, where the “node
degree” of a network refers to the maximum degree of the
nodes in the network throughout the paper. Thus, the node
degree of an r-deep RHSN(!,,l,_i,...,I;,G) of N nodes is
given by

d, = dG+2,'r—1 li—r

The node degree of an r-deep RHSN(!, 1, ..., 1,
is thus given by

G) of N nodes

dr =dg+ (I - 1)(logylog, N —log, log, M) /log, L.

The node degree of an RHSN can be as small as O(loglogN)
whendg and I, i = 1,2,..., r, are not large.

3. Packet routing and network diameter

In this section, we first present a recursive routing al-
gorithm to route a packet from node X to node Y in an
HSN(!,G). We then generalize the algorithm to RHSNs.

Suppose that a routing algorithm for the nucleus G is
known and that the routing algorithm for an HSN{/ — 1,G)
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network is also known. Then, here is how routing is done at
level [, 1> 2.

Let the addresses of nodes X and Y within the HSN(/, G)
be X;.; and ¥}.1, respectively, with the bit-strings X; and Y;
being the addresses of the level- l clusters to which nodes X
and Y belong.

o Case 1: X; = ¥;: Nodes X and Y belong to the same
level-l cluster. We use the routing algorithm for
HSN(! — 1,G) to route the packet, since any level-/
cluster is an HSN(/ - 1, G).

Case 2: X; # Y;: Nodes X and Y belong to different
level-I clusters. To route a packet from node X to
node Y, we use the routing algorithm for the nucleus
G to route the packet from node X;X;_;.,X; to node
X;1X;_1.2Y;. We next send the packet to node ¥;X;_1.,X;
via its level-/ inter-cluster link in one step, and then
use the routing algorithm for HSN(/ — 1,G) to route
the packet to node Y;¥;_,.;. Hence, the path through
which the packet travels can be expressed as follows:

level-/ level-/

XX 12X =3 XiXi_ 120 = VX 10X =5 1Y .

Since an r-deep RHSN can be decomposed into an HSN
based on an (r— 1)-deep RHSN, the preceding routing algo-
rithm can be applied to RHSNSs recursively without modifi-
cation, leading to the following lemma.

Lemma 3.1 A packet can be routed in
(Tr(1,G) + D) logy N—1

time on an N-node RHSN based on an M-node nucleus G,
where Tr(1,G) is the time required for the packet routing al-
gorithm on the nucleus G.

Proof: Let Tx(};,}i_1,-..,11,G) be the time required for the
routing algorithm on an RHSN(J;,/;_,...,l;,G). The pre-
ceding recursive routing algorithm on HSN(/,G) requires
time at most equal to

TR(I,G) =Tx(l-1,G) +TR(1,G)+1= ITR(1,G)+1-1.
Thus, we have

TR(lralr—lv"'allaG) = ll'(TR(lr—lalr-—27""llyG) + 1) ~1 )

=(R(L,G)+ DT -1,
and from Eq. (2),

TR(lr)lr—lv-“,

It is interesting to note that for RHSNs of the same size,
the routing time is determined exclusively by the nucleus
graph (and its size), regardless of the various combinations
of the numbers of recursive and hierarchical levels.

A simple fault-tolerant routing algorithm for RHFC net-
works can be found in [21].

ll,G) = (TR(I,G)+1)10gMN—1. O



Theorem 3.2 The diameter of an N-node RHSN (without
diameter links) is (D¢ + 1) logy N — 1, where M is the num-
ber of nodes in the nucleus graph and D is the diameter of
the nucleus graph.

Proof: The routing algorithm gives an upper bound on the
diameter of the RHSN as (D¢ + 1) logy, N — 1, assuming op-
timal routing algorithm on the nucleus graph.

Let X’ and Y’ be the addresses of two nodes that have dis-
tance D¢ within the same nucleus G. It is straightforward to
prove that the upper bound is equal to the distance between
node X = X’X’---X' and node ¥ = Y'Y’---Y' in an RHSN

S———’ S —
logyN logy N
without diameter links. a

Let G be a static undirected interconnection network that
has Ng nodes, degree dg, and diameter Dg. It is well known
that alower bound on the diameter D¢ is Dg = Q(log, . Ne).

In this paper, a network G will be said to have (asymptot-
ically) optimal diameter if and only if Dg = ©(log,, Ng).
It has been shown in [21] that the diameter of an N-node
RHFC network based on a degree-d¢ nucleus G is asymp-
totically optimal if the number of inter-cluster links per node
is at most equal to a polynomial in dg and the diameter D¢
of the nucleus G is asymptotically optimal.

