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Abstract

In this paper, we propose a new family of interconnection
networks, called cyclic networks (CNs), in which an inter-
cluster connection is defined on a set of nodes whose ad-
dresses are cyclic shifts of one another. The node degrees of
basic CNs are independent of system size, but can vary from
a small constant (e.g., 3) to as large as required, thus pro-
viding flexibility and effective tradeoff between cost and per-
Sformance. The diameters of suitably constructed CNs can be
asymptotically optimal within their lower bounds, given the
degrees. We show that packet routing and ascend/descend
algorithms can be performed in ©(log,;N) communication
steps on some CNs with N nodes of degree ®(d). Moreover,
CNs can also efficiently emulate homogeneous product net-
works (e.g., hypercubes and high dimensional meshes). As a
consequence, we obtain a variety of efficient algorithms on
such networks, thus proving the versarility of CN.

1 Introduction

The design of interconnection architectures may signifi-
cantly affect several characteristics of the final parallel sys-
tems, such as performance, ease of programming, reliabil-
ity, scalability, complexity of physical layout, and hardware
cost. In general, high performance, fixed node degree, and
simplicity of algorithms are some of the desirable, but of-
ten conflicting, requirements. Hypercubes, star graphs {11
and generalized hypercubes [3] have appealing topological,
algorithmic, and fauli tolerance properties, but they tend to
have high node degrees for large system sizes.

To overcome the probiem of unbounded node complexity
in large hypercube or star networks, some constant-degree
variants or alternatives, such as the cube-connected cycles
(CCC) [14], shuffle-exchange, de Bruijn graph, butterfly
networks [13], and star connected cycles (SCC) [12] have
been introduced and shown to have some desirable prop-
erties. Other interconnection networks, such as hyperneis
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[10], hierarchical shuffle-exchange (HSE) networks [5], and
WK-recursive networks [15] may also use nodes of small
(constant) degrees. When high performance and moder-
ate cost are required, networks that have better topological,
algorithmic, and fault tolerance properties than constant-
degree networks and have intermediate node degrees (e.g.,
higher than 3, but lower than log, N) may become attractive.
Several such interconnection schemes for parallel architec-
tures have been proposed in recent years [4, 6, 8, 9, 16, 17].

In this paper, we propose a new family of fixed-degree in-
terconnection networks called cyclic networks {CNs), which
compare favorably with the above interconnection networks
in terms of implementation cost and performance of many
important algorithms {18]. A CN can use identical copies of
any small network as its basic modules, connected through
a set of nodes whose addresses are cyclic shifts of one an-
other. The required data movement when performing many
important algorithms on CNs is largely confined within ba-
sic modules, thus leading 1o small network delay and high
throughput when the delay associated with transporting a
packet through an intra-module (e.g., chip or board) link is
small. To sum up, the proposed topologies possess many ad-
vantages, including 1) small (fixed) node degree, 2) small
(optimal) diameter, 3) simple and efficient routing and as-
cend/descend algorithms, 4) efficient emulation (embed-
ding) of popular topologies, 5) effective tradeoffs between
cost and performance, 6) balanced traffic, adaptive to vari-
ous communication patterns, and 7) suitability for VLSI im-
plementation.

2 Basic cyclic networks

In this section, we define basic cyclic networks, also
called ring-cyclic networks (Ring-CNs), explore some of
their basic properties, and introduce the needed notation.
For convenience, for any ji > j,, we let Z;.;, denote
Z;Z; _\---Zj,, where Z can be any symbol, such as U,V
orX.



Definition 2.1 (Ring-Cyclic Network): Let the nucleus
graph be G = (¥, E5). An l-level ring-cyclic network
based on the nucleus G is defined as the graph Ring-
CN(,,G) = (V,E), where V = {V = V3|V, € Vg,i =
1,...,1,} is the set of vertices, and € = {(U = U,V =
V[;l)IU,',V,' [S {Vg,i = 1,2,...,1, satisfying Upp = Vi and
(U, V1) € Eg, or Ui = V; mod 1y+1> O Vi = Ui mod 1)+ 1- for
1 <i< 1} is the set of edges.

The nucleus G can be a mesh, torus, hypercube, complete
graph, generalized hypercube, ring, Petersen graph, a group
of nodes connected to a common bus, or any other connected
graph/hypergraph (of more than one node).

