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Abstract

We introduce a pruning scheme fo reduce the node degree
of k-ary n-cube from 2n to 4. The links corresponding to
n — 2 of the n dimensions are removed from each node.
One of the remaining dimensions is common to all nodes
and the other is selected periodically from the remaining
n — I dimensions. Despite the removal of a large number
of links from the k-ary n-cube, this incomplete version still
preserves many of its desirable topological properties. In
this paper, we show that this incomplete k-ary n-cube
belongs to the class of Cayley graphs, and hence, is node-
symmetric. It is 4-connected with diameter close to that of
the k-ary n-cube.

1. Introduction

Direct networks whose nodes possess a fixed number
of neighbors, or degree, can be derived by removing links
from a highly connected one. Such a “pruning” scheme is
meant to reduce the node degree to a small(er) constant.
In the reduced network, nodes are clustered into groups
or partitioned into hierarchical levels; each node is
provided with a subset of the original connections and
each group collectively has the same communication
capability as a node in the original network.

For example, the cube-connected cycles (CCC) [10]
and periodically regular chordal (PRC) ring [9], in which
links of various dimensions and lengths are distributed to
a group of nodes, can be viewed as having been derived
from pruning richer networks [5]. Networks obtained by
pruning richer basis networks, such as hypercubes or
circulants, inherit advantages from the original networks,
and:

* Achieve logarithmic diameter with an optimally
chosen group size.

« Simulate the original network easily and efficiently.

* Have simpler, as well as more regular, VLSI layout.
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Whereas pruning leads to reduced node degree, cross-
product networks [11] work in the opposite direction in
that they increase the node degree to accommodate more
connections. The k-ary n-cube, typically used in direct
networks that span multiple dimensions, is simply the
cross product of n k-node rings. Pruned versions of 3D
torus have been shown to be quite effective [2], [3]. In
this paper, we apply the pruning method to the more
general k-ary n-cube and derive some of its properties.

Our presentation is organized as follows. In Section 2,
we describe the structure and basic topological properties
of the incomplete k-ary n-cube. Section 3 shows that a
modified form of the incomplete k-ary n-cube, in which
one dimension is allowed to be different, includes CCC
as a special case. Motivated by the fact that CCC is a
Cayley graph, we prove in Section 4 that the incomplete
k-ary n-cube also belongs to the class of Cayley graphs.
Section 5 contains our conclusions.

2. Structure and Basic properties

Consider a k-ary 3-cube, where k.is an even number.
The 4* nodes may be thought of as being positioned in an
array consisting of k rows, & columns, and k layers, and
connected by dimension X, ¥, and Z links, respectively.
In the pruned %-ary 3-cube, the dimension X and Y links
are removed alternately from every other layer. Each
node (x, y, z) is connected to two neighbors (x, y, z = 1).
The other two neighbors of (x, y, z) are (x + 1, y, z) if z is
even or (x, y + 1, z) if z is odd. Here it will be understood
that all node indices are calculated modulo £.

Because dimensions X and Y can be permuted without
changing the connectivity, this leads to a node-transitive
graph of degree 4. As an example, Fig. 1 shows a pruned
k-ary 3-cube with k£ = 4.

A k-ary n-cube, where #» > 3, may be similarly pruned
to constant degree of 4 by following the above scheme. In
such a network, each node (ao, a1, ... , a..1), denoted as
an n-digit radix-k vector, is connected to four neighbors



(a, o, ... ,ap 2 1) and (ao, ... , a1, ..., a,1) ifa.
mod (n — 1) = i. In order to assure that an equal number
of dimensional links are provided, we require k to be a
multiple of n — 1. Hence every n — 1 nodes around the
k-node ring in dimension n — 1 possess a complete set of
the dimensional links.
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Fig. 1. Incomplete 4-ary 3-cube by altemately removing X and Y links.

Theorem 1 follows directly from the definition of the
incomplete k-ary n-cube and from the observation that
node-disjoint rings can be found either along dimension
n — 1 or collectively along dimensions O through n — 2.

Theorem 1: An incomplete k-ary n-cube contains k!
disjoint rings of k nodes.

Given two nodes 4 = (ao, ai, ... , an.1) and B = (by, by,
.., baa), the Lee distance [3] between them is defined as
7} |Ad}| where [Ad| = min{|, — a, k — |a; — b,|}. Each
offset |Ad| is the minimum number of routing steps along
dimension i in moving from A4 to B. In the complete k-ary
n-cube, the Lee distance is also the length of the shortest
path. Since the route can be either forward or backward
along dimension i, to indicate the direction we denote
{ IAd|  if b — a; (mod k) < a,— b; (mod k)
Ad; =
—|Ad}  otherwise

Theorem 2 states that the diameter of the incomplete
k-ary n-cube is equal to or only slightly larger than that
of its unpruned counterpart.