By properly selecting parameters and the nucleus graph,
the ratio of diameter over lower bound for an RHSN can be
very small.

Corollary 3.3 The diameter of an RHSN based on a Q7 is
optimal asymptotically with a constant factor 1 if logn =
o(logm), log, I, I; < log, m+o(logm), and nis not a con-
stant (in N).

For example, we can choose /;,n = O(loglogN) and m =
O(+/logN). Similarly, RHSNs based on generalized hy-
percubes [2] can also have optimal diameter asymptotically
with a constant factor 1 by properly choosing the parameters
of the nucleus generalized hypercubes. For comparison, the
ratio of the network diameter over its lower bound is asymp-
totically 1.5 for a star graph, 2.5 for a CCC, and log, log, N,
for an N-node hypercube.

4. Emulating homogeneous product networks

RHSNs can perform ascend/descend algorithms effi-
ciently. Suitably constructed RHSNs can also emulate a
corresponding homogeneous (Cartesian) product network
(HPN) [6, 23] of the same size optimally (asymptotically
within a constant factor) with respect to the node degrees
of the HPN and RHSNSs, assuming either single-port or all-
port communication. Since each node in the emulated HPN
is mapped onto the node with the same address in the RHSN,
the expansion and load are 1, and the algorithms (embed-
dings) are simple.

4.1. Homogeneous product networks

Homogeneous product networks (or power networks)
form a subclass of product networks with identical compo-
nent networks [6]. A homogeneous product network (HPN)
is the iterated Cartesian product of the same graph, and
HPN(p, G) denotes the p™ power of G; thatis, HPN(p,G) =
[f.,G=GxGx--xG.

It can be seen tlfat the (binary) pk-dimensional hypercube
is the p'" power of a k-cube; p-dimensional hypercube of
radix M > 2 [2, 12] is the p™ power of Ks; and M-ary p-
cube is the p™ power of an M-node ring.

Let Iy be the node degree of the graph G. Each link of
anode in G is given a distinct integer i € [0,[y — 1] as its
label, and is called the dimension-i, link. The dimension-i,
link of G, is called the dimension- (i, + lo(p — 1)) link of the
product network Gp X G,y X --- X Gy with G; = G.

4.2. Mixed radix number systems

In this subsection, we introduce a mixed radix number
system, which is useful in presenting the time complexity of
emulation algorithms and their operation steps.

Let i, be an integer, iz € [0,I1}_/; — 1]. It can be seen
that i, has a unique (r+ 1)-tuple (ar,a,-1,...,a1,a0), a; €
[0,1; — 1], such that iz = X} _o(aj, §;;(l)lj2). The (r+
1)-tuple (ar,@r_1,---,@1,80) (1 1,_,,....1sIp) 1S called the mixed
radix representation of i,.

4.3. Ascend/descend algorithms

Ascend/descend algorithms [14, 17] require successive
operations on data items that are separated by a distance
equal to a power of 2. Many applications, such as Fast
Fourier Transform (FFT), bitonic sort, matrix multiplica-
tion, and convolution, can be formulated using algorithms
in this general category.

Let iy = (a1,a0) (1) i = (b1,b0)(14)> and ig < ip. We
present the ascend algorithm ASC(i,ip,/,G) (for opera-
tions on data separated by a distance 2!, i = ig, i, +1,...,ip)
on HSN(!/, G) as follows, assuming that the nucleus G has
M = 2¥ nodes.

ASC(iz,ip,1,G)
for i:=a; to b; do
begin
Each node exchanges data
via its level-(i + 1) inter-cluster link.
¢o ;= if i = a, then g else 0.
dy:=ifi=>b;thenbgelse k— 1.
Perform ASC(cy,dp, 1,G).
Each node exchanges data
via its level-(i + 1) inter-cluster link.
end



In this and other algorithms, if “level-1 inter-cluster
links” (which do not exist) are specified, or a leader is asked
to send data using the inter-cluster link that it does not have,
the corresponding operation is simply ignored.

After performing the exchange step via level-i inter-
cluster links, node Xj.; will hold the data item from node
X111 X1X;_1:2X;. In essence, this moves data items sepa-
rated by a distance of 2/, j = ki—k,ki—k+1,...,ki— 1, into
the same nucleus, such that they are now separated by a dis-
tance of 2/~%+k_ Thus, we can use the ascend algorithm on
the nucleus G (i.e., HSN(1, G)) to emulate ascend algorithm
performed in dimensions j, j=ki—kki—k+1,... . ki~ 1.

To perform descend algorithms, we simply replace
ASC(co,dp, 1,G) with DES(cg,dp, 1,G) and set the “step”
of the for loop to -1; that is, we modify the first line to

for i:= by to a; step -1 do.