In other words, two nodes U and V are connected by an
undirected link if nodes U and V are neighbors within the
same nucleus G, or the addresses of nodes U and V are cyclic
shifts of the I-symbol address of one another. We denote the
address obtained by i right shifts as X(). That is, X9 = X
and X = X;. Xp41 for 1 <i <[, where X = X;.,. Note that
x() = x(imod!) "Bach node is connected to its neighbors in
the same nucleus by nucleus links and to two others via the
left- (right-) shift links.

Note that a node with the same ! symbols in its address
has no shift links (or, alternatively, has shift links connect-
ing to itself) and are called the leaders. Leaders can be used
as I/O ports or be connected to other leaders via their unused
ports to provide better fault tolerance or to improve the per-
formance and reduce the diameter of Ring-CNs without in-
creasing the (maximum) node degree of the network.

2.1 Routing in CNs

In this subsection, we present a routing algorithm to route
a packet from node X to node Y in a Ring-CN(/,G) using
left- (or right-) shift links and nucleus links.

Suppose that a routing algorithm for the nucleus G is
known. Let the addresses of nodes X and ¥ within the Ring-
CN(1,G) be X;., and Y.\, respectively, where X;,Y; € V.

Route(X,Y)
for i =I/downto 1 {ori=1tol)do
begin
Route the packet to node Y; (or ¥, )
within the nucleus in which tHemﬁ)gcﬁgtl
currently resides.

if if 1 (ori# 1) then send the packet through
the left-shift (or right-shift) link.

end

Routing fromnode X = X;--- X3X>X  to Y = Y- Yalh
within a CN(/, G) using left-shift links and nucleus links can
be expressed as follows:

leflt;slf(lift |
mn nucleus
Xi2¥p — Xi_12YX

nucleus

XiaX,
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Figure 1. The node degree of several inter-
connection networks.
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If the routing algorithm on the nucleus G requires at most
Tz(1,G) time, the routing algorithm on Ring-CN(/,G) re-
quires time at most Tr(l,G) = ITg(1,G) +1— 1.

When we use a hypercube ot folded hypercube as the nu-
cleus graph of a CN, the expected traffic on the network links
will be approximately uniform. For other nucleus graphs,
such as a complete graph or higher-radix hypercube, we can
also find a corresponding enhanced CN, introduced in Sec-
tion 4, that has approximately uniform traffic, assuming unit
link capacity.

2.2 Basic topological properties

Let the nucleus G be a graph with M nodes of degree dg.
The number of nodes in a Ring-CN is increased by a factor
of M when the level is increased by 1. Thus, the number N of
nodes of a Ring-CN(l,G) is N = M', and the level of Ring-
CN(/,G) of N nodes is | = log,,N. The (maximum) node
degree of a Ring-CN(2,G) is d = dg + 1, and the degree of
aRing-CN(I,G) with I > 2 isd =dg+2.

The diameter of a Ring-CN(I, G) is obtainable from the
routing algorithm given in Subsection 2.1.

Theorem 2.1 The diameter of a Ring-CN(l,G) is 1(Dg +
1) — 1, where Dg is the diameter of the nucleus G.

Note that if leaders are connected (e.g., via diameter links
[8, 18]), the diameter may be reduced without increasing the
maximum node degree.

CNs are compared to several popular networks with re-
spect to node degree and network diameter in Figs. 1 and
2. CNs provide effective tradeoffs between node degree and
network diameter, while remaining highly competitive with
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Figure 2. The diameter of several intercon-
nection networks.

regard to a composite cost measure [3], defined as the prod-
uct of node degree and diameter (see Fig. 3):

It can be shown that the diameter of Ring-CNs based on
a nucleus G is asymptotically optimal within a constant fac-
tor from the lower bound log, N, given its network size N
and node degree d, if the nucleus has M nodes of degree dg;
and has diameter 0(log[,G M) [18]. In particular, when the
nucleus is an n-dimensional radix-r hypercube @7, [3, 11],
the ratio of the diameter to its lower-bound for the CN (!, O,
is optimal asymptotically with a constant factor 1 if logn =
o(logr) and n is not a constant in N [18].

3 Ascend/descend algorithms

Ascend/descend algorithms [ 14] require successive oper-
ations on data items that are separated by a distance equal to
apower of 2. Many applications, such as Fast Fourier Trans-
form (FFT), bitonic sort, matrix multiplication, and convo-
lution, can be formulated using algorithms in this general
category. In this section, we show that algorithms in this cat-
egory can be performed efficiently on a Ring-CN as long as
ascend/descend algorithms can be performed efficiently on
its nucleus graph.