Theorem 2: The diameter of the incomplete k-ary n-cube is
R { (7 = DLk/2)+ max{on — 4, k2 ]y ifk>20m—1)

(n - D2+ max{n -3+ k2] Ky ifk=n-1

93

Proof: Without loss of generality, we can select node

(0, 0, ... , 0) as the source and route to a node with

offsets (Ady, Ad,, ... , Ad,_1). Consider the-increase in
the maximum routing distance relative to that of the
k-ary n-cube. In order to gain access to the dimensions
whose links have been removed from nodes, extra
steps may have to be taken along dimension 7 — 1.
From (0, 0, ... , 0), dimension 0 and » — 1 links are
directly accessible and can be taken, if needed, as in
the complete k-ary n-cube. As we take the required
|Ad,_1 hops along dimension »n — 1, links for the other
n — 2 dimensions become accessible. Thus if |Ad,_| =
n — 2, we encounter links for all possible dimensions.
Consequently, the missing links do not contribute any
extra hop to the length of the shortest path. We will
not consider this case in the remainder of the proof.

If |JAd,_1 < n - 2, then additional hops are needed to
gain access to the links other than those encountered
along dimension » — 1. Because of this, routing along
dimension » — 1 in the direction dictated by the sign of
Ad,_; may not be the best choice.

Case 1: Route normally along dimension n — 1. In this
case, |Ad,_i| of the n — 2 dimensions are accessible. We
take 2(n — 2 — |Ad,_1|) extra hops for the remaining n —
2 — |Ad,-\| dimensions, going “beyond” the destination
and returning. The total routing distance in this case
is Z2|Ad) + 2n — 4 — |Ad,4].

Case 2: Route in reverse along dimension n — 1. In
this case, we will visit & — |Ad,-)| nodes; the number of
extra hops is k — 2{Ad,|. f k — |Ad,_i| 2 n — 2, then
nothing more is needed and the total routing distance
becomes T22|Ad| + k — |Ad, . On the other hand, if
k —~|Ad,_|| < n — 2, then as argued above for Case 1,
we need 2(n ~ 2 — k + |Ad,-|) extra hops, making the
total routing distance SZ|Ad)| + 2n — 4 ~ k + |Ad,y|.
To continue the proof, it is more convenient to handle
the special case k = n — 1 separately. Recall that k is a
multiple of # — 1. For k 2 2(n — 1), we have k — |Ad,_||
> n—2; Case 2 has a larger distance than Case 1. The
routing distance of the latter is maximized for |Ad,_|| =
0, leading to the diameter of (n — DLA2) + max{ k2],
2n — 4). This proves the first part of the equation.
Fork=n-1,wehavek —|Ad,_ | 2n-2if|Ad,| £ L.
Since n = 3, Case 2 is better, leading to the maximum
(n — DLk/2] + k. The remaining case of |Ad,_{ > 2
makes the routing distance S=2Ad| + 21 — 4 — |Ad,._ |
based on Case 1 and Z7F|Ad)| + 2n — 4 — k + |Ad, ||
based on Case 2. The smalier of the two is maximized
when they are equal, leading to the maximum (7 — 1)
Lk/2] + n — 3 + Lk/2. This proves the second part of
the equation. (W}



The diameter of the incomplete k-ary n-cube is at most
k — 2 larger than that of its unpruned counterpart. This
worst case occurs when k= n— 1 and n > 7, as we rewrite
it in the following form and solve for the maximum.

R _{ ALk2)+ max{on — 4~ k/2], 0} ifk=2(n - 1)

In the case where & > 4n — 4, the diameter is the same as
that of the k-ary n-cube, i.e., D = nlk/2].

Bisection width of a network is the minimum number
of links that must be removed in order to divide the
network into two equal halves. This measure relates to
communication capacity on the one hand and also sets a
lower bound on wire length for a given diameter. The
bisection width of the incomplete k-ary n-cube can be
obtained as 2k”!/(n — 1) by considering, for example, the
number of links cut by a hyper-plane near a = /2. For
such a division, the only links that would be removed are
in dimension 0. Note that the bisection width is a factor
of n — 1 lower than that of complete k-ary n-cube.

nl k2] + max{n - 3,[ k12 1} ifk=n-1

3. Generalization to Cube-Connected Cycles

In this section, we apply our pruning scheme to a gen-
eralized incomplete k-ary n-cube which can give rise to
n-cube connected cycles (n-CCC).

One way to generalize the incomplete k-ary n-cube is
to allow dimension » — 1 to be longer than %, the size of
all other dimensions. Let us assume that dimension » — 1
has / nodes and / > k. Now, k can be any positive integer
but / is restricted to be a multiple of » — 1. The diameter
can be correspondingly modified to

5 { (- DA/2]+ max{2n -4, Li2]y if122(0m-1)
(n-Dlk2)+ max{n -3 +L2) 3 ifI=n-1

The n-CCC can be derived from pruning an (¢ + 1)-D
torus with 2 x ... x 2 x n nodes, i.e., k=2 and ! = n (see
Fig. 2 for an example). Substituting 2 for k and » + 1 for
n into the above equation leads to the diameter D = n +
max{n + |n/2] — 2, n}, as given in [7]. This expression
deserves some attention. Several textbooks mistakenly
regard 2n as the diameter which is true only for n < 5.
Based on the proof of Theorem 2, we briefly describe the
derivation as follows.