Since an RHSN can be viewed as an HSN, the ASC/DES
algorithm can be applied recursively to RHSN(I,, 1,1, ...,

1,G) by letting ASC/DES(ia,ip,lr,ly_i,...]s,G) <
ASC/DES(iq,ip,l,, RHSN(I,_y,...,11,G)). The algorithm
can be viewed as emulating the ascend/descend algorithm
on an HPC(p,G), where p = [T, /i.

Theorem 4.1 Ascend/descend algorithms involving s di-
mensions can be performed on an r-deep G-based RHSN in
no more than

(Tasc/des(laG) +2)(|—(S— 1)/"] +1)+2r-2

time, where the number of nodes in a nucleus G is 2%,
and Ty qes(1,G) is the time required for the k-step as-
cend/descend algorithms on the nucleus G.

Proof: The time complexity bound can be verified by ex-
panding the algorithm. The number of steps required for
exchanging data on inter-cluster links is no more than 27+
2[(s — 1)/k]; the number of steps required to perform as-
cend/descend algorithms within the nuclei is no more than

Tasc/des(IaG)(l-(s_1)/k]+1)' o

Corollary 4.2 Ascend/descend algorithms (for all the
log, N operations) on an N-node RHSN based on a k-cube
can be performed in logy N+ 2 (logy, N/k — 1) time.

Corollary 4.3 Sorting can be performed in % log%N +
o (log2 N/ k) time on an N-node RHSN based on a k-cube.

Proof: The result follows by performing the parallel bitonic
sort, which requires log, N ascend iterations. O

When the number of nodes in the nucleus graph is not
a power of two, some of the nodes can hold 2 values
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to emulate the ascend/descend algorithins of problem size
27Mlo& M1 The time is at most doubled, leading to the fol-
lowing corollary to Theorem 4.1.

Corollary 4.4 Ascend/descend algorithms (for all the
[log, N| operations) on an N-node RHSN based on an M-
node complete graph can be emulated in © (logy;N) com-
munication steps.

Although we can use the nucleus graph to emulate a
graph whose size is a power of 2, most algorithms in the cat-
egory of ascend/descend algorithms can be performed on a
network whose size is not a power of 2 by assuming some
“padding nodes.” We present the result for sorting algorithm
in the following corollary and also provide the tradeoffs be-
tween communication and computation steps.

Corollary 4.5 Sorting can be performed in no more than
(1+41/2)pR2Zictlloramil o (1 4¢/2) 1o N/ log, M
communication steps and

¢ (my—1)paZicillogamil oy (\'/A—l - 1) log3N/log, M
computation steps on an N-node RHSN(i,1,_1,...,11,Ky),
for any integert € [1,log, M), where p = [1_, ; = logy N,
IT._,m: > M, and m;’s are integers for all i.

Proof: To perform an ascend/descend computation on
a complete graph Ky, node X within the K, X =
0,1,...,m; — 1, first receives data from all the other nodes
within the K, and then find the X*" result of the correspond-
ing ascend/descend computation. As a result, only one com-
munication step and at most m; — 1 computation steps are
required. Since the complete graph Ky, can be easily par-
titioned into [T,_, m; subghraphs, each having at most m,
nodes, where [T;_, m; > M, the tradeoff results follow. O

Clearly, this result can be applied to an RHSN based
on a t-dimensional generalized hypercube with mixed radix
(my,my,...,m) since we essentially emulate such RHSN
(nucleus) in the proof of Corollary 4.5.

When there is no restriction on the ordering of outputs,
the last step in the ASC/DES algorithm for an HSN can be
removed, resulting in even better performance.

4.4. HPN emulation: single-dimension case

In this subsection, we assume single-port communica-
tion, with all the nodes only capable of using links of the
same dimension at the same time. This assumption is used
in some SIMD architectures and their algorithms, in order to
reduce the cost of implementation, and is called the single-
dimension communication model in this paper. Algorithms



assuming such model are also suitable for a parallel system
using wormbhole routing, especially when one input can only
drive one output and is used in some papers (e.g., [15]).

The emulation algorithm is similar to the special case
ASC/DES(ig, 0,y 0,1, ..., 11, G), which we call EPS algo-
rithm.

Theorem 4.6 Any step of the actions of all dimension-i,
links of an HPN(p, G) can be emulated on an RHSN(I,,1,_;,
11, G) in 2|8,4| + 1 steps, where p = TI/_; l;, |Sa| is the
number of elements in S; = {ila; # 0,i = 1,2,...,r}, iy =
(@r,@r—1,--51,80) (1,1, ... Jp)» A Lo is the node degree of
the nucleus G.