Assume that the nucleus G has M = 2¥ nodes. Let i, i, €
[0,lk—1],a, = |ia/k), a0 = ia mod k, b, = [ip/k|, and by =
i, mod k. We present the ascend algorithm Asc(ig,ip,l,G)
(for operations on data separated by a distance 2/, j =
ig,ig+1,...,ip) on Ring-CN(l, G) as follows:

Ase(ig, iy, 1,G)
begin
if a; <1/2 then Each node repeatedly sends data via its
right-shift link a; times,
else Each node repeatedly sends data via its left-shift
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Figure 3. The product of node degree and net-
work diameter of several interconnection net-
works.

link [ — a; times.
for i:=atob do
begin
co = if i = a; then g else 0.
do:=1ifi= b, then by else k — 1.
Perform ASC(cg,dg, 1,G).
Each node sends data via its right-shift link.
end

if b, > 1/2 then Each node repeatedly sends data via its
right-shift link / — b, times,
else Each node repeatedly sends data via its left-shift
link b times.
end

Note that throughout the paper, if a node does not have
the specified link, the corresponding operation is simply
skipped for that node.

By parforming the sending step via right-shift (or left-
shift) link i times, node X will hold the data item from node
X (or X(=1), In essence, this moves data items separated
by adistance of 2/, j = ki, ki+1,...,ki+k — 1, into the same
nucleus, such that they are now separated by a distance of
2J=ki  Thus, we can use the ascend algorithms on the nu-
cleus G (i.e., Ring-CN(1,G)) to emulate the step needed in
dimensions j, j=ki,ki+ 1,....ki+k—1.

It can be easily verified that ascend/descend algorithms
(for all the log, N possible operations) can be performed in
(14 1/k)log, N time on a Ring-CN based on hypercubes,
and can be performed using &OELN communication steps on
a Ring-CN based on complete graphs, where N is the num-
ber of nodes in Ring-CNs and and 2* is number of nodes in
the nucleus graph. We can also trade the number of commu-



nication steps with computation steps for Ring-CNs based

on complete graphs. For example, FFT can be performed us-
kit _

128 —1)logy N com-

ing (I—Hl,%-?&ﬂ communication steps and
putation steps on an N-node Ring-CN(/, K,«) or an N-node

Ring-CN(, szv/'), assuming that ¢ divides k and v divides¢,

where Ky is a 2¥-node complete graph. Detailed results for
various important algorithms and comparisons with other
popular networks can be found in [18].

4 Enhancements and variants

In this section, we present the constructions of enhanced
CNs and several variant constructions for CNs.

An I-level CN based on G, CN(I,G), is obtained by re-
moving all shift links from a Ring-CN(/, G) and reconnect-
ing nodes X, X(1 X _ x(-1) The only rule required for
the connection is that nodes X, XY, X xU=1 which
is a cyclic-shift (CS) graph of the CNs, have to form a con-
nected graph (or hypergraph), for each node X in the CN.

4.1 Complete-cyclic networks

Complete-cyclic networks (Complete-CNs) are obtained
by replacing the rings in Ring-CNs with complete graphs,
which are the CS graphs of the Complete-CNs.

Definition 4.1 (Complete-Cyclic Network): Let the nu-
cleus graph be G = (5, %g). An I-level complete-cyclic
network based on the nucleus G is defined as the graph
Complete-CN(1,G) = (V,E), where V = {V = V,|V; €
Vg,i = 1,..,1,} is the set of vertices, and E = {(U =
U,V = Vie)lu, Vv, € rVg,i = 1,2,...,1, satisfying Uy, =
Via and (U, Vy) € Lg, orV = U@, for some integer i,1 <
i < 1} is the set of edges.

Clearly, a Ring-CN(/,G) is a subgraph of a Complete-
CN(I,G) since a ring is a subgraph of a complete graph.

Homogeneous product networks (HPN) form a subclass
of product networks with identical component networks [7].
More precisely, an HPN is the iterated Cartesian product of
the same graph, and HPN(p, G) denotes the p' power of G;
that is, HPN(p,G) = [12.,G = GxGx---xGXG. A

2 'e

dimension-n radix-M (generalized) hypg}cube is an
HPN(n,Ky) and an M-ary n-cube is an HPN(n,Ry),
where Ry is an M-node ring. Although Complete-CNs have
higher node degrees than Ring-CNs, they can emulate HPN's
with optimal slowdown under both the single-dimension
[16, 17] and all-port communication models.