To route through the first n dimensions, each taking
one step, one can choose decreasing or increasing dimen-
sion order. In either case, the path does not need to
return to the starting dimension (e.g., from dimension 0

back to dimension # ~ 1), if the offset |Ad,| between source
and destination is non-zero. The number of steps via the
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dimension » links is at most n — 1. For Ad, = 0, clearly
up to » steps may be required.
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Fig. 2. An incomplete 2 X 2 X 2 X 3 4D torus view of 3-CCC.

If Ad, = Ln/2] (n/2)), the worst case for Ad, # 0,
routing in decreasing (increasing) dimension order takes
[n/2] - 1 forward (backward) steps along dimension 7,
which is equal to, or one less than, the other choice. This,
however, cannot constitute the longest path if n = 3 when
no step is taken along dimension n. Hence, for n > 4, the
diameter is n +n — 1 + /2] - 1 = 2n + |[n/2] - 2. We
can express the diameter in the general form D = »n +
max{n + [n/2] — 2, n} and note that there are at most

three nodes diametrically opposite to (ao, ... , 3s1, an):
(a+1,...,a+1 a,) ifn=3
(a+l,...,a,0+1, a,),
(@+1,...,a+ 1L a 02 ifn=4,5
(@+1,...,a.+1 a,£ln2)) ifnz26

4. Node Symmetry based on Cayley graphs

The k-ary n-cube, including its special case of hyper-
cube or binary n~cube, is known to belong to the class of
Cayley graphs of cyclic groups. As a result, the networks
are node-transitive. The incomplete k-ary n-cube and its
generalized version share the same property. Our proof
method is similar to that used for proving that the n-CCC
is a Cayley graph [4].

Let * be an associative binary operator and £2 be some
subset (generator set) from a finite group I' such that

1) Theidentity1 ¢ ;
2) If ® € Q, then its inverse @™ € Q.

A Cayley graph [1] can be defined as a digraph whose
node x is connected to node x * ® (x, x * @ € I') if and
only if @ € Q. The size |Q] of the generator set Q deter-
mines the node degree of a Cayley graph. We refer the
reader to [6] for a detailed discussion on the symmetry
properties of Cayley graphs.



Theorem 3: The incomplete k-ary n-cube and its gener-
alized version with dimension » — 1 being longer, are
Cayley graphs.

Proof: To facilitate our manipulation, we express the
node address as (d, b), where @ = [ao, a1, ... , .27 is
an (n — 1)-vector and b = a,1. Define the operator * as

@, b)* @, o=@+ D, b+ )
where (¥, ®) € Qand ® is an (2 — 1) x (n — 1) matrix

6 0 0 -~ 0 1
1 00 - 00
®={ 0 1 0 - 0 O

00 0 10

The first addition is component-wise modulo 4 and
the second addition is modulo /. Also, note that © has
a periodic property: @' = @D where 0 <i<n—2.

It is easy to derive the identity v = ([0, O, ... , OF%, 0).
The proof is complete by selecting Q= {([0,0, ... ,0F, 1),
0,0, ...,0F, k-1, (10, ... OF,0), (k- 1,0, ..., OF, O)}L.
The generator set Q is closed under inverse, making
all links bidirectional. Hence, the operator * connects
([ao, ... , Gnal’, any) 0 (aq, ... , Gual, @y = 1) and
(ao, ..., a1, ..., a.s), 1) if @y mod (n = 1) = 1.
This is exactly the definition for the incomplete k-ary
n-cube given in Section 2. O

For the incomplete k-ary n-cube, a stronger conclusion
may be drawn, in addition to the node transitivity inher-
ent from the Cayley graphs. Observe that each link is in a
cycle of length k. A mapping of the link to any other link
is also in a cycle of length %, implying that the incom-
plete k-ary n-cube is also edge-transitive. One important
consequence of edge transitivity is that the connectivity
(or the number of parallel paths between any two nodes)
is the largest possible, i.c., equal to the node degree [6].
Such parallel paths provide a means of selecting alternate
routes, and thus, increase the fault tolerance capability.

5. Conclusion

We have applied a pruning scheme to the k-ary #-cube
to reduce its node degree from 2n to 4. We showed that
by removing links from the k-ary n-cube in a periodic
fashion, many of its desirable properties can be
preserved. The pruned network remains in the class of
Cayley graphs, with diameter close to that of the original
network.

In a way, this indicates that the k-ary n-cube itself is
quite resilient since it allows the removal of a large
number of its links while maintaining these properties. A
complementary conclusion is that such a highly connected
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topology is not necessary to obtain these propertics.
Given the same node complexity and capacity, we can
use a smaller node degree and expand the channel width
to achieve lower communication latency.

Our pruning scheme can be easily extended to higher-
degree incomplete k-ary n-cubes. For instance, to prune
to node degree of six (rather than four), we can maintain
two common dimensions and periodically assign one of
the remaining n — 2 dimensions to nodes. Although such
a scheme in general does not significantly improve the
network diameter, and only slightly increases the bisec-
tion width, it does facilitate the embedding of 2D and 3D
meshes into the resulting networks.
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