Proof: Emulation is done by exchanging data via depth-
i level-(a; + 1) links for all nonzero a;, using i, i = r,r —
1,..,2,1,0,1,2,...,r— 1,r. No contention will occur. 0O

Clearly, any HPN(p, G) algorithm with single-dimension
communication can be emulated on the corresponding r-
deep RHSN with a slowdown factor at most equal to 2r+ 1.

The following theorem provides the necessary and suf-
ficient conditions for the emulation slowdown (or, alterna-
tively, embedding dilation) to be optimal with respect to the
node degree. The proof is omitted.

Theorem 4.7 Any algorithm on an HPN{p,G) with single-
dimension communication can be emulated with optimal
slowdown (asymptotically within a constant factor) with re-
spect to the node degrees using the EPS algorithm on an
RHSN(ly,l,_1,....11,G), if and only if logr = O(loglmay)
and |S| = O(r), where S = {i|logl; = O(logluu), i =
1,2,...,7'}), [ie, 2;:1 logli = G)(rloglmw()]» pP= Hir=l li!
lo is the node degree of the nucleus G, and lp, =
maxi=o,1,....(L).

4.5. HPN emulation: all-port communication

In this subsection, we assume all-port communication,
with all the nodes capable of using links of all dimensions at
the same time. The required emulation can be done simply
by performing single-dimension emulation for all dimen-
sions at the same time with proper scheduling.

Theorem 4.8 Any HPN(p,G) algorithm with all-port com-
munication can be emulated on an RHSN(I,,1,_1, ...,1;,G)
with a slowdown factor no more than 2r+1+maxi—1 .,
(2plo/ i, p), where p =TIi_, l; and ly is the node degree of
the nucleus graph G.

Proof: There exist many schedules that guarantee the slow-
down upper bound. It can be verified from the EPS al-
gorithm that 2ply/l; packets will pass a depth-i level-j
inter-cluster link and p packets will pass a nucleus link.
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Since the dilation for embedding the HPN is 27 + 1 (The-
orem 4.6), the slowdown factor is given by 2r + 1 +

maxi=12.... r(2pl/h, p). o

Note that the actual slowdown is usually smaller than the
upper bound given in Theorem 4.8 since the dilation can be
virtually hidden. For example, whenr=1,]; =4 and [y =3,
the slowdown factor is 6 rather than 9.

By properly choosing the nucleus size and the number of
recursive and hierarchical levels, an RHSN can emulate a
corresponding HPN with asymptotically optimal slowdown
(within a constant factor).

Theorem 4.9 Any HPN{p,G) algorithm with all-port com-
munication can be emulated on an RHSN(1,,1,_1, ...,1;,G)
with asymptotically optimal slowdown if I; = ©(1}), i,j =
0,1,...,r, and logr = ©(logly), where p =T1/_; l; and Iy is
the node degree of the nucleus graph G.

5. Other parallel algorithms

In this section, we summarize the tradeoff results for the
performance of semigroup computation and matrix-matrix
multiplication on RHSNG.

5.1. Semigroup computation

Assume that each node in the HSN(/, G) holds a value v;
for computation. Semigroup computation on the HSN can
be performed in three phases:

e Phase 1: Perform semigroup computation on each
level-I cluster, separately.

o Phase 2: Fach node exchanges its value via its level-/
inter-cluster link.

¢ Phase 3: Perform semigroup computation on each nu-
cleus, separately.

Theorem 5.1 Semigroup computation can be performed in
(Ts(1,G)+1)logy N — 1 time on an N-node RHSN based on
an M-node nucleus G, where Ts(1, G) is the time required to
perform semigroup computation on G.

Proof: Similar to the proof for Lemma 3.1.

Corollary 5.2 Semigroup computation can be performed in
(141/k)logy N — 1 time on an N-node RHSN based on a k-
cube.

A strategy similar to the one in the proof of Corollary 4.5
leads to the following corollary to Theorem 5.1.



Table 1. Complexity of several algorithms on the hypercube and RHSNs with size N.

| Networks || Semigroup Computation | Matrix Multiplication | FFT |  Bitonic Sort |
RHSN(3I, I, 1.0y by, Q)" log, N + o(logN) 3logyN+o(logN) [log,N+o(logN) | T log2N+ o(log2 N)
2log, 21 logN 3log2
I{HSN(3I;"IV—17"'710’KA4)i loziM 1 nggﬁ-i_ (logM) 0(]§§M) 2log2 + (logM)
Hypercube log, N 3 2log, N log, N : log N-1

¥ k is not a constant in N.

¥ Performance evaluated by the number of communication steps required.