Theorem 4.1 Any HPN(1,G) algorithm that only uses links
of the same dimension at a time can be emulated on a
Complete-CN(l, G) with a slowdown factor of 3.
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If the algorithm can be emulated using dynamic emula-
tion [18], the slowdown factor can be reduced to 2.

Theorem 4.2 Any step of an N-node hypercube algorithm
with all-port communication can be optimally emulated on a
Complete-CN(1, Qy) that uses N nodes of degree ©(/1ogN)
in ©(y/TogN) steps.

As a result of Theorem 4.2, many Complete-CN algo-
rithms can be performed in optimal time by simply emulat-
ing hypercube algorithms.

Corollary 4.3 The total exchange task can be optimally ex-
ecuted on a Complete-CN(1, Q) that uses N nodes of degree
©(/TogN) in ©(N+/TogN) time, under the all-port commu-

nication model,

Corollary 4.4 The multiple-node broadcast task can be op-
timally executed on a Complete-CN(l, Q) with N nodes of
degree ©(y/logN) in ©(N/+/TogN) time, under the all-port
communication model.

We can also use certain loop-based topologies [2],
any other previously proposed network with proper size,
or a specially designed small graph to replace the CS
graphs (e.g., rings (or complete graphs) consisting of nodes
X,xW x@ xU-D i a Ring-CN({,G) (or Complete-
CN(/,G))). Some examples and the proofs for the above
theorem and corollaries can be found in [18].

4.2 Incomplete CNs

To obtain variants of CNs with smaller step-size, we can
use M;M!~" rather than M nodes to construct [-level incom-
plete CNs, where M; divides M, the number of nodes in a
nucleus. A node X = X;X;_,.; in the incomplete variant is
assigned a pseudo-address X = X;X;_\.; such that X; ranges
from O to M — 1 (rather than 0 to M; — 1 for X;).

For example, node X;X;_1.; can be assigned the pseudo-
address X/X;_.;, with X] = XoM; + X;, where Xy =
X; mod M;. Given the pseudo-address, we can then con-
struct incomplete CNs using previous definitions. We can
also use methods similar to those used for HSE [5]. Most
results detived in this paper can be applied to such CN vari-
ants either directly or with minor modifications.

4.3 Recursive CNs and related networks

Another way to obtain a CN with node degree and perfor-
mance similar to CNs that use loop topologies as their CS
graphs is to recursively construct the CN based on smaller
CNs (e.g., Ring-CN, Complete-CN) as the nuclei. The for-
mal definition is given as follows.

Definition 4.2 (Recursive Cyclic Networks): An r-deep
Recursive-CN(l,,1,_q,...,I1,G) is recursively defined as
CN(!,, Recursive-CN(/,_y,1,_»,...,I;,G)), with Recursive-
CN(l,,G) =CN(l|,G).



Most algorithms developed for CNs can be recursively
applied to Recursive-CNs with minor modifications. It is
worth noting that when the nucleus graph is a hypercube, a
CN(2, Q,) becomes a hierarchical cubic network HCN(n, n)
without diameter links [8]; when the nucleus graph is a
folded hypercube, a CN(2,F(Q,) becomes a hierarchical
folded-hypercube network HFN(n,n) [6]; when the nu-
cleus graph is a 1-cube (i.e., two connected nodes), a Ring-
CN(l, ;) becomes an /-dimensional shuffle-exchange (SE)
network; and when the nucleus graph is a shuffle-exchange
network, a Ring-CN(/, SE'}) becomes an HSE [5]. Moreover,
recursively connected complete (RCC) networks [9] also
form a subclass of Recursive-CNs that are recursively con-
structed using 2-level CNs. That is, (M, r)-RCC is equiva-
lentto CN(2,...,2,G) = CN(2,CN(2....,CN(2,G)...)), where

o et N—— o ——
M is the numbrer of nodes in the nrucleus G.

5 Conclusion

In this paper, we have proposed CNs as a new family of
parallel interconnection architectures. CNs not only com-
bine some desirable properties of both the hypercube (e.g.,
a wealth of fast, elegant algorithms) and the star graph (e.g.,
optimal diameter), but also use nodes of small (constant) de-
gree, making them less expensive to implement and easier to
expand. Some basic topological properties were presented
and compared to other popular topologies. We also devel-
oped efficient routing, ascend/descend, and emulation algo-
rithms on CNs. In addition to these advantages, we have
shown in [18] that CNs and their variants significantly out-
perform other popular interconnection networks when off-
module bandwidth is the limiting factor on system perfor-
mance. Further research can be carried out in many direc-
tions, including the performance of CNs based on various
routing schemes, their fault-tolerance properties, develop-
ment and refinement of important algorithms, VLSI layout
issues, and packaging considerations.

