Modular Reduction by Multi-Level Table Lookup

Behrooz Parhami

Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106-9560, USA

Abstract

Common designs for reducing the lookup table size in modular
reduction (computing of residues) all require peripheral logic
in the form of multiplexers andlor (multi-operand) adders.
We derive optimal two-level modular reduction circuits that
are synthesized from lookup tables and pipeline latches only.
We compare three such purely tabular realizations in terms of
total table size. Extensions to more than two lookup levels,
Jor gaining higher throughput, are also briefly discussed.

1. Introduction

Table lookup is an attractive method for function
evaluation in VLSI signal processing applications
since it leads to the replacement of irregular area-
intensive random-logic structures with much denser
memory arrays. Hence, increasingly, designs of
computer arithmetic circuits are being based on table
lookup, either as the primary computational scheme
or for obtaining good initial approximations for
speeding up iterative computations.

Modular reduction is the process of finding the
remainder (residue) of a given input z with respect
to a fixed modulus p. The computation of z mod p,
or lzl,, is needed in binary-to-residue conversion, as
a final step within modular arithmetic operations,
and for error checking based on residue codes.
Many researchers have studied the use of tabular
methods for modular reduction, especially in the
context of binary-to-RNS (residue number system)
conversion [1-4, 7-9, 13-14]. A commonly used
method for this purpose is to obtain the residues
corresponding to various segments of the input
operand and then use a multi-operand modular
adder to find the final residue [6, 10-11].

Let m — 1 be the largest possible value for the
unsigned input z (i.e.,, 0 < z <m). The binary
representation of z thus has b =[log; m1 bits.
Residues mod p are represented as d-bit binary
numbers (d = [log% p). We assume that tables of
size 0(224) = O(p?) are practical. Our discussion
thus does not cover the situation where fairly large
(say 32-bit) residues are used to speed up arithmetic
on huge (hundreds of bits long) numbers of the
type needed for RSA encryption [5, 12].

0-7803-3694-1/97/$10.00 © 1997 IEEE

The direct (single-level) table-lookup computation
of z mod p, requiring a table of size

T, =dm (1)

is practical only when the range of z is fairly
limited. Thus many approaches (e.g., based on
truncated table lookup, piecewise table lookup, and
stepwise refinement) have been suggested in order
to reduce the required table size. As commonly
implemented, these approaches require peripheral
logic, in the form of multiplexers and adders,
besides the lookup tables (see, e.g., [9]).

In this paper, we look at multi-level table lookup,
without any additional logic, except for pipeline
latches, as a way of reducing the total table size
with respect to T;. We derive and compare optimal
two-level tabular schemes for computing z mod p
which offer advantages for dense VLSI realizations.
With the continual rise in memory density and
throughput (e.g., by means of internal pipelining),
such purely tabular realizations should become even
more attractive in future.

2. Two-Stage Lookup with Truncation

Egs. (2) and (3) below justify the truncated table-
lookup approach that is the basis of some two-stage
circuit implementations: A lookup table for the
high-order b — d + 1 bits and a modular adder (built
of an adder, a trial subtractor, and a 2-input mux) to
incorporate the chopped low-order d — 1 bits.

z2=2"Nz2 4+ zmod 241 =22, |, 42400 (2)
zmodp=(2*'z, 4y modp + 2459 modp  (3)

The reason for the truncated segment being limited
to d — 1 bits in this implementation is to ensure that
the sum of this segment and the residue read out
from the table is strictly less than 2p, thus making it
possible to compute the final residue by at most one
trial subtraction and a selection.

In the pure table-lookup variant of this scheme, the
above restriction is unnecessary. This leads to other
implementations with a smaller initial table and a
larger second-level table, thus offering additional
opportunities for table size optimization.

381



For example, if the truncated segment is d bits, then
the first table is roughly halved in size while the size
of the second table is doubled. Thus, this variant is
always advantageous if the first table is larger than
the second-level one. Since, we are free to choose
any length for the truncated segment, we can easily
choose a length that minimizes the total table size.
The total table size when ¢ bits are chopped (Fig. 1)
is given by:

Ty = d(m/2¢]+ 2¢td) 4)

Fig. 4 shows the total table size in this scheme for
selected values of m = 2b and d. It is clearly seen
that an optimal value for the number c of truncated
bits exists in most cases.

Theorem 1: The optimal number ¢ of truncated bits
that minimizes the total table size given by Eq. (4) is
within 1 of (b — d)/2, which is the exact optimal
value when b — d is even and m = 2%,

The optimal value for the total table size T in the
special case of m = 2P is thus given by:
T,min = g 21+(b+d)/2 ‘ (5)

3. Two-Stage Lookup with Segmentation

The b-bit input z can be broken into s segments of
lengths x_1, Xs-2, . . . , X1, X0, With X" x; = b,
and the residue mod p of each segment found by
consulting a table. The ith segment requires a table
of height v; = 2%, the only exceptions being
segment s — 1 which requires a table of height
[m/25%s1] and segment O which does not require a
table at all if xg < d.