Corollary 5.3 Semigroup computation can be performed in
(1+1)logy N communication steps and

(Si_ymi—)logy N it (VM — 1) logy N

computation steps on an N-node RHSN based on an M-
node complete graph, for any integer t € [1,1og, M|, where
H§=1 m; > M.

Parallel prefix computation can be performed using algo-
rithms similar to semigroup computation.

5.2. Matrix-matrix multiplication

Another major advantage of RHSNs is that they can
perform matrix-matrix multiplication at a high speed. In
[19], we have shown that 3-level hierarchical cubic net-
works, which are 3-level HSNs based on the hypercube, can
perform matrix-matrix multiplication efficiently. Those re-
sult can be easily generalized to an RHSN(/,,l,_,...,11,G)
where [, is a multiple of 3.

Theorem 5.4 /N x \3/1V matrix-matrix multiplication can
be performed on an N-node RHSN(l;,l,_1,...,11,G) in
(Ts(1,G)/3 + 1/3)logy N + 51,/3 — 2 time steps, where
T5(1,G) is the time required for semigroup computation on
the nucleus G, M is the number of nodes in the nucleus G,
and I, is a multiple of 3.

Note that the output configuration of the resultant prod-
uct matrix is exactly the same as the initial configuration re-
quired by the algorithm {19], making cascaded operations
possible.

Corollary 5.5 VN x /N matrix-matrix multiplication can
be performed on an N-node RHSN(l,,l._y,...,01,0) in
m—gﬂ + lo—gﬂ + ﬂﬁ 2 time, where 1, is a multiple of 3.
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From Corollary 5.5, we know that matrix-matrix multi-
plication on some RHSNs can be performed asymptotically
faster than the DNS algorithm on hypercube by a factor of 5,
and faster than the DNS algorithm on shuffle-exchange by a
factor of 13 [4].

The following corollary foliows from Theorem 5.4 and
Corollary 5.3.

Corollary 5.6 /N x v/N matrix-matrix multiplication can
be performedin (1+1t)logy N/3+51,/3 —2 communication
steps and

(S, m;— ) logy N/3 ~ 1t (\VM— 1) logy,N/3

computation steps on an N-node RHSN(I,,1,_1,....1,Ky),
for any integert € [1,log, M|, where TT;._,m; > M, and l, is
a multiple of 3.

6. Scaling up RHSNs

To obtain variants of RHSNs with smaller step sizes
while retaining most algorithmic and topological properties,
we can use M; ; identical copies of the RHSN, where M i jis
the number of nodes in a depth-i level-j cluster of the origi-
nal RHSN. Each copy is given a k; j-bit string as its address,
which forms the most significant k; ; bits of the addresses of
the nodes belonging to that copy, where k; ; = [log, M; ;].
The links connecting these copies can be obtained in a way
similar to the construction of an HSN. In other words, the
address of the new neighbor of a node can be obtained by
swapping the most significant k; ;-bit string of the node with
the the least significant k; ;-bit string of the node.

It can be seen that all the algorithms presented in this pa-
per can be applied to such networks with minor modifica-
tions. For example, to perform the semigroup computation
on such networks, we simply perform the semigroup com-
putation on each copy in paralle], exchange data via the new
links, and then perform the semigroup computation on each
depth-i level-j cluster in parallel. Analysis of the properties
and performance of such networks is straightforward.



To obtain even smaller step size, we can also adopt a
strategy similar to the clustered star or incomplete star [13].
That is, we can remove some of the top-level clusters from
an RHSN. The diameter of the resultant network will be at
most equal to that of the original RHSN.

7. Conclusion

In this paper, we have proposed a new class of intercon-
nection networks for modular construction of massively par-
allel computers. RHSNs combine important properties of
both hypercube (e.g., a wealth of fast, elegant algorithms)
and star graphs (e.g., optimal diameter), with the additional
advantage of using nodes of low degree, making them less
expensive to implement.

We have presented simple and efficient algorithms for
routing and ascend/descend computation. RHSNs based
on a complete graph or generalized hypercube can perform
semigroup computation, matrix-matrix multiplication, and
the above mentioned algorithms with asymptotically fewer
communication steps than hypercube. Moreover, suitably
constructed RHSNs can emulate corresponding homoge-
neous product networks with asymptotically optimal slow-
down. As a consequence, we obtain a variety of effi-
cient algorithms on RHSNs through emulation, thus prov-
ing the versatility of these networks. We compare the per-
formance of several important algorithms on the hypercube
and RHSNs in Table 1. These results demonstrate that
RHSNs are attractive candidates for high-performance net-
works with reasonable cost.
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