References

{11 Akers, S.B., D. Harel, and B. Krishnamurthy, “The star
graph: an attractive alternative to the n-cube,” Proc. Int’l

Conf. Parallel Processing, 1987, pp. 393-400.

Arden, B.W. and H. Lec, “Analysis of chordal ring net-
works,” IEEE Trans. Comput., vol. C-30, Apr. 1981, pp. 291-
296.

Bhuyan L.N. and D.P. Agrawal, “Generalized hypercube and
hyperbus structures for a computer network,” IEEE Trans.
Comput., vol. 33, no. 4, Apr. 1984, pp. 323-333.

Chen, C. and D.P. Agrawal, “dBCube: a new class of hierar-
chical multiprocessor interconnection networks with area ef-
ficient layout,” IEEE Trans. Parallel Distrib. Sys., vol. 4, no.
12, Dec. 1993, pp. 1332-1344.

[2]

(3]

(4]

743

[5] Cypher, R. and J.L.C. Sanz, “Hierarchical shuffle-exchange
and de Bruijn networks,” Proc. IEEE Symp. Parallel and Dis-
tributed Processing, 1992, pp. 491-496.

Duh D., G. Chen, and J. Fang, “Algorithms and properties
of a new two-level network with folded hypercubes as basic
modules,” IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 7,
Jul. 1995, pp. 714-723.

Efe, K. and A. Fernandez, “Products of networks with log-
arithmic diameter and fixed degree,” IEEE Trans. Parallel
Distrib. Sys., vol. 6, no. 9, Sep. 1995, pp. 963-975.

Ghose, K. and R. Desai, “Hierarchical cubic networks,”
IEEE Trans. Parallel Distrib. Sys., vol. 6, no. 4, Apr. 1995,
pp. 427-435.

Hamdi, M., “A class of recursive interconnection networks:
architectural characteristics and hardware cost,” IEEE Trans.
Circuits and Sys.—I: Fundamental Theory and Applications,
vol. 41, no. 12, Dec. 1994, pp. 805-816.

Hwang, K. and J. Ghosh, “Hypernet: a communication-
efficient architecture for constructing massively parallel
computers,” IEEE Trans. Comput., vol. 36, no. 12, Dec.
1987, pp. 1450-1466.

Lakshmivarahan, S. and S.K. Dhall, “A new hierarchy of hy-
percube interconnection schemes for parallel computers,” J.
Supercomputing, vol. 2, 1988, pp. 81-108.

Latifi, S., M. Azevedo, and N, Bagherzadeh, “The star con-
nected cycles: a fixed-degree network for parallel process-
ing,” Proc. Int’l Conf. Parallel Processing, vol. I, pp. 91-95,
1993.

Leighton, FT., Introduction to Parallel Algorithms and Ar-
chitectures: Arrays, Trees, Hypercubes, Morgan-Kaufman,
San Mateo, CA, 1992.

Preparata, EP. and J.E. Vuillemin, “The cube-connected cy-
cles: a versatile network for parallel computation,” Commun.
ACM, vol. 24, no. 5, May 1981, pp. 300-309.

Vecchia, G.D. and C. Sanges, “Recursively scalable networks
for message passing architectures,” Proc. Conf. Parallel Pro-
cessing and Applicarions, 1987, pp. 33-40.

[6]

(71

(8]

(91

(10]

1]

(2]

[13]

(14]

f15]

116] Yeh, C.-H. and B. Parharni, “Recursive hierarchical swapped
networks: versatile interconnection architectures for highly
parallei systems,” Proc. IEEE Symp. Parallel and Distributed

Processing, 1996, pp. 453-460".

Yeh, C.-H. and E.A. Varvarigos, “Macro-star networks: ef-
ficient low-degree alternatives to star graphs for large-scale
parallel architectures,” Proc. Symp. Frontiers of Massively
Parallel Computation, 1996, pp. 290-297".

Yeh, C.-H. and B. Parhami, “Cyclic networks: a class of scal-
able communication-efficient interconnection architectures,”
Dept. Elec. & Comput. Engr., Univ. California, Santa Bar-
bara, CA, Tech. Rep. no. 97-06, 1997 L.

{17]

(18]

IReferences [16] through [18]
kup://www.engineering.ucsb.edu/"yeh.

are currently available at