The s d-bit values read out from the tables must be
added by using a modular multi-operand adder to
obtain the final result z mod p. Thus, assuming
non-tabular evaluation of the multi-operand
modular addition, the total table size becomes

Tynon-tab = g /20517 4 213:122&' + 2%0) (6)
where the last term 20 is included only if xg > d.
In all published accounts of this method, the x; are
taken to be equal. While this assumption simplifies
the description of the method and its analysis, it
may not lead to the best hardware realization.

Theorem 2: In an optimal configuration, the segment
lengths x; and x; cannot differ by more than 1 bit.

Thus, segment lengths should be made as equal as
possible. Note that Eq. (6) is minimized if the x;
are all equal to 1. So it does not make sense to talk
about optimizing the table size without also
considering its effect on the complexity of the
required multi-operand modular addition.

The pure two-level tabular version of this method
performs the multi-operand modular addition via
table lookup. Using a single table for the multi-
operand modular addition (Fig. 2), we get:

T3 = d(m/257s-1] + X1 2% + 2704 2ds) %)

Eq. (7) is much harder to analyze in general in view
of its dependence on the special boundary
conditions and varying segment lengths. However,
taking advantage of Theorem 2, an approximate
analysis assuming equal-size segments leads to the
following result.

Theorem 3: The optimal number of segments in the
above two-level arrangement is no greater than (but,
for large b, asymptotically very close to) Vb/d.

According to Theorem 3, the optimal configuration
has approximately Vb/d segments of length Vbd
bits, leading to:

Tmin ~ 2V BT + d) ®)

Fig. 5 shows the total table size in this scheme for
selected values of m = 2% and d.

4. Two-Stage Stepwise Refinement

The stepwise refinement approach to modular
reduction was first discussed in [9]. In this section,
we focus on 2-stage refinement. In Stage 1, several
high-order bits of z (0<z<m) are used to determine
what negative multiple of p should be added to z to
yield a result z’ in the range 0<z'<m’ with p<m’<m
and z mod p = z' mod p. In Stage 2, the simpler
computation z* mod p is performed.

Assuming d’ =[log, m"], we obtain the following
two-table scheme. The most significant b — h bits
of z, viz Zpy:ip BIC used to access a w-word table
(w =[m/2*)) to obtain a d'-bit value. This value is
the least significant d’ bits of a negative multiple of
p such that when added to z, the result z’ satisfies
0 <z’ <m’'. After a d’-bit addition, whose carry
out is ignored, the d"-bit sum is fed to an m"-word
table to obtain the d-bit final result z” mod p.

The pure tabular version of the 2-stage refinement
method replaces the adder &nd the second table

above with a table of size d 2 ', leading to:

Ty =d'(m/2F] + d2%%) ©)
Theorem 4: The total table size T4 for the 2-stage
pure tabular stepwise refinement method is always
greater than the optimal table size T,™* for the pure
tabular truncation method.

Based on Theorem 4, we do not need to consider
the 2-stage stepwise refinement method any further.

382



5. Comparison and Extensions

Fig. 6 shows a comparison of the two-level tabular
truncation and segmentation methods for several
example configurations. In fact, it is fairly easy to
prove that in most practical situations, the two-level
segmentation method has a lower total table size
than the truncation method.

Having established the segmentation method as the
best 2-level scheme, we next look for optimal
designs with more than two levels of lookup tables.
Generalizing the segmentation method to more than
two levels is straightforward.

Consider the special case where the uniform
segment size x at level 1 divides b. Then, at the
output of level 1, we have bd/x bits which form the
inputs to the second-level tables. Each subsequent
level of tables then uses a segment size y to reduce
the number of bits by a factor y/d. Since our goal is
to reduce the number of bits to d eventually, the
number of levels in the latter tree-structured
reduction phase is

I = loga(b/x) [ loga(y/d) (10
_which leads to the total table size:
T3 = d((b/x)2* + (21 - 1)27) (11)

= d(sz /x -2 + 2;Y(b /x)lllogz(y/d))

The optimal values for x and y can be obtained by
differentiating T3 with respect to x and y, equating
the derivatives with 0, and numerically solving the
resulting system of two non-linear equations.
Alternatively, T3 can be written in terms of / and x
(orland y) as

Ty = d(2%b/x + (2! — 1)24¢m
= d((y/d)l 2b(y/d)—l + (21 _ 1)2y)

with optimal values for I and x (y) sought as above.
This multi-level table-lookup scheme can be easily
pipelined with cycle time equal to that of a single
table access. Thus, smaller tables lead to increased
throughput but also imply higher latency due to an
increase in the number / + 1 of levels.

The two special cases of x=y=2d and x=y=d +1
are interesting: The former leadsto [+ 1= lo%d(b/d)
levels and a total table size of T3 = (b ~d)2

latter yields the smallest component tables and thus
the highest possible throughput. These two results
can be used to bound an exhaustive search for an
optimal solution using numerical methods.

The truncation and stepwise refinement methods
can be similarly extended to more than two levels.

(12)

[10]

(11]

(12]

(13}

[14]

383

References

[1] Alia, G. and E, Martinelli, “A VLSI Algorithm for Direct
and Reverse Conversion from Weighted Binary Number
System to Residue Number System”, IEEE Trans.
Circuit and Systems, Vol. 31, pp. 1033-1039, 1984.

[2] Alia, G. and E. Martinelli, “VLSI Binary-Residue
Converters for Pipelined Processmg The Computer
Journal, Vol. 33, No. 5, pp. 473-474, 1990.

[3) Alia, G. and E. Martinelli, “On the Lower Bound to the
VLSI Complexity of Number Conversion from
Weighted to Residue Representation”, IEEE Trans.
Computers, Vol. 42, No. 8, pp. 962-967, Aug. 1993.

[4] Capocelli, R.M. and R. Giancarlo, “Efficient VLSI
Networks for Converting an Integer from Bmar’y
System to Residue Number System and Vice Versa
IEEE Trans. Circuits and Systems, Vol. 35, pp. 1425-
1430, Nov. 1988.

[5] Hung, C.Y. and B. Parhami, “Fast RNS Division
Sgonthms for Fixed Divisors with Application to

RSA Encryption”, Information Processing Letters,
Vol. 51, pp. 163- 169 1994,

[6] Koc, C.K. and C.Y. Hung, “Multi-Operand Modulo
Addition Using Carry-Save Adders”, Electronic Letters,
Vol. 27, No. 6, pp. 361-363, 15 Mar. 1990,

[71 Parhami, B., “Optimal Table-Lookup Schemes for
Binary-to-Residue and Residue-to-Binary Conversions”,
Proc. 27th Asilomar Conf. Signals, Systems, and
Computers, Pacific Grove, CA, Nov. 1993, Vol. 1,
pp. 812-816.

[8] Parhami, B. and C.Y. Hung, “Optimal Table Lookup
Schemes for VLSI Implementation of Input/Output
Conversions and Other Residue Number Operations”,
VLSI Signal Processing VII (Proc. of IEEE
Workshop), La Jolla, CA, Oct. 1994, pp. 470-481.

Parhami, B., “Analysis of Tabular Methods for Modular
Reduction”, Proc. 28th Asilomar Conf. Signals,
Systems, and Computers, Pacific Grove, CA,
Oct./Nov. 1994, pp. 526-530.

Piestrak, S.J., “Design of Residue Generators and
Multi-Operand Modular Adders Using Carry-Save
Adders”, Proc. Int'l Symp. Computer Archztecture.
May 1991 pp. 100-107.

Piestrak, S.J., “Design of Residue Generators and
Multioperand Modular Adders Using Carry-Save
Adders”, IEEE Trans. Computers, Vol. 43, No. 1, pp.
68-77, Jan. 1994,

Posch, K.C. and R. Posch, “Modulo Reduction in
Residue Number Systems”, IEEE Trans. Parallel and
Distributed Systems, Vol. 6, No. 5, pp. 449-454,
May 1995.

Shenoy, A.P. and R. Kumaresan, “Fast Base Extension
Using a Redundant Modulus in RNS”, IEEE Trans.
Computers, Vol. 38, No. 2, pp. 292-297, Feb. 1989.

Soderstrand, M.A., W.K. Jenkins, G.A. Jullien, and
F.J. Taylor (Edltors), Residue Number System
Arithmetic, IEEE Press, New York, 1986, (See, in
particular, Papers 2-6, 3-14, and 3-16).

91



b-¢ ¢

U P

|

Tablel |[m/2°
Address I d
Dat _'..:C
ata ]
~ Table 2 20td
‘ |
d
z mod p ;

Fig. 1. Table-lookup with truncated operand.

b Table0 |2%0

Tables-1 |2%s-1
Address avles 2
— J—
P
Data
- | Tables 22d
a |
zmod p ;

Fig. 2. Piecewise table-lookup based on segmentation.

z[ T 7]

W
(4]

b=32,d=8
T\? »
\\

log of Total Table Size in Bits
o o o W
o o o o o
1 11 i 1

(441

1

o b
Jp o
o

1l

i 1 1 T 1§ 1 i ] T 1 1
1 2 3 4 5 6 7 8 9 10 11 12
Number of Truncated Bits

Fig. 4. Modular reduction with 2-level pure table-lookup
based on truncation.

log of Total Table Size in Bits

log of Segment Size

Fig. 5. Modular reduction with 2-level pure table-lookup
based on segmentation.

Yy S O
—_— l
| Taber [m2h
o
: TS |
d'-h| -
» T 7~ : Table 2 224
d-h I
d
z mod p ;

Fig. 3. Table-lookup based on stepwise refinement,

@ 25
) b=32,d=8 <
& b=32, d=4
8 201 v
)
@
= b=16,d=8 3
S 154
-g Bty at G\\\\\@
T 10
o, =
9 eyt -
—fﬁj aiaia 3
= 5]
o]
60
<
0
Truncation Segmentation
Fig. 6. Comparison of truncation and segmentation

methods in their optimal versions